6,932 research outputs found

    Lifetime cumulative effect of reproductive factors on stroke and its subtypes in postmenopausal Chinese women: a prospective cohort study

    Get PDF
    Background and Objectives: Multiple reproductive factors are associated with stroke. Little is known about the cumulative effects of reproductive factors during a reproductive life course on stroke and its subtypes, especially among female Chinese individuals. The objective of this study was to assess the associations of lifetime cumulative estrogen exposure due to reproductive factors with stroke and its etiologic subtypes among postmenopausal Chinese women. Methods: Postmenopausal women without prior stroke at baseline (2004–2008) were selected from the China Kadoorie Biobank (CKB). Lifetime cumulative estrogen exposure due to reproductive factors was assessed using 3 composite indicators: reproductive lifespan (RLS), endogenous estrogen exposure (EEE), and total estrogen exposure (TEE). Stroke and its subtypes, ischemic stroke (IS), intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH), were identified through linkage to a disease registry system and health insurance data during follow-up (2004–2015). Multivariable-adjusted Cox proportional hazards regression models were applied to estimate the adjusted hazard ratio (aHR) and 95% CIs for the risk of stroke by quartiles of RLS, EEE, and TEE, respectively. Results: A total of 122,939 postmenopausal participants aged 40–79 years without prior stroke at baseline were included. During a median follow-up period of 8.9 years, 15,139 cases with new-onset stroke were identified, including 12,853 cases with IS, 2,580 cases with ICH, and 269 cases with SAH. Compared with the lowest quartile (Q1) of RLS, the highest quartile (Q4) had a lower risk of total stroke (aHR: 0.95, 95% CI 0.92–0.98), IS (aHR: 0.95, 95% CI 0.92–0.98), and ICH (aHR: 0.87, 95% CI 0.81–0.94). Both EEE and TEE displayed a graded association with the subsequent descending risk of total stroke (aHR for Q4 vs Q1: EEE: 0.85, 95% CI 0.82–0.89; TEE: 0.87, 95% CI 0.84–0.90), IS (aHR for Q4 vs Q1: EEE: 0.86, 95% CI 0.83–0.90; TEE: 0.86, 95% CI 0.83–0.89), and ICH (EEE: 0.73, 95% CI 0.65–0.81; TEE: 0.83,95% CI 0.76–0.91), with a p for trend < 0.001 for all these associations. Discussion: Individuals' cumulative estrogen exposure due to reproductive factors could potentially be a valuable indicator for risk stratification of stroke events after menopause

    Toward a consistent prediction of defect chemistry in ceo2

    Get PDF
    Polarizable shell-model potentials are widely used for atomic-scale modeling of charged defects in solids using the Mott–Littleton approach and hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) embedded-cluster techniques. However, at the pure MM level of theory, the calculated defect energetics may not satisfy the requirement of quantitative predictions and are limited to only certain charged states. Here, we proposed a novel interatomic potential development scheme that unifies the predictions of all relevant charged defects in CeO2 based on the Mott–Littleton approach and QM/MM electronic-structure calculations. The predicted formation energies of oxygen vacancies accompanied by different excess electron localization patterns at the MM level of theory reach the accuracy of density functional theory (DFT) calculations using hybrid functionals. The new potential also accurately reproduces a wide range of physical properties of CeO2, showing excellent agreement with experimental and other computational studies. These findings provide opportunities for accurate large-scale modeling of the partial reduction and nonstoichiometry in CeO2, as well as a prototype for developing robust interatomic potentials for other defective crystals

    Terrestrial and aquatic responses to climate change and human impact on the southeastern Tibetan Plateau during the past two centuries

    Get PDF
    Rapid population growth and economic development have led to increased anthropogenic pressures on the Tibetan Plateau, causing significant land cover changes with potentially severe ecological consequences. To assess whether or not these pressures are also affecting the remote montane-boreal lakes on the SE Tibetan Plateau, fossil pollen and diatom data from two lakes were synthesized. The interplay of aquatic and terrestrial ecosystem response was explored in respect to climate variability and human activity over the past 200 years. Nonmetric multidimensional scaling and Procrustes rotation analysis were undertaken to determine whether pollen and diatom responses in each lake were similar and synchronous. Detrended canonical correspondence analysis was used to develop quantitative estimates of compositional species turnover. Despite instrumental evidence of significant climatic warming on the southeastern Plateau, the pollen and diatom records indicate very stable species composition throughout their profiles and show only very subtle responses to environmental changes over the past 200 years. The compositional species turnover (0.36-0.94 SD) is relatively low in comparison to the species reorganizations known from the periods during the mid-and early-Holocene (0.64-1.61 SD) on the SE Plateau, and also in comparison to turnover rates of sediment records from climate-sensitive regions in the circum arctic. Our results indicate that climatically induced ecological thresholds are not yet crossed, but that human activity has an increasing influence, particularly on the terrestrial ecosystem in our study area. Synergistic processes of post-Little Ice Age warming, 20th century climate warming and extensive reforestations since the 19th century have initiated a change from natural oak-pine forests to seminatural, likely less resilient pine-oak forests. Further warming and anthropogenic disturbances would possibly exceed the ecological threshold of these ecosystems and lead to severe ecological consequences

    Multiscale QM/MM modelling of catalytic systems with ChemShell

    Get PDF
    Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling

    Phosphomolybdic acid as an efficient hole injection material in perovskite optoelectronic devices

    Get PDF
    Efficient perovskite devices consist in a perovskite film sandwiched in between charge selective layers, in order to avoid non-radiative recombination. A common metal oxide used as p-type or hole transport layer is molybdenum oxide. MoO3 is of particular interest for its very large work function, which allows it to be used both as an interfacial charge transfer material as well as a dopant for organic semiconductors. However, high quality and high work function MoO3 is typically thermally evaporated in vacuum. An alternative solution-processable high work function material is phosphomolybdic acid (PMA), which is stable, commercially available and environmentally friendly. In this communication, we show the first application of PMA in efficient vacuum processed perovskite devices. We found that the direct growth of perovskite films onto PMA lead to strong charge carrier recombination, hindering the solar cell photovoltage. By using an energetically suitable selective transport layer placed in between PMA and the perovskite film, solar cells with efficiency > 13% as well as LEDs with promising quantum efficiency can be obtained

    Multifunctional ytterbium oxide buffer for perovskite solar cells

    Get PDF
    Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched between several layers of different charge-selective materials, ensuring unidirectional current flow and high voltage output of the devices. A ‘buffer material’ between the electron-selective layer and the metal electrode in p-type/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) enables electrons to flow from the electron-selective layer to the electrode. Furthermore, it acts as a barrier inhibiting the inter-diffusion of harmful species into or degradation products out of the perovskite absorber. Thus far, evaporable organic molecules and atomic-layer-deposited metal oxides have been successful, but each has specific imperfections. Here we report a chemically stable and multifunctional buffer material, ytterbium oxide (YbOx), for p-i-n PSCs by scalable thermal evaporation deposition. We used this YbOx buffer in the p-i-n PSCs with a narrow-bandgap perovskite absorber, yielding a certified power conversion efficiency of more than 25%. We also demonstrate the broad applicability of YbOx in enabling highly efficient PSCs from various types of perovskite absorber layer, delivering state-of-the-art efficiencies of 20.1% for the wide-bandgap perovskite absorber and 22.1% for the mid-bandgap perovskite absorber, respectively. Moreover, when subjected to ISOS-L-3 accelerated ageing, encapsulated devices with YbOx exhibit markedly enhanced device stability

    The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys

    Full text link
    We present new quasars discovered in the vicinity of the Andromeda and Triangulum galaxies with the LAMOST during the 2010 and 2011 observational seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m telescope, XSTPS optical, and WISE near infrared photometric data. We present 509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new quasars discovered in an area of ~100 sq. deg that covers the central region and the southeastern halo of M31 in the 2010 commissioning datasets. These 526 new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to 3.2. They represent a significant increase of the number of identified quasars in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0 respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars provide an invaluable collection with which to probe the kinematics and chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars are now known with locations within 2.5 deg of M31, of which 73 are newly discovered. Tens of quasars are now known to be located behind the Giant Stellar Stream, and hundreds behind the extended halo and its associated substructures of M31. The much enlarged sample of known quasars in the vicinity of M31 and M33 can potentially be utilized to construct a perfect astrometric reference frame to measure the minute PMs of M31 and M33, along with the PMs of substructures associated with the Local Group of galaxies. Those PMs are some of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte
    • 

    corecore