4,852 research outputs found

    SSME lifetime prediction and verification, integrating environments, structures, materials: The challenge

    Get PDF
    The planned missions for the space shuttle dictated a unique and technology-extending rocket engine. The high specific impulse requirements in conjunction with a 55-mission lifetime, plus volume and weight constraints, produced unique structural design, manufacturing, and verification requirements. Operations from Earth to orbit produce severe dynamic environments, which couple with the extreme pressure and thermal environments associated with the high performance, creating large low cycle loads and high alternating stresses above endurance limit which result in high sensitivity to alternating stresses. Combining all of these effects resulted in the requirements for exotic materials, which are more susceptible to manufacturing problems, and the use of an all-welded structure. The challenge of integrating environments, dynamics, structures, and materials into a verified SSME structure is discussed. The verification program and developmental flight results are included. The first six shuttle flights had engine performance as predicted with no failures. The engine system has met the basic design challenges

    Bayesian multiscale deconvolution applied to gamma-ray spectroscopy

    Get PDF
    A common task in gamma-ray astronomy is to extract spectral information, such as model constraints and incident photon spectrum estimates, given the measured energy deposited in a detector and the detector response. This is the classic problem of spectral “deconvolution” or spectral inversion. The methods of forward folding (i.e., parameter fitting) and maximum entropy “deconvolution” (i.e., estimating independent input photon rates for each individual energy bin) have been used successfully for gamma-ray solar flares (e.g., Rank, 1997; Share and Murphy, 1995). These methods have worked well under certain conditions but there are situations were they don’t apply. These are: 1) when no reasonable model (e.g., fewer parameters than data bins) is yet known, for forward folding; 2) when one expects a mixture of broad and narrow features (e.g., solar flares), for the maximum entropy method; and 3) low count rates and low signal-to-noise, for both. Low count rates are a problem because these methods (as they have been implemented) assume Gaussian statistics but Poisson are applicable. Background subtraction techniques often lead to negative count rates. For Poisson data the Maximum Likelihood Estimator (MLE) with a Poisson likelihood is appropriate. Without a regularization term, trying to estimate the “true” individual input photon rates per bin can be an ill-posed problem, even without including both broad and narrow features in the spectrum (i.e., amultiscale approach). One way to implement this regularization is through the use of a suitable Bayesian prior. Nowak and Kolaczyk (1999) have developed a fast, robust, technique using a Bayesian multiscale framework that addresses these problems with added algorithmic advantages. We outline this new approach and demonstrate its use with time resolved solar flare gamma-ray spectroscopy

    Energetic proton spectra in the 11 June 1991 solar flare

    Get PDF
    We have studied a subset of the 11 June 1991 solar flare γ-ray data that we believe arise from soft proton or ion spectra. Using data from the COMPTEL instrument on the Compton Observatory we discuss the gamma-ray intensities at 2.223 MeV, 4–7 MeV, and 8–30 MeV in terms of the parent proton spectrum responsible for the emission

    Native roadside perennial grasses persist a decade after planting in the Sacramento Valley

    Get PDF
    Restoring native grassland along roadsides can provide a relatively low-maintenance, drought-tolerant and stable perennial vegetative cover with reduced weed growth, as opposed to the high-maintenance invasive annual cover (requiring intensive mowing and herbicide treatments) that dominates most Sacramento Valley roadsides. A survey of long-established roadside native-grass plantings in Yolo County showed that once established and protected from disturbance, such plantings can persist with minimal maintenance for more than a decade, retaining a high proportion of native species. The survey also showed that each species of native perennial grass displays a microhabitat preference for particular roadside topographic positions, and that native perennial grass cover is negatively affected by disturbance

    Multicenter Evaluation of the QIAstat-Dx Respiratory Panel for the Detection of Viruses and Bacteria in Nasopharyngeal Swab Specimens

    Get PDF
    The QIAstat-Dx Respiratory Panel (QIAstat-Dx RP) is a multiplex in vitro diagnostic test for the qualitative detection of 20 pathogens directly from nasopharyngeal swab (NPS) specimens. The assay is performed using a simple sample-to-answer platform with results available in approximately 69 min. The pathogens identified are adenovirus, coronavirus 229E, coronavirus HKU1, coronavirus NL63, coronavirus OC43, human metapneumovirus A and B, influenza A, influenza A H1, influenza A H3, influenza A H1N1/2009, influenza B, parainfluenza virus 1, parainfluenza virus 2, parainfluenza virus 3, parainfluenza virus 4, rhinovirus/enterovirus, respiratory syncytial virus A and B, Bordetella pertussis, Chlamydophila pneumoniae, and Mycoplasma pneumoniae. This multicenter evaluation provides data obtained from 1,994 prospectively collected and 310 retrospectively collected (archived) NPS specimens with performance compared to that of the BioFire FilmArray Respiratory Panel, version 1.7. The overall percent agreement between QIAstat-Dx RP and the comparator testing was 99.5%. In the prospective cohort, the QIAstat-Dx RP demonstrated a positive percent agreement of 94.0% or greater for the detection of all but four analytes: coronaviruses 229E, NL63, and OC43 and rhinovirus/enterovirus. The test also demonstrated a negative percent agreement of ≥97.9% for all analytes. The QIAstat-Dx RP is a robust and accurate assay for rapid, comprehensive testing for respiratory pathogens

    Campus Climate, Peer Dispositions, and the Inclusion of LGBQ and Transgender Students at a Jesuit University

    Get PDF
    Using a campus climate framework, this study identifies students who hold positive dispositions towards lesbian, gay, bisexual, queer (LGBQ) and transgender students at a Jesuit university. Findings reveal that just more than one-quarter of students hold positive dispositions toward LGBQ and transgender students and desire that the campus work towards being more inclusive towards this group. Our binomial logistic regression of 602 student responses demonstrated that women are more inclined to hold positive dispositions. Similarly, students who agree that non-Catholics should be supported by their campus are also inclined to hold positive dispositions toward LGBQ and transgender students. Further, we observed positive effects when students attended multicultural events and completed diversity courses

    Energetic proton spectra in the 11 June 1991 solar flare

    Get PDF
    The June 11, 1991 gamma-ray flare seen by the Compton Gamma-ray Observatory (CGRO) displays several features that make it a dynamic and rich event. It is a member of a class of long duration gamma-ray events with both 2.223 MeV and greater than 8 MeV emission for hours after the impulsive phase. It also contains an inter-phase between the impulsive and extended phases that presents a challenge to the standard gamma-ray line (GRL) flare picture. This phase has strong 2.223 MeV emission and relatively weak 4.44 MeV emission indicative of a very hard parent proton spectrum. However, this would indicate emission greater than 8 MeV, which is absent from this period. We present the application of new spectroscopy techniques to this phase of the flare in order to present a reasonable explanation for this seemly inconsistent picture

    Gamma ray measurements of the 1991 November 15 solar flare

    Get PDF
    The 1991 November 15 X1.5 flare was a well observed solar event. Comprehensive data from ground-based observatories and spacecraft provide the basis for a contextual interpretation of gamma-ray spectra from the Compton Gamma Ray Observatory (CGRO). In particular, spectral, spatial, and temporal data at several energies are necessary to understand the particle dynamics and the acceleration mechanism(s) within this flare. X-ray images, radio, Ca XIX data and magnetograms provide morphological information on the acceleration region [4,5], while gamma-ray spectral data provide information on the parent ion spectrum. Furthermore, time profiles in hard X-rays and gamma-rays provide valuable information on temporal characteristics of the energetic particles. We report the results of our analysis of the evolution of this flare as a function of energy (∼25 keV–2.5 MeV) and time. These results, together with other high energy data (e.g. from experiments on Yohkoh, Ulysses, and PVO) may assist in identifying and understanding the acceleration mechanism(s) taking place in this event

    Rag GTPases are cardioprotective by regulating lysosomal function.

    Get PDF
    The Rag family proteins are Ras-like small GTPases that have a critical role in amino-acid-stimulated mTORC1 activation by recruiting mTORC1 to lysosome. Despite progress in the mechanistic understanding of Rag GTPases in mTORC1 activation, little is known about the physiological function of Rag GTPases in vivo. Here we show that loss of RagA and RagB (RagA/B) in cardiomyocytes results in hypertrophic cardiomyopathy and phenocopies lysosomal storage diseases, although mTORC1 activity is not substantially impaired in vivo. We demonstrate that despite upregulation of lysosomal protein expression by constitutive activation of the transcription factor EB (TFEB) in RagA/B knockout mouse embryonic fibroblasts, lysosomal acidification is compromised owing to decreased v-ATPase level in the lysosome fraction. Our study uncovers RagA/B GTPases as key regulators of lysosomal function and cardiac protection
    corecore