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Abstract. A common task in gamma-ray astronomy is to extract spectral information, such as
model constraints and incident photon spectrum estimates, given the measured energy deposited
in a detector and the detector response. This is the classic problem of spectral "deconvolution" or
spectral inversion. The methods of forward folding (i.e. parameter fitting) and maximum entropy
"deconvolution" (i.e. estimating independent input photon rates for each individual energy bin)
have been used successfully for gamma-ray solar flares (e.g. Rank, 1997; Share and Murphy,
1995). These methods have worked well under certain conditions but there are situations were
they don't apply. These are: 1) when no reasonable model (e.g. fewer parameters than data bins)
is yet known, for forward folding; 2) when one expects a mixture of broad and narrow features
(e.g. solar flares), for the maximum entropy method; and 3) low count rates and low signal-to-
noise, for both. Low count rates are a problem because these methods (as they have been
implemented) assume Gaussian statistics but Poisson are applicable. Background subtraction
techniques often lead to negative count rates. For Poisson data the Maximum Likelihood
Estimator (MLE) with a Poisson likelihood is appropriate. Without a regularization term, trying
to estimate the "true" individual input photon rates per bin can be an ill-posed problem, even
without including both broad and narrow features in the spectrum (i.e. a multiscale approach).
One way to implement this regularization is through the use of a suitable Bayesian prior. Nowak
and Kolaczyk (1999) have developed a fast, robust, technique using a Bayesian multiscale
framework that addresses these problems with added algorithmic advantages. We outline this
new approach and demonstrate its use with time resolved solar flare gamma-ray Spectroscopy.

Given a measured energy deposit spectrum we can extract spectral information such as
constraints on model parameters and an estimate of the incident photon spectrum. This is the
classic problem of spectral deconvolution or spectral inversion. In the ideal case this is
equivalent to solving an integral equation for the photon spectrum f(E') given the measured
energy loss spectrum C(E) and the energy response of the detector R(E',E),

C(E)=\R(E,Ey(E)dE (1)
0

The solution to this deceptively simple equation is part of a larger class of problems
commonly referred to as inverse problems. If we had the exact continuous forms of C and R
we could, in principle, solve the integral equation that is just a Fredholm equation of the first
kind (Craig and Brown 1986; Hansen 1998). The count data C(E) are only known for a
discrete set of energies, EI, where i=0,...,n-l. We are then solving a set of n integral equations
but many functions can satisfy a given discrete set of equations without satisfying our original
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equation. The instrument response is seldom described analytically so that we then must
replace the set of integral equations with the matrix equation,

C, =fl/yfori = 0,...,n-1 and j = 0,...,m-1. (2)
The formal solution of this equation is f=R~1C but usually R"1 is unbounded and its

computation is sensitive and unstable to small perturbations in the data. The inverse problem
is then termed "ill-posed".

There exist a number of "classical" methods for numerical inversion of matrix equations,
which were discussed in detail by Craig and Brown (1986) and Hansen (1998). These methods
are classical in the sense that they explicitly use prior information or make assumptions about
the source function (Craig and Brown 1986). Due to many shortcomings we do not use any of
these methods but instead use "non-classical" or regularization methods. The general idea of
regularization is to introduce an extra term (or regularization function <|)) to minimize irregular
solutions, i.e.,

L(f) = \\C-f?/f +#/,£*) (3)
The free parameter a is chosen to balance the minimization of the norm versus the

suppression of noise. Below, we will discuss two commonly used techniques and we present
the use of a novel new method applied to y-ray spectroscopy .

The method of forward folding is commonly used in y-ray and X-ray astronomy. A model
[I is convolved (folded) with the detector response R yielding a model set of data d. A
maximum-likelihood fit of the real data C with the model data is then preformed maximizing
the log of the probability (or in the case of Gaussian statistics minimizing %2). This procedure
has the disadvantage that it is inherently restricted to the assumed model. One does not obtain
an estimate of the real spectrum but rather a set of parameters associated with that model.
However, when the model choice is appropriate and realistic and the response is dominated by
diagonal elements the inferred spectrum is robust.

Maximum Entropy methods are also popular for the deconvolution of image data and have
proven to be successful in spectral deconvolution (Gull and Skilling 1990). In addition to
maximizing a likelihood, prior information in the form of information entropy S is maximized.
Many versions of S have been defined in the literature.

The methods of forward folding and maximum entropy "deconvolution" have been used
successfully for gamma-ray solar flares (e.g. Rank, 1996; Share and Murphy, 1995). These
methods worked well under certain conditions but there are situations were they do not apply.
These are: 1) when no reasonable model (e.g. fewer parameters than data bins) is yet known,
for forward folding; 2) when one expects a mixture of broad and narrow features (e.g. solar
flares), for the maximum entropy method; and 3) low count rates and low signal-to-noise, for
both. For Poisson data the Maximum Likelihood Estimator (MLE) with a Poisson likelihood is
appropriate. Without a regularization term, trying to estimate the "true" individual input
photon rates per bin can be an ill-posed problem. One way to implement this regularization,
though, is through the use of a suitable Bayesian prior. Nowak and Kolaczyk (1999)
developed a fast, robust, technique using a Bayesian multiscale framework that addresses
these problems with added algorithmic advantages. We outline this new approach so that we
can apply it to solar flare gamma-ray spectroscopy.

Recent treatments of Poisson inverse problems have augmented the likelihood equations
with a regularization or penalization term as discussed above. This regularization term
stabilizes the otherwise ill posed ML problem. The regularization term can take the form of a
Bayesian prior so that the MLE is replaced with the Maximum a posteriori (MAP) estimator.
If we wish to use a MAP estimator, we first apply Bayes' theorem,

p(y) (4)
This equation relates the likelihood to the posterior with the prior p(X) and p(y) being a

normalization based on the data. The prior can also be interpreted as a penalizing function
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giving the terminology "Penalized MLE". The MAP estimate is then the value of A, that
maximizes the log of the posterior.

Multiscale analysis is the study of behavior or structure in data at various spatial and/or
temporal scales. One way to address our ill-posed problem is through a multi-scale framework
(Starck, Murtagh, and Bijaoui, 1998). The usual multi-scale model is formulated with a
wavelet decomposition but wavelets and Poisson data are somewhat incompatible (Kolaczyk
1999). Nowak and Kolaczyk (1999) developed a deconvolution technique that uses a Bayesian
multiscale framework that addresses these problems with other advantages. The technique
uses an Estimator Maximization (EM) algorithm that has a closed-form step. Under reasonable
choice of the multiscale priors, the EM algorithm converges to a unique, global MAP estimate.

The problem at hand is to estimate the photon flux, X, from the observed count data y. The
counts are related to the flux by the relation yn= P((in)5 n=0,...,N-l, where P(|in) is the Poisson
distribution with mean counts |in. The mean counts |in are related to the flux by the relation [I
= R»X, where R is an N x M matrix (the response) of transition probabilities.

It will be useful later in this discussion to introduce the idea of the "complete data" z(n,m).
This is the total number of m to n (emission to detection) events, z(n,m) = P(hmRnm). The
indirectly observed count data is then given by summing the complete data over m,
yn = ̂ mz(n,m). Also, were we able to detect the photons directly without the detector we
would have the direct data, Xm = ̂  z(/7,/77), from which it follows that Xm = F(/Lm).

To seek a solution of the general inverse problem we must first solve the direct-data
Poisson estimation problem, Xm = P(/lm). The simplest multiscale data analysis is the
unnormalized Haar analysis. The data {x^} are the unnormalized Haar scaling coefficients of
x. The index j refers to the resolution of the analysis, 2j, where j = J is the index for the highest
or finest scale and j = 0 is the lowest or coarsest scale.

Using conditional probability relationships, the joint probability of the data in a multiscale
representation can be expressed with the factorized form,

AX) = P(XM nW^ i *>, j- ^
J=Q /77=0

The parent (xj>k), child (xj+i>2k) relationship is expressed by the conditional likelihood,
Pr(xj+i,2m|xj,m). The MAP estimation of X requires the likelihood function of x, p(x I A). The
multiscale expansion of p(x I A) requires that we define the multiscale analysis of the
intensity A,, analogous to the analysis of x.
The parameters {A,j?m} are the unnormalized Haar scaling coefficients of the intensity X.

Using the definitions for the multiscale analysis of x and X and the multiscale factorization
of Pr(x) we can express the parent-child conditional likelihood as,

A* Mm I Xj^ A//77) = E(xj^m I X;.m, p/tm), (6)

where [*x\ n^p\ = ( H. jp*H _ pY7-*, is the binomial distribution with parameters n and p. The
\x )

parameters _ A/n2/77 are the canonical multiscale parameters for the Poisson model and can
^j>m ~ ~i*j*i

be viewed as "splitting" factors, governing the multiscale refinement of the intensity. We can
represent the multiscale analysis of x and X as a binary tree where the splitting factors are
multiplicative weights in the tree's links. The complete factorization of the likelihood is then

/=0 /77=0

where P(XO,O|^O,O) is just the Poisson probability function of XQ,O with mean AO,O.
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A maximum likelihood analysis of the binomial conditional likelihood leads to a MLE
estimation of the splitting parameters (Nowak and Kolaczyk 1999) of
~ _ ^/+i,2/77 . There is a one-to-one mapping from (p,Xoo) to K so using the multiscale synthesis
F/,/77 ;|

A/>

equation (Nowak and Kolaczyk 1 999) and the estimate p . we find the MLE of each intensity
element of the finest scale to be A, = xr = x . The MLE returns the raw data as our MLEJ ,m J ,m m
intensity estimate, an expected result (Nowak and Kolaczyk 1999). The next step is the MAP
estimation.

The crucial ingredient in moving from a MLE estimation to a Bayesian estimation is the
choice of a prior distribution p(A,). A good choice of prior reflects known or assumed attributes
of the intensity and matches the functional form of the likelihood (in our case Poisson and
Poisson-binomial). Conjugate priors have the computational advantage that they are obtained
by updating the parameters of the prior based on the measurements (Nowak and Kolaczyk
1999). The natural choice of the conjugate prior for the total intensity Xoo is the gamma
probability density. The choice for modeling the splitting parameter is as an independent beta
distributed random variable Be(p|oc,p). We have no a priori knowledge of asymmetry
therefore we use only a symmetric beta prior of mean 1/2 with oc=p. In our case the gamma
prior has negligible effect so the important parameter is the beta prior in the splitting
parameters (Nowak and Kolaczyk 1999). The beta priors {a,} reflect our belief or prior
knowledge of the intensities regularity. Combining the prior and the likelihood and using the
conjugacy of the prior with the likelihood produces a posterior density (Nowak and Kolaczyk
1999). As with the MLE, the synthesis equations can be used to obtain a MAP estimate of X.

Moving back to the more difficult Poisson inverse problem: As we showed for the analysis
of the directly observed Poisson data, a multiscale factorization of the data likelihood played a
key role. For the analysis of the indirectly observed data, the complete data likelihood plays a
key role through the EM algorithm. Nowak and Kolaczyk (1999) show that the complete data
likelihood is proportional to the direct data likelihood. The log complete data posterior is then
just a combination of the log complete data likelihood and the log prior,

, p lz ) 8

1 A0>0) + logG(A0>0

/=0 /77=0

The key to the EM algorithm for MLE (Nowak and Kolaczyk 1999) is the introduction of
the complete data, z(n,m). If we could observe these complete data, we have shown that a
closed-form maximizer of the complete data posterior exists. The EM algorithm iteratively
alternates between computing the expected complete data log-posterior and a maximizer of
this function leading to a MAP estimate of the log-posterior. The problem with the MAP-EM
algorithm is that now the M-step does not have a closed-form solution. Fortunately, Nowak
and Kolaczyk (1999) solved this problem by taking a multiscale approach that does have a
closed-form M-step. As an EM algorithm it has the standard property that the posterior
probability does not decrease with subsequent iterations and the estimate is non-negative. The
algorithm also has the feature that it is computationally simple and for a certain choice of prior
parameters the MAP converges to a global solution.

Unfortunately, errors or confidence intervals in the traditional sense do not follow
(Kolaczyk 1999). In order to produce spectra with which we can then calculate line fluxes and
physicals parameters; we must be able to produce errors or uncertainties in our estimates. The
most straightforward method for this is to use a parametric bootstrap (Connors 2000;
Kolaczyk 2000).

Figure 1 shows the light curve for a gamma-ray solar flare divided into 3 time intervals and
the deconvolved spectra for each of the time intervals.
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We have shown this technique to be very useful for the analysis of solar flare gamma-ray
spectra. This technique is fast, robust, and requires no knowledge of the underlying physics.
This technique holds great promise for the deconvolution of gamma-ray spectra as well as
spectra in other energy ranges.

Energy (HeV)

Energy (Me?)

FIGURE 1. The light curve for a gamma-ray solar flare (a). The light curve is divided into 3 time
intervals. Also shows the deconvolved spectra for the time intervals defined in the light curve (b-d).

(Error bars extending to the bottom of the plots are 1 a upper limits.)
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