Multifunctional ytterbium oxide buffer for perovskite solar cells

2	Authors: Peng Chen ^{1,11} , Yun Xiao ^{2,11} , Juntao Hu ^{3,10,11} , Shunde Li ^{1,11} , Deying Luo ⁴ *, Rui
3	Su ¹ , Pietro Caprioglio ² , Pascal Kaienburg ² , Xiaohan Jia ¹ , Nan Chen ³ , Jingjing Wu ⁵ ,
4	Yanping Sui ⁵ , Pengyi Tang ⁵ , Haoming Yan ¹ , Tianyu Huang ¹ , Maotao Yu ¹ , Qiuyang Li ¹ ,
5	Lichen Zhao ¹ , Cheng-Hung Hou ⁶ , Yun-Wen You ⁶ , Jing-Jong Shyue ⁶ , Dengke Wang ³ ,
6	Xiaojun Li ⁷ , Qing Zhao ¹ , Qihuang Gong ^{1,8,9} *, Zheng-Hong Lu ^{3,4} *, Henry J. Snaith ² *, Rui
7	Zhu ^{1,8,9} *
8	¹ State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of
9	Physics, Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation
10	Center of Quantum Matter, Peking University, 100871 Beijing, China
11	² Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU,
12	UK
13	³ Department of Physics, Center for Optoelectronics Engineering Research, Yunnan
14	University, 650091 Kunming, China
15	⁴ Department of Materials Science and Engineering, University of Toronto, Toronto,

16 Ontario M5G 3E4, Canada

17	⁵ State Key Laboratory of Information Functional Materials, 2020 X-Lab, Shanghai
18	Institute of Microsystem and Information Technology, Chinese Academy of Sciences,
19	Shanghai 200050, China
20	⁶ Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
21	⁷ Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic
22	Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
23	⁸ Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010 Jiangsu,
24	China
25	⁹ Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006
26	Shanxi, China
27	¹⁰ Present address: Department of Physics, Mathematics and Computer Science, Faculty of
28	Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
29	¹¹ These authors contributed equally to this work
30	*Correspondence: <u>deying.luo@utoronto.ca</u> (D.L.); <u>qhgong@pku.edu.cn</u> (Q.G.);
31	zhenghong.lu@utoronto.ca (ZH.L.); henry.snaith@physics.ox.ac.uk (H.J.S.);
32	iamzhurui@pku.edu.cn (R.Z.)
33	

Perovskite solar cells (PSCs) comprise a solid perovskite absorber sandwiched 35 between multiple layers of different charge-selective materials, ensuring uni-36 37 directional current flow and high voltage output of the devices^{1,2}. A "buffer material" 38 between the electron-selective layer (ESL) and the metal electrode in ptype/intrinsic/n-type (p-i-n) PSCs (also known as inverted PSCs) allows electrons to 39 flow from the ESL to the electrode³⁻⁵. Also, it acts as a barrier inhibiting the inter-40 41 diffusion of harmful species in or degradation products out of the perovskite absorber⁶⁻⁸. Thus far, evaporable organic molecules^{9,10} and atomic-layer-deposited 42 metal oxides^{11,12} have proven successful, but each has specific imperfections. Here, we 43 44 report a chemically stable and multifunctional buffer material, ytterbium oxide (YbO_x), for p-i-n PSCs via scalable thermal evaporation deposition. We employed this 45 YbO_x buffer into the p-i-n PSCs with a narrow-bandgap (NBG) perovskite absorber, 46 47 vielding a certified power conversion efficiency (PCE) of over 25%. We also demonstrate the broad applicability of YbO_x in enabling highly efficient PSCs from 48 49 various types of perovskite absorber layers, delivering state-of-the-art efficiencies of 50 20.1% for the wide-bandgap (WBG) perovskite absorber and 22.1% for the mid-51 bandgap (MBG) perovskite absorber, respectively. Moreover, when subjected to

- 52 ISOS-L-3 accelerated ageing, encapsulated devices with YbO_x exhibit markedly
- 53 enhanced device stability.

55 The PCE of single-junction p-i-n PSCs (also referred to as inverted PSCs) has surpassed 25% through passivation methodologies^{3-5,13-15}. However, the published operational 56 57 stability of p-i-n PSCs under stringent test conditions still lags behind commercially viable solar panels¹⁶⁻¹⁸. Though multiple factors are responsible for device degradation under 58 operating conditions¹⁹⁻²¹, ion migration under realistic operational conditions represents a 59 60 significant challenge as it is almost ubiquitous within a device. Electrical bias and illumination-induced ion migration within a perovskite absorber layer can inevitably vary 61 the chemical composition at the nano- and micro-scale^{19,21,22}, inducing higher chemical 62 63 heterogeneity, increased non-radiative recombination centers and subsequent initial sites where device degradation occurs^{2,23}. Furthermore, these mobile ions from the perovskite 64 65 absorber can diffuse into the charge-selective layers and may accumulate at the metal 66 electrode interface. The accumulated ions have been proven to corrode the metal electrodes^{7,24}, damaging the integrity of the metal electrode and degrading device stability. 67 68 Another key concern for long-term instability is the metal diffusion into the electron-69 selective and perovskite layers, which may lead to the formation of metal halides and 70 weakened device stability^{7,25,26}.

Attempting to introduce an effective buffer layer between the ESL and the metal electrode
to block atom and ion movement between the perovskite and metal layers (in both
directions, Extended Data Fig. 1a) is of technological interest in improving overall device

74	performance ⁶⁻⁸ . In this case, the buffer layer must facilitate the directional flow of electrons
75	from the buffer to the metal electrode, ensuring efficient electron collection of the PSCs.
76	The method for depositing the buffer layer must be compatible with underlying materials
77	such as (6,6)-Phenyl C ₆₁ butyric acid methyl ester (PCBM) and C ₆₀ . Moreover, an ideal
78	buffer layer can effectively prevent the permeation of external harmful species like oxygen
79	and moisture from the air. To date, bathocuproine (BCP), the most commonly used buffer
80	material, can be processed with scalable thermal evaporation in p-i-n PSCs ^{5,9} .
81	Unfortunately, BCP suffers from poor thermal stability under the protocol temperature of
82	85°C by the International Summit on Organic Photovoltaic Stability (ISOS) protocols,
83	which will likely limit long-term operational stability ^{12,22,27-29} . Low work-function oxides,
84	including zinc oxide (ZnO) nanoparticles, compact tin oxide (SnO ₂) layer, and aluminum-
85	doped zinc oxide (AZO) nanoparticles, have also been applied as buffer materials in p-i-n
86	PSCs to replace the BCP or to form bilayer buffers ^{11,12} . Yet, these oxides either are
87	challenging for large-scale fabrication or require dedicated instruments and expensive
88	fabrication precursors, which contradicts cost-effective practical applications. An
89	intrinsically stable and multifunctional material, YbOx, which can be deposited by the
90	scalable thermal evaporation approach, is a compelling buffer material for efficient and
91	stable p-i-n PSCs.

Properties of ytterbium oxide

93	Yb with a low Gibbs free energy has a strong tendency to form YbO_x when exposed to
94	oxygen (Supplementary Note 1, Extended Data Fig. 1b). The YbO _x that can be processed
95	with thermal evaporation (Extended Data Fig. 1c) shows great promise of commercial
96	applications (Supplementary Note 2, Supplementary Tables 1 and 2). To understand the
97	oxidation of Yb, we first thermally evaporated a few nanometers of Yb films on a large-
98	scale indium tin oxide (ITO) substrate (100 cm ²) in the device fabrication vacuum chamber
99	with a base pressure of 10^{-4} Pa. The sampling data from different areas of the sample shows
100	identical YbO _x states (Extended Data Fig. 2). This rapid oxidation associated with metal
101	Yb is further demonstrated by the color change of the polished Yb metal surfaces before
102	and after oxidation (Extended Data Fig. 3). We then studied the detailed oxidation
103	dynamics of the clean Yb ⁰ surface by tracking the oxidation process over time using in-situ
104	photoelectron X-ray spectroscopy (XPS) (Extended Data Fig. 4, Supplementary Table
105	3). These results indicate that the Yb film (with a thickness of a few nanometers) deposited
106	on the large-area ITO substrate can be fully oxidized in a few minutes when upscaling in a
107	device fabrication vacuum chamber with a base pressure of 10^{-4} Pa (see details in
108	Supplementary Note 3). Such benefits eliminate the additionally dedicated oxidation step,
109	which is usually required for other oxides processed with thermal evaporation ³⁰ .

Fig. 1a-c shows the high-resolution TEM (HRTEM) images and the corresponding fast
Fourier transform (FFT) patterns of the Yb film. The HRTEM images and FFT patterns

112	feature the crystalline structure corresponding to a face-centered cubic system with space
113	group 225 (Fm3m) visualized from [0-11] direction in the selected red rectangle region.
114	By clarifying the Yb natural oxidation through XPS spectra (Fig. 1d, e) ^{$31,32$} , the resulting
115	YbO _x exhibits a broad and continuous halo in the typical FFT pattern, indicative of the
116	amorphous atomic arrangement (Extended Data Fig. 5) ³³ . The amorphous characteristics
117	of the YbO _x films are also confirmed through grazing-incidence wide-angle X-ray
118	scattering (GIWAXS) (Extended Data Fig. 6). The energy-dispersive X-ray (EDX)
119	chemical composition map for the YbO_x film suggests a spatially homogeneous distribution
120	of both Yb and O elements in the films is spatially homogeneous (Supplementary Fig. 1).
121	The reflection electron energy loss spectroscopy (REELS) spectrum shows the surface
122	bandgap of the YbO _x is as high as 5.5 eV (Fig. 1f) ³⁴ , which is transparent to visible light
123	wavelengths. Critical information associated with the electronic structure, including work
124	function, valence band maximum (VBM), and conduction band minimum (CBM), are
125	quantified by combining ultraviolet photoemission spectroscopy (UPS) analyses (Fig. 1g)
126	with the REELS data. These results above suggest that the YbO_x film is n-type, with a
127	Fermi level of 3.08 eV from the vacuum and a CBM of 1.26 eV from the vacuum (Fig. 1h).

128 Multifunctional role of interfacial YbO_x

Fig. 2 shows XPS data on the variation of chemical constituents in the electron-selectivelayer and its interface with the metal electrode measured from samples with (target) and

131	without (control) the YbO _{x} buffer layer before and after accelerated ageing in ambient air
132	(relative humidity, 80%) at 80°C for 5 h. The samples consist of
133	substrate/perovskite/C60/Cu (control) and substrate/perovskite/C60/YbOx/Cu (target). A
134	mechanical lift-off approach was used to delaminate the Cu electrode from the rest of the
135	sample stacks ³⁵ . The delaminated Cu is referred to as the Cu side, and the other is the
136	substrate side (Supplementary Fig. 2). Supplementary Fig. 3 shows scanning electron
137	microscope (SEM) images of the delaminated surfaces of both control and target samples.
138	The buried organic C_{60} layer for the substrate side was removed using gas cluster ion beam
139	(GCIB) sputtering in order to probe throughout the layer stack.
140	Fig. 2a, b shows the Cu 2p XPS depth profiling of the substrate side before and after ageing.
141	Note that the Cs Auger signal (highlighted in orange color) is used to probe the perovskite
142	layer in this observation. The data show a noticeable decrease in the Cu 2p XPS peak
143	intensity of the fresh control sample (without YbO_x) after the 60 s of GCIB sputtering, and
144	the Cu 2p XPS peak intensity is below the instrument limitation with increasing the
145	sputtering time. In contrast, the Cu 2p XPS peaks for the aged control samples remain
146	detectable after extended GCIB sputtering to such as 360 s (Fig. 2b). While at 720 s, Cu
147	2p XPS peaks and significant Cs Auger signals are simultaneously detected for the aged
148	control sample. This experimental observation indicates that Cu diffusion exists in the aged
149	control samples. When the YbO _x buffer layer is inserted between the C_{60} and Cu , the

150	distribution of the Cu species into the C ₆₀ and perovskite underneath is not detected for
151	both fresh and aged target samples, as shown in Fig. 2c. Next, we probed the chemical
152	changes on the delaminated Cu surfaces of both control and target samples by tracking the
153	Cu LMM Auger peaks of the delaminated Cu side after ageing. A peak exists at around
154	571 eV for the aged control sample without YbO_x (Fig. 2d). This result indicates that Cu
155	oxidation happens in the aged control samples, consistent with the color change of the Cu
156	electrode (control) after accelerated ageing in ambient air (relative humidity, 80%) at 80°C
157	for 5 h (Supplementary Fig. 4). However, the Cu oxidation peak is not observed in the
158	aged target samples (with YbO _x) (Fig. 2e) ^{23,36} . The depth-profiling data show that the
159	chemical state of the YbO_x remains the same throughout the thickness before and after
160	accelerated ageing (Fig. 2f).
161	The UPS depth profiling analysis based on the real device stacks reveals that the insertion
162	of YbO_x can reduce the work function of the contact interface compared to the control

163 sample without YbO_x (**Supplementary Fig. 5**). One such variation brings a positive impact

164 on electron collection at the Cu electrode interface. To reveal the charge-carrier transport

- 165 properties of the YbO_x buffer, two devices with 20 alternative layers of YbO_x (2 nm) and
- 166 YbO_x (5 nm)/Cu (1 nm) [for example, ITO/[YbO_x (2 nm)]₂₀/Cu (100 nm) and ITO/[YbO_x
- 167 $(5 \text{ nm})/\text{Cu} (1 \text{ nm})]_{20}/\text{Cu} (100 \text{ nm})]$ were prepared. We confirm that the YbO_x used in the
- 168 charge-carrier transport measurements shows no metallic states and instead exhibits a

169 considerable density of in-gap states near the Fermi level (Extended Data Fig. 7a, b). By 170 measuring the temperature dependence of current density-voltage (J-V) characteristics of 171 the devices with $ITO/[YbO_x(2 \text{ nm})]_{20}/Cu$ (100 nm) and $ITO/[YbO_x(5 \text{ nm})/Cu$ (1 nm)]₂₀/Cu 172 (100 nm) (Extended Data Fig. 7c, d and Extended Data Fig. 8), we find that the charge-173 carrier transport inside the YbO_x follows a phonon-assisted electron hopping from one 174 localized state to another rather than through the drift of Bloch wave described in the typical energy-band theory (Supplementary Note 4). This physical process was originally 175 proposed by Mott³⁷, who gave the temperature-conductivity dependence law below: 176

177
$$\sigma = \sigma_0 \exp(-B/T^{\frac{1}{4}})$$
(1)

178 where σ_0 is a pre-factor, and *B* depends on the radial extension of the wave functions and 179 density of states. Herein, we illustrate phonon-assisted electron hopping *via* unoccupied 180 localized states of the YbO_x buffer layer when electrons flow from C₆₀ to Cu (**Fig. 3a**).

181 **Photovoltaic performance enhancement**

To assess the impact of the YbO_x buffer layer on device performance, we fabricated full devices using perovskites with three different typical bandgaps. The cross-sectional and top-view SEM images for these perovskites are shown in **Supplementary Fig. 6**. **Supplementary Fig. 7** displays the optoelectronic properties of the associated perovskites with various bandgaps. Firstly, we evaluated the photovoltaic performances of the p-i-n PSCs based on an NBG perovskite absorber [Rb0.05Cs0.05MA0.05FA0.85Pb(I0.95Br0.05)3]. The

188	perovskite absorber was post-treated with 3-(Aminomethyl)pyridine to suppress non-
189	radiative recombination at the interface ³ . Fig. 3b displays device configurations of the p-i-
190	n PSCs with YbO_x and illustrates the amorphous nature of the YbO_x buffer. The optimal
191	thickness for the YbO _x layer in this work is around 1.5 nm (Supplementary Fig. 8).
192	From $J-V$ scanned results, the champion PSC with YbO _x exhibits a remarkable PCE of
193	25.2% [an open-circuit voltage (Voc) of 1.16 V, a fill factor (FF) of 0.83, and a short-circuit
194	current density (J_{SC}) of 26.1 mA cm ⁻²] (Fig. 3c and Extended Data Table 1). The steady-
195	state power output (SPO) of our YbO _x -based p-i-n PSCs is ~24.7% under standard
196	simulated 1-sun illumination, AM 1.5G irradiance (Fig. 3c), and the YbO _x -based devices
197	show negligible hysteresis in nature (Supplementary Fig. 9). Note that a MgF_2
198	antireflection coating was used to minimize the light reflection therefore to maximize the
199	photocurrent of the p-i-n PSCs (Supplementary Table 4). To further validate our finding,
200	we sent one of our non-encapsulated YbOx-based NBG PSCs to an accredited institution
201	of the Photovoltaic and Wind Power Systems Quality Test Center (Chinese Academy of
202	Science, China) for external certification. We obtained a certified PCE of 25.09%
203	(Supplementary Fig. 10), which is among the highest PCEs of p-i-n PSCs and represents
204	the best PCE of p-i-n PSCs with an inorganic buffer layer (Supplementary Tables 5 and
205	6). Our experiments further validate the universality of the YbO_x buffer layer in the p-i-n
206	PSCs with MBG and WBG perovskite absorbers. The MBG PSCs with YbO_x deliver

207	decent performance with a champion PCE of 22.1% (Fig. 3d). In particular, the YbO _x -
208	based WBG devices yield an impressive PCE of up to 20.1% [a Voc of 1.30 V, an FF of
209	0.82 and a J_{SC} of 18.6 mA cm ⁻²] (Fig. 3e). To our knowledge, this respectful PCE is among
210	the highest PCEs for p-i-n PSCs with WBGs of 1.75–1.80 eV (Supplementary Table 7).
211	Moreover, we find that p-i-n PSCs with YbOx show high reproducibility and minor batch-
212	to-batch variations in device performance regardless of the perovskite bandgap (Fig. 3f,
213	Supplementary Figs. 11, 12).
214	It is clear that all these p-i-n PSCs have achieved prominent V_{OC} in Fig. 3g, which are close
215	to or even surpass 90% of the radiative limit versus the bandgap energy ³⁸ . Furthermore,
216	external quantum efficiencies of the electroluminescence (EQE _{ELS}) for the YbO _x -based p-
217	i-n PSCs with NBG and WBG perovskite absorbers (Supplementary Fig. 13) present 5.12%
218	(NBG) and 0.97% (WBG), respectively. Under such conditions, derived from the EQE _{EL} ,
219	we calculated the QFLS values of the PSCs containing the different absorbers to be 1.159
220	eV (NBG) and 1.289 eV (WBG), respectively, consistent with the obtained Voc from the
221	$J-V$ scans (Supplementary Note 5). Moreover, the integrated J_{SC} values of the champion
222	NBG-, MBG-, and WBG-based PSCs, where their bandgaps are calculated to be 1.54 eV,
223	1.59 eV, and 1.77 eV (Supplementary Fig. 14), are 25.7 mA cm ^{-2} , 22.1 mA cm ^{-2} , and
224	18.3 mA cm ^{-2} , respectively (Fig. 3h).

225 Thermal and operational stability

226	We tested the thermal stability of the PSCs with BCP or YbO_x (encapsulated using glass
227	covers sealed by epoxy resin). The encapsulated PSCs are stored at 85°C in the dark in a
228	nitrogen-filled glovebox. Fig. 4a compares results of the thermal stability for the NBG-
229	based PSCs with BCP or YbO _x buffer layers. Compared to the PSCs with BCP, the YbO _x -
230	based device exhibits a slight increase in the PCEs initially (<100 h) and retains 98% of its
231	initial PCE after 500 h. By contrast, the BCP-based device shows a sharp PCE drop upon
232	exerting thermal stress, and only 82% of its initial PCE can be retained after 500 h.
233	Similarly, in the WBG-based PSCs, the YbO_x -based device exhibits enhanced thermal
234	stability (Fig. 4b). However, the WBG-PSCs with either BCP or YbO_x buffer layers
235	degrade at faster rates compared to NBG-based PSCs. Such a difference correlates with the
236	inherently poor stability of the WBG perovskite with a high bromide ratio ^{39,40} . Nonetheless,
237	the WBG-based PSCs with YbO_x can still retain 80% of its initial PCE after 500 h, whereas
238	the BCP-based device drops quickly to 75% of its initial PCE in the initial 24 h and
239	approximately 57% of device performance after 500 h.

We also examined the long-term operational stability tracking at the maximum power output under 1-sun illumination with and without thermal stress. The tested PSCs were also encapsulated and continuously illuminated by a white light-emitting diode (LED) array with an intensity equivalent to 100 mW cm^{-2} of AM 1.5G irradiance without active cooling. The most stable NBG-based device with YbO_x maintained its initial performance for 800

245	h, and retained 97% of the initial PCE (23.5%) after 1000 h (Fig. 4c). In comparison, the
246	NBG-based device with BCP dropped quickly to 96% of the initial PCE after 213 h
247	(Supplementary Fig. 15). Notably, when subjected to multiple external stress (complied
248	with ISOS-L-3 protocols), compared to the BCP-based device, the encapsulated YbOx-
249	based device still exhibits improved long-term operational stability tracking at maximum
250	power output point at 85°C in ambient air (relative humidity, 50%) (Fig. 4d and
251	Supplementary Figs. 16, 17). Specifically, the encapsulated devices with YbO _x retain ~85%
252	of its initial PCE (23.6%) after 500 h, which is comparable to p-i-n PSCs with SnO_2
253	(Supplementary Table 8). By contrast, the BCP-based device only retains 60% of the
254	initial PCE after 213 h under ISOS-L-3 test qualifications. These results indicate that the
255	PSCs with the YbO _x buffer show more substantial resistance to external stress than the
256	regular BCP-containing ones, consistent with our observation above. Note that although
257	enhanced device stability of p-i-n PSCs employing BCP buffer layers in conjunction with
258	Cr/Au electrodes has been reported in the past ⁴¹ , such a multilayer buffer makes the device
259	much more complex, and Au is not a scalable metal owing to its high cost (Supplementary
260	Table 2).

To gain more insights into the device stability improvements, we then conducted time-offlight secondary ions mass spectrometry (TOF-SIMS) measurements on full PSC devices with BCP or YbO_x before and after ageing. Combining the TOF-SIMS with the depth-

264	profile	e XPS results (Fig. 2, Extended Data Fig. 9, and Supplementary Fig. 18), we		
265	demo	nstrate that replacing BCP with YbO _x can suppress undesirable bi-directional harmful		
266	specie	es movements (such as I^- , Cs^+ , Rb^+ , and Cu), and we find that the YbO _x is chemically		
267	unrea	unreactive with the perovskites (Fig. 4e-g, see details in Supplementary Note 6). Hence,		
268	we co	nclude that multifunctional YbO_x is advantageous for use as the buffer material from		
269	variou	various evaluation angles (Supplementary Fig. 19).		
270	Refer	ences		
271	1	Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics:		
272		Background, status, and future prospects. Chem. Rev. 119, 3036-3103 (2019).		
273	2	Luo, D., Su, R., Zhang, W., Gong, Q. & Zhu, R. Minimizing non-radiative		
274		recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44-60 (2019).		
275	3	Jiang, Q. et al. Surface reaction for efficient and stable inverted perovskite solar		
276		cells. <i>Nature</i> 611, 278-283 (2022).		
277	4	Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants.		
278		<i>Nature</i> 620, 545-551 (2023).		
279	5	Peng, W. et al. Reducing nonradiative recombination in perovskite solar cells with		
280		a porous insulator contact. Science 379, 683-690 (2023).		
281	6	Wu, S. et al. 2D metal-organic framework for stable perovskite solar cells with		
282		minimized lead leakage. Nat. Nanotechnol. 15, 934-940 (2020).		

283	7	Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of
284		inverted perovskite solar cells. Nat. Commun. 10, 1-10 (2019).
285	8	Zhang, S. et al. Barrier designs in perovskite solar cells for long-term stability. Adv.
286		Energy Mater. 10, 2001610 (2020).
287	9	Luo, D. et al. Enhanced photovoltage for inverted planar heterojunction perovskite
288		solar cells. Science 360 , 1442-1446 (2018).
289	10	Fei, C. et al. Lead-chelating hole-transport layers for efficient and stable perovskite
290		minimodules. Science 380, 823-829 (2023).
291	11	Li, C. et al. Rational design of lewis base molecules for stable and efficient inverted
292		perovskite solar cells. Science 379 , 690-694 (2023).
293	12	Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality
294		2D/3D heterojunctions. Science 376, 73-77 (2022).
295	13	Zhang, S. et al. Minimizing buried interfacial defects for efficient inverted
296		perovskite solar cells. Science 380, 404-409 (2023).
297	14	Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite
298		solar cells. <i>Nature</i> , DOI:10.1038/s41586-41023-06745-41587 (2023).
299	15	Liang, Z. et al. Out-of-plane cations homogenise perovskite composition for solar
300		cells. Nature, DOI:10.1038/s41586-41023-06784-41580 (2023).
301	16	Li, B. & Zhang, W. Improving the stability of inverted perovskite solar cells
302		towards commercialization. Commun. Mater. 3, 65 (2022).

303	17	Duan, L. et al. Stability challenges for the commercialization of perovskite - silicon
304		tandem solar cells. Nat. Rev. Mater. 8, 261-281 (2023).
305	18	Zhu, H. et al. Long-term operating stability in perovskite photovoltaics. Nat. Rev.
306		Mater. 8, 569-586 (2023).
307	19	Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in
308		halide perovskites. Nature 607, 294-300 (2022).
309	20	Guo, R. et al. Degradation mechanisms of perovskite solar cells under vacuum and
310		one atmosphere of nitrogen. Nat. Energy 6, 977-986 (2021).
311	21	Nazir, G. et al. Stabilization of perovskite solar cells: Recent developments and
312		future perspectives. Adv. Mater. 34, 2204380 (2022).
313	22	Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid
314		additives. Nature 571, 245-250 (2019).
315	23	Hu, J. T. et al. Tracking the evolution of materials and interfaces in perovskite solar
316		cells under an electric field. Commun. Mater. 3, 39 (2022).
317	24	Li, J., Dong, Q., Li, N. & Wang, L. Direct evidence of ion diffusion for the silver-
318		electrode-induced thermal degradation of inverted perovskite solar cells. Adv.
319		Energy Mater. 7, 1602922 (2017).
320	25	Domanski, K. et al. Not all that glitters is gold: Metal-migration-induced
321		degradation in perovskite solar cells. ACS Nano 10, 6306-6314 (2016).

322	26	Li, X. et al. Constructing heterojunctions by surface sulfidation for efficient
323		inverted perovskite solar cells. Science 375, 434-437 (2022).
324	27	Li, X. et al. High-efficiency and durable inverted perovskite solar cells with
325		thermally-induced phase-change electron extraction layer. Adv. Energy Mater. 11,
326		2102844 (2021).
327	28	Kafafi, Z. H. et al. Low-power-consumption and long-lifetime OLED with a high
328		T _g n-type organic transport material. Proc. SPIE 5519, 263 (2004).
329	29	Khenkin, M. V. et al. Consensus statement for stability assessment and reporting
330		for perovskite photovoltaics based on isos procedures. Nat. Energy 5, 35-49 (2020).
331	30	Greiner, M. T. et al. Universal energy-level alignment of molecules on metal oxides.
332		Nat. Mater. 11, 76-81 (2011).
333	31	Ohno, Y. XPS studies of the intermediate valence state of Yb in (YbS) _{1.25} CrS ₂ . J.
334		Electron Spectrosc. Relat. Phenom. 165, 1-4 (2008).
335	32	Lang, W., Padalia, B., Watson, L. & Fabian, D. Reinvestigation of the core levels
336		of pure and oxidised ytterbium and lutetium. J. Electron Spectrosc. Relat. Phenom.
337		7, 357-358 (1976).
338	33	He, Y. et al. Amorphizing noble metal chalcogenide catalysts at the single-layer
339		limit towards hydrogen production. Nat. Catalysis 5, 212-221 (2022).

- 340 34 Hu, J. T. *et al.* Damage-free depth profiling of electronic structures in multilayered
- 341 organic semiconductors by photoelectron spectroscopy and cluster ion beam. *Phys.*
- 342 Status Solidi B **258**, 2100130 (2021).
- 343 35 Chen, P. *et al.* Refining perovskite heterojunctions for effective light-emitting solar
 344 cells. *Adv. Mater.* 35, 2208178 (2022).
- 345 36 Greiner, M. T., Chai, L., Helander, M. G., Tang, W.-M. & Lu, Z.-H. Metal/metal-
- 346 oxide interfaces: How metal contacts affect the work function and band structure
- 347 of MoO₃. Adv. Funct. Mater. 23, 215-226 (2013).
- 348 37 Mott, N. Electrons in glass. *Nature* **257**, 15-18 (1975).
- 349 38 Oliver, R. D. J. et al. Understanding and suppressing non-radiative losses in
- 350 methylammonium-free wide-bandgap perovskite solar cells. *Energy Environ. Sci.*
- **15,** 714-726 (2022).
- 352 39 Tong, J. *et al.* Wide-bandgap metal halide perovskites for tandem solar cells. *ACS*353 *Energy Lett.* 6, 232-248 (2020).
- 354 40 Ganose, A. M., Scanlon, D. O., Walsh, A. & Hoye, R. L. Z. The defect challenge
- of wide-bandgap semiconductors for photovoltaics and beyond. *Nat. Commun.* 13,
 1-4 (2022).
- Tremblay, M.-H. *et al.* Benzocyclobutene polymer as an additive for a
 benzocyclobutene-fullerene: Application in stable p-i-n perovskite solar cells. *J. Mater. Chem. A* 9, 9347-9353 (2021).
 - 20

Fig. 1 | Characterization of YbO_x films. a, A general high-resolution transmission 361 electron microscopy (HRTEM) image of the pure ytterbium film. The magnified HRTEM 362 image (b) and the corresponding fast Fourier transform (FFT) patterns (c) of the red 363 364 squared area selected in (a). X-ray photoemission spectroscopy (XPS) spectra of the Yb 4d corresponding to the Yb³⁺ state (**d**) and O 1s (**e**). **f**, The reflection electron energy loss 365 spectroscopy (REELS) spectrum of the YbO_x film. The inset shows how the band gap is 366 367 determined. g, Ultraviolet photoelectron spectroscopy (UPS) spectra of the YbO_x film. Left, 368 secondary electron cut-off (SECO) spectrum. Right, valence band (VB) spectrum. h, 369 Energy levels of the YbO_x film. Key parameters shown are E_{CBM} (conduction band 370 minimum), E_{VBM} (valence band maximum), E_F (Fermi level), and E_{VAC} (vacuum level). 371 Fig. 2. | Photoemission spectroscopy of the lift-off full devices. Cu 2p XPS depth 372 profiling using gas cluster ion beam (GCIB) sputtering (The sputtering rate for organic films is about 0.05 nm s⁻¹ using N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1' -biphenyl-4,4' -373 374 diamine (NPB) as the reference) detected at the substrate side of (a) the fresh control 375 (without YbO_x) sample and (**b**) the aged control sample (after thermal annealing at 80° C 376 in ambient air for 5 h). Control: substrate/perovskite/C₆₀/Cu. c, Cu 2p XPS depth profiling 377 detected at the substrate side of the fresh (up) and the aged (bottom) target samples (with 378 YbO_x, after thermal annealing at 80° C in ambient air for 5 h). Target:

substrate/perovskite/C₆₀/YbO_x/Cu. Cu LMM Auger spectra were detected at the Cu side of (d) the aged control sample and (e) the aged target sample (after thermal annealing at 80°C in ambient air for 5 h). The red line at the top shows the spectra difference, and this line is obtained by using the as-delaminated spectrum (0 s, blue lines at the middle) minus Cu⁰ reference spectrum (black lines at the bottom)], which can be used to analyze chemical states. **f**, Yb 4d XPS depth profiling measured at the Cu side of the fresh target sample with YbO_x, before and after the accelerated ageing.

386 Fig. 3. | Photovoltaic performance. a, Schematic illustration of the charge-carrier 387 transport across the ESL/YbO_x/Cu interface. The carrier transport in the YbO_x buffer layer 388 is by phonon-assisted electron hopping from one localized state to another. b, Schematic 389 illustration of the device configuration of a typical p-i-n PSCs with the YbO_x buffer layer. 390 The magnified area illustrates the amorphous nature of the YbO_x buffer layer used in our 391 p-i-n PSCs. c-e, The current density-voltage (J-V) characteristics of the p-i-n PSCs with 392 various bandgaps and these devices' steady-state power output (SPO) at the maximum 393 power point under simulated AM 1.5 G illumination (inset). NBG, narrow bandgap. MBG, 394 mid-bandgap. WBG, wide bandgap. f, Power-conversion-efficiencies (PCEs) distributions 395 for p-i-n PSCs with NBG, MBG, and WBG bandgaps. The number of devices is 15 for 396 each. g, Comparison of the V_{OC} of state-of-the-art p-i-n PSCs with varied bandgaps. Note 397 that the data from the literature is based on the p-i-n PSCs with the BCP buffer layer. The dashed line represents 90% of the radiative limit concerning the bandgap energy. h, The
external quantum efficiency (EQE) spectra of the champion p-i-n PSCs with NBG, MBG,
and WBG perovskites.

401	Fig. 4. Stability of YbO _x -based p-i-n PSCs. Variations of the PCEs of the encapsulated
402	(a) NBG- and (b) WBG-containing PSCs with the BCP or YbO_x buffer layer aged in a
403	nitrogen-filled glove box under 85°C in the dark. c, The maximum power point tracking
404	(MPPT) curve of an encapsulated NBG-containing PSC with YbO_x under continuous
405	illumination by using a white light-emitting diode (LED) array with an intensity of 100
406	mW cm ⁻² in a nitrogen atmosphere at about 40°C. d , The MPPT curve of an encapsulated
407	NBG-containing PSC with YbO _x held at 85°C under 1-sun illumination and 50% relative
408	humidity in ambient air (ISOS-L-3 conditions). The light source is a white light LED solar
409	simulator with a simulated AM 1.5G spectrum. The temperature was controlled and
410	monitored by polyimide heating film with a digital-displayed temperature controller. e-g,
411	Evolutions of Pb 4f, I 3d, and Yb 4d XPS peaks of the perovskite/YbO _x bilayers as a
412	function of the storage period in a nitrogen-filled glovebox. The perovskite film without
413	the YbO _x is marked as "control", and the perovskite/YbO _x bilayer is marked as "target."

414 Methods

415 Materials. Lead diiodide (PbI₂, 99%), lead dibromide (PbBr₂, 99%), [2-(3,6-dimethoxy416 9H-carbazol-9-yl)ethyl]phosphonic Acid (MeO-2PACz) and [2-(9H-Carbazol-9-

417	yl)ethyl]phosphonic Acid (2PACz) were purchased from Tokyo Chemical Industry Co.,
418	Ltd (TCI, Japan). Formamidinium iodide (FAI), methylammonium iodide (MAI), and
419	methylammonium bromide (MABr) were purchased from Greatcell Solar. Rubidium
420	iodide (RbI, >99.99%) was purchased from Alfa Aesar. Cesium iodide (CsI, >99.99%) and
421	1-butyl-1-methylpiperidinium tetrafluoroborate ([BMP] ⁺ [BF4] ⁻ , 99%) were purchased
422	from Sigma Aldrich (USA). [6,6]-phenyl-C ₆₁ -butyric acid methyl ester (PCBM) was
423	purchased from Nano-C Tech. (USA). Poly [bis (4-phenyl) (2, 4, 6-trimethylphenyl) amine]
424	(PTAA, Mw~13,000) and phenylethylammonium iodide (PEAI) were purchased from
425	Xi'an Polymer Light Technology Corp (China). Nickle oxide (NiO _x) nanoparticles, C ₆₀ ,
426	and bathocuproine (BCP) were purchased from Advanced Election Technology Co., Ltd
427	(China). Ytterbium (99.9%) was purchased from Kurt Lesker (Shanghai) Trading
428	Company Inc. Magnesium fluoride (MgF2, 99.99%) was purchased from Alfa Aesar. Ultra-
429	dry dimethylformamide (DMF), ultra-dry dimethyl sulfoxide (DMSO), ultra-dry
430	isopropanol (IPA), ultra-dry ethanol, ultra-dry anisole, and ultra-dry chlorobenzene (CB)
431	were purchased from commercial sources (Acros). Toluene was purchased from
432	Sinopharm Chemical Reagent Co., Ltd (China). Copper (Cu) was purchased from a
433	commercial source with high purity. All reagents were used as received without further
434	purification.

435	Perovskite precursor solution. The perovskite composition in the narrow-bandgap (NBG)
436	perovskite is $Rb_{0.05}Cs_{0.05}MA_{0.05}FA_{0.85}Pb(I_{0.95}Br_{0.05})_3$. The perovskite precursor solution
437	was prepared by mixing CsI (19.5 mg), RbI (15.9 mg), MABr (8.4 mg), FAI (219.5 mg),
438	PbI_2 (656.9 mg), and $PbBr_2$ (27.5 mg) in 1 mL mixed solvent of DMF:DMSO (4/1, v/v)
439	and the resulting precursor solution was stirred at 50°C for 2 h before use ³ . For the mid-
440	bandgap (MBG) perovskite, the perovskite composition is
441	(Cs _{0.05} FA _{0.85} MA _{0.10}) _{0.95} Pb(I _{0.85} Br _{0.15}) ₃ . The perovskite precursor solution was prepared by
442	mixing PbI ₂ (1.28 M), FAI (1.21 M), MABr (0.16 M), PbBr ₂ (0.22 M), and CsI (0.07 M)
443	in a mixed solvent of DMF/DMSO (4/1, v/v), and the resulting precursor solution was
444	stirred at 70°C for 2 h before use. For the wide-bandgap (WBG) perovskite, the perovskite
445	composition is $FA_{0.83}Cs_{0.17}Pb(I_{0.6}Br_{0.4})_3$. The perovskite precursor solution was prepared
446	by mixing PbI_2 (0.56 M), FAI (1.16 M), $PbBr_2$ (0.84 M), and CsI (0.24 M) in a mixed
447	solvent of DMF/DMSO (4/1, v/v), and the resulting precursor solution was stirred at 50°C
448	for 5 h before use.

453	For the WBG perovskite, 15 mg mL ^{-1} NiO _x nanoparticle in a mixed solvent of IPA:
454	deionized water (1:3) solution was spin-coated onto ITO substrates at 3,000 r.p.m. for 30 s
455	(with a ramping rate of 1,000 r.p.m. s^{-1}), and the as-formed films were heated at 150°C for
456	30 min in ambient air. The subsequent overlayers were deposited after the substrates cooled
457	down to room temperature. The following operations were all carried out in an N2-filled
458	glovebox (with H_2O and O_2 concentrations of < 0.1 ppm). Before depositing the perovskite
459	layer, the NiO_x film was modified by the self-assembling monolayer of 2PACz and MeO-
460	2PACz. The solutions of 2PACz and MeO-2PACz with the same concentration (0.5 mg
461	mL^{-1} in ethanol) were mixed with the volume ratio of 1:1, and then the mixed solution of
462	2PACz and MeO-2PACz was spin-coated onto the NiO_x film at 3,000 r.p.m. (with a
463	ramping rate of 1,000 r.p.m. s^{-1}) for 30 s followed by annealing at 100°C for 5 min. When
464	the films cooled down to room temperature, the perovskite precursor solution was
465	deposited onto the substrates by a consecutive two-step program at 1,000 rpm for 10 s with
466	a ramping rate of 1,000 r.p.m. s^{-1} and 5,000 r.p.m. for 35 s with a ramping rate of 1000
467	r.p.m. $s^{-1}.$ During the second step, 300- μL of anisole doped with the ionic liquid
468	$([BMP]^+[BF_4]^-, 0.01 \text{ mg mL}^{-1})$ was poured on the center of the spinning substrates at 5 s
469	before the end of the whole program. Then the samples were immediately transferred to
470	the hotplate, annealing at 100°C for 30 min. For the post-treatment of the WBG perovskite
471	films, 200-µL of PEAI (5 mg mL ⁻¹ in IPA) and 100-µL of MAI (5 mg mL ⁻¹ in IPA) were
472	mixed in 705-µL of a mixed solvent of DMF/IPA (5/700, v/v) to obtain 1,005-µL of post-

treatment solution. Then 50-μL of post-treatment solution was dynamically spin-coated on
top of the perovskite film, followed by annealing at 100°C for 5 min.

475	For the MBG perovskite, 2 mg mL ⁻¹ PTAA (in toluene) solution was spin-coated onto ITO
476	substrates at 5,000 r.p.m. for 30 s (with a ramping rate of 2,500 r.p.m. s^{-1}), and as-formed
477	films were heated at 120°C for 10 min. The subsequent overlayers were deposited after the
478	substrates cooled down to room temperature. Then, the PEAI solution (10 mg mL ^{-1} in IPA)
479	was spin-coated onto the PTAA-coated substrates at 5,000 r.p.m. for 30 s (with a ramping
480	rate of 2,500 r.p.m. s^{-1}), and then the samples were heated at 100°C for 5 min. Subsequently,
481	the perovskite films were spin-coated onto the substrates by a two-step program at 2,000
482	r.p.m. for 10 s (with a ramping rate of 200 r.p.m. s^{-1}) and 6,000 r.p.m. for 30 s (with a
483	ramping rate of 1,000 r.p.m. s^{-1}), respectively. During the second step, 100-µL of CB was
484	poured on the center of the spinning substrates at 16 s before the end of the whole program.
485	Then the samples were immediately transferred to the hotplate, annealing at 105°C for 30
486	min.

For the NBG perovskite, the MeO-2PACz (0.5 mg mL⁻¹, in ethanol) solution was spincoated onto the pre-cleaned FTO substrates at 3,000 r.p.m. for 30 s and annealed at 100°C for 10 min in an N₂-filled glove box. The perovskite films were prepared according to the previous work reported elsewhere³. 491 The samples were then transferred to a vacuum chamber to make the charge-selective layer 492 without air exposure. C₆₀ (35 nm) was thermally evaporated in a vacuum chamber with a 493 base pressure of $< 4 \times 10^{-4}$ Pa. For the NBG perovskites, the PCBM solution (20 mg mL⁻¹ 494 in CB) was spin-coated on top of the perovskite layer at the speed of 1,000 r.p.m. for 30 s 495 (with a ramping rate of 200 r.p.m. s⁻¹).

496 For the buffer layer fabrication, the samples were transferred to a separate vacuum chamber with a base pressure of $< 4 \times 10^{-4}$ Pa. The ytterbium oxide (YbO_x) buffer layer with a 497 498 thickness of 1.5 nm was obtained by the thermally evaporated metal ytterbium (Yb) in the 499 vacuum chamber. The thermal evaporation rate for the metal ytterbium is 1 Å/s. Note that 500 Yb will be naturally oxidized into the YbO_x in a few minutes without intentional additional oxidation processes. For the control devices with the BCP interlayer, BCP (1 mg mL⁻¹ in 501 ethanol) was spin-coated at 5,000 r.p.m. with a ramping rate of 2,500 r.p.m. s^{-1} for 30 s. 502 503 Finally, a 100-nm thick Cu electrode was thermally evaporated on the samples in the vacuum chamber ($< 4 \times 10^{-4}$ Pa) through a metal shadow mask with an aperture area of 10.3 504 505 mm². The aperture mask area for the photovoltaic performance tests is 7.2 mm². Besides, 506 for the WBG and MBG devices, MgF₂ (100 nm) was deposited on the glass side of the ITO 507 substrate as the anti-reflection coating, while for the NBG devices, MgF₂ (125 nm) was 508 deposited on the glass side of the FTO substrate.

509 Stability assessment. For the stabilized power output (SPO) test, the encapsulated devices 510 were measured at the maximum power point (MPP) under full-spectrum white LED 511 illumination (continuous 1-sun illumination) in ambient air or in the N₂ atmosphere. Thermal stability assessments for encapsulated devices were conducted by storing the 512 513 encapsulated PSCs on a hot plate at 85° C in an N₂ atmosphere. Photovoltaic performances 514 were regularly measured when cooled down to room temperature. For the NBG-containing 515 PSCs, the PCBM electron transport layer was replaced by C_{60} (35 nm, prepared by thermal 516 evaporation) in the thermal stability and long-term MPP tracking assessments. The 517 encapsulation for the device was done by capping the device with a glass slide, using UV 518 adhesive as the sealant. The encapsulation process was finished in an N₂-filled glovebox 519 (with H₂O and O₂ concentrations of < 0.1 ppm). For the stability test under the ISOS-L-3 520 protocol, the temperature was controlled and monitored by the polyimide heating film with 521 a digital display in temperature control. The ageing devices adhered to the polyimide 522 heating film.

528 measurement system (Enli Technology, Inc.). Electroluminescence (EL) quantum 529 efficiency (EQE_{EL}) was carried out at room temperature (297 K) in an N₂-filled glovebox. 530 A Keithley 2400 Source Meter and an integration sphere (CME-LP38) coupled with a 531 spectrometer (Flame, Ocean Optics) were used for the measurements. The device was 532 placed on top of the integration sphere, and only forward light emission can be collected. 533 The devices were swept from zero bias to forward bias.

534 Film characterization. The field-emission scanning electron microscope (FE-SEM) was 535 used to investigate the top-view and cross-sectional morphology with an accelerating 536 voltage of 10 kV (Hitachi U8010). Spin-coating perovskite films on the ITO-coated glass 537 substrates prepared samples for Ultraviolet-visible (UV-vis) absorption spectra 538 characterizations. Then their UV-vis absorption spectra (350-850 nm) were recorded by a 539 spectrophotometer (UH4150, Hitachi, Japan) with the background noise subtracted before 540 testing. During the measuring process, the perovskite films were exposed to air for less 541 than 5 min. The time-resolved photoluminescence (TRPL) spectroscopy measurements 542 were performed by an Edinburgh Instruments FLS1000 photoluminescence spectrometer 543 (Edinburg, UK), and a pulsed laser measured all TRPL-related tests with the excitation 544 wavelength of 450 nm after 120-second illumination. Temperature-dependent current 545 density-voltage (J-V) characteristics of ITO/[YbO_x (5 nm)/Cu (1 nm)]₂₀/Cu and 546 ITO/[YbO_x (2 nm)]₂₀/Cu were measured by using HP4140B picoammeter dominated by

547 computer within a cryostat. Both devices processed by evaporating 20 alternative layers. 548 For $[YbO_x (5 nm)/Cu (1 nm)]_{20}$, we mean we have deposited 20 alternating layers of 5 nm 549 YbO_x followed by 1 nm Cu. The starting low temperature is 80 K cooled with liquid 550 nitrogen, and data was acquired by every 30 K increase controlled by MercuryiTC low 551 temperature environment controller. Grazing incidence wide-angle X-ray scattering 552 (GIWAXS) measurements for amorphous Yb films deposited on various substrates were 553 conducted at the BL17B1 beamline of Shanghai Synchrotron Radiation Facility (SSRF). The X-ray wavelength was 1.240 Å with a grazing incident angle of 1.0 degree, and the 554 555 scattering intensity was detected by a PILATUS 2M detector. 556 Thermo Scientific ESCALAB Xi⁺ system was used to acquire the X-ray photoelectron

557 spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and the reflection 558 electron energy loss spectroscopy (REELS) spectra. All samples were transferred into the 559 analysis chamber via a vacuum transfer module avoiding exposure to the air. Unless 560 otherwise stated, the gas cluster ion beam (GCIB) sputtering technology carried out the 561 depth profiles with the parameters of 2000-cluster sizes at 4 keV ion energy. Ar⁺ ion 562 sputtering was used as a supplement to etch the hard materials, such as metal electrodes. 563 High-resolution transmission electron microscopy (HRTEM) and annular dark-field 564 scanning transmission electron microscopy (ADF-STEM) images have been obtained by 565 using a JEM-2100F field emission gun microscope with a 0.19 nm point-to-point resolution

566	at 200 kV equipped with Energy disperse X-ray (EDX) detectors. Images have been
567	analysed using Gatan Digital Micrograph software. To reduce the electron dose during the
568	HRTEM characterization, we limited the total electron beam exposure time to within 5 s.
569	All the time-of-flight secondary-ion mass spectrometry (TOF-SIMS) profiles were
570	acquired by a PHI TRIFT V nanoTOF (ULVAC-PHI, Japan) system using slice-and-view
571	analysis scheme. A 20 kV C_{60}^+ beam with a pulse frequency of 8200 Hz and a pulse length
572	of 15 ns was used as the primary-ion beam. All the secondary-ion signals were acquired
573	from a 50 $\mu m \times$ 50 μm area. A 1 kV Ar^{+} beam was used as the sputter source to remove the
574	surface material during TOF-SIMS profiling, and the sputtering crater size was 1000 μm \times
575	1000 μ m. All the secondary-ion data presented in the profiles were normalized by total ion
576	intensities.

577 **Data and materials availability**

All data are available in the main text or the supplementary materials, and are also availablefrom the corresponding author on reasonable request

580 Acknowledgments

This work was financially supported by the Natural Science Foundation of China
(52325310, 52203208), the Beijing Natural Science Foundation (JQ21005), the National
Key R&D Program of China (2021YFB3800100, 2021YFB3800101), the Science and
Technology Project of Southwest Joint Graduate School of Yunnan Province (Research on

585	the key problems of perovskite solar cells for applications), the open research fund of
586	Songshan Lake Materials Laboratory (2022SLABFK07), CAS Pioneer Hundred Talents
587	Program B (E2XBRD1001), the China Postdoctoral Science Foundation (2023TQ0009),
588	and the R&D Fruit Fund (20210001). This work was also sponsored by Beijing Nova
589	Program (Contract Nos. 20220484148 and 20230484480). H.J.S. acknowledges funding
590	from the Engineering and Physical Science Council (EPSRC) grant number EP/S004947/1.
591	Y.X. acknowledges Moritz Riede from Oxford University for his supervision in general.
592	Y.X. acknowledges China Oxford Scholarship Fund. The authors also thank beamlines
593	BL19U1, BL17B1, and BL14B1 at the SSRF for providing the beamtime and User
594	Experiment Assist System of SSRF for their help.

595 Author contributions

- 596 D.L., Z.-H.L., P.C., Y.X., and R.Z. conceived the idea and designed the experiments. P.C.,
- 597 Y.X., S.L. X.J., and T.H. fabricated PSCs and characterized photovoltaic performances.
- 598 P.C. and M.Y. performed electroluminescence tests. Y.X., P.K., and Pietro. C. contributed
- 599 to the analysis of electroluminescence results. X.L. conducted EQE measurements. J.H.,
- 600 J.W., Y.S., and P.T. conducted the TEM and EDX tests. J.H. and N.C. performed REELS,
- 601 UPS, and XPS measurements. J.H., N.C., D.W., D.L., R.S., and Z.-H.L. contributed to
- analyzing REELS, UPS, and XPS results. N.C. and Z-H.L. contributed to the analysis of
- 603 charge transport mechanisms. J.H., P.C., Y.X., and Q.L. conducted the SEM

604 measurements. S.L. and L.Z. helped perform the GIWAXS measurements. P.C. and Y
--

- 605 measured UV-Vis light absorption. C.-H.H., Y-W.Y., and J.-J.S. performed TOF-SIMS
- measurements. P.C., Y.X, and Q.Z. performed the TRPL test and did data analysis. H.Y.,
- 607 Y.X., and P.C. conducted the stability test. D.L., Q.G., Z.-H.L., H.J.S., and R.Z. directed
- and supervised the project. P.C. and Y.X. wrote the first draft of the paper. D.L., Q.G., Z.-
- 609 H.L., H.J.S., and R.Z. revised the paper. All authors analyzed their data, reviewed and
- 610 commented on the paper.

611 **Conflict of interest**

- 612 Henry J. Snaith is the founder and Chief Scientific Officer of Oxford Photovoltaics, a
- 613 company commercializing perovskite photovoltaics.

614 Extended data figure legends

Extended Data Fig. 1 | **Overview of buffer layers. a**, Schematic illustration of the functions of an ideal buffer layer between the electron-selective layer (ESL) and the metal electrode, showing suppression of the harmful species movement and the non-radiative recombination. b, Standard molar Gibbs free energy (Δ_f G) of formation at 298.15 K in kJ mol⁻¹ of representative metal oxides including ZnO, SnO₂, ZnSnO₄, TiO₂, Cr₂O₃, and Yb₂O₃. **c**, Schematic illustration of the thermal evaporation deposition process of the metal

Extended Data Fig. 5 | Al 5 incastrements and photographs of 10 black and 100_x

629 surface. a, Yb 4d XPS spectrum of the Yb bulk with 2400 s Ar ion etching. Photographs

630 of the pristine Yb bulk with a naturally oxidized YbO_x surface (**b**) and the polished Yb bulk

631 (c) in ambient air. The color change indicates that the refreshed metal Yb surface would

632 quickly react with oxygen upon oxygen exposure, forming YbO_x on the surface.

Extended Data Fig. 4 | The oxidization process of Yb. a, Yb 4d XPS spectrum of an asprepared ITO/YbO_x (1.5 nm) film. The sample was immediately transferred from the physical vapor deposition system to the XPS chamber by the vacuum transfer module without exposure to the air. b, Yb 4d XPS spectra of a clean Yb⁰ surface spontaneously oxidized in the UHV XPS chamber. L represents Langmuir. c, The YbO_x thickness and Yb³⁺/Yb⁰ ratios as a function of the exposure dose. d-i, Yb 4d XPS spectra with increased exposure dose.

640 Extended Data Fig. 5 | Transmission electron microscopy (TEM) measurements. a, b,

641 TEM images of YbO_x directly deposited on the carbon-supported copper (50 and 20 nm).

642 c, The typical fast Fourier transform (FFT) spectrum (30 \times 30 nm² area) indicates the

643 amorphous crystal structure of YbO_x.

644 Extended Data Fig. 6 | 2D grazing incidence wide-angle X-ray scattering (GIWAXS)

- 645 **measurements.** The 2D GIWAXS patterns at an incidence angle of 1.0° for YbO_x films
- 646 prepared on different substrates including silicon (**a**), glass (**b**), and ITO-coated glass (**c**),
- 647 respectively. The thickness of the deposited YbO_x film for this measurement is 10 nm. **d**,
- 648 The 2D GIWAXS pattern of the pristine ITO-coated glass.

649 Extended Data Fig. 7 | Gap states in the YbO_x film and charge-carrier transport

650 measurements. **a**, Yb 4d XPS spectra of the YbO_x film with a thickness of 40 nm. **b**,

651 Valence band spectra of YbO_x. There exists a considerable density of gap states below the

- 652 Fermi level. **c**, Current density–voltage characteristics of the $ITO/[YbO_x (2 \text{ nm})]_{20}/Cu$ over
- 653 temperature ranged from 120 K to 300 K. Note that the 40 nm YbO_x deposition is
- 654 completed by evaporating 20 alternative layers. **d**, The plot of conductivity against
- temperature. The conductivity is calculated at 26 mA cm^{-2} , where the injected current is
- 656 equal to the short-circuit current of a narrow-bandgap PSC under 1-sun illumination. Note

657 that the pre-factor $\sigma_0 = (2.22 \pm 0.47) \times 10^{-3}$ S m⁻¹, and the characteristic parameter B =

658 10.33 ± 0.81 .

659 Extended Data Fig. 8 | Charge-carrier transport measurements. a, Current 660 density–voltage characteristics of the device with a configuration of $ITO/[YbO_x (5 nm)/Cu$ 661 $(1 nm)]_{20}/Cu$ over temperature ranged from 110 K to 290 K. b, The plot of conductivity 662 against temperature.

663 Extended Data Fig. 9 | Time-of-flight secondary ion mass spectrometry (TOF-SIMS)

664 measurements. TOF-SIMS depth profiles of the BCP- or YbO_x-based PSCs with and

without ageing. **a**, **c**, are the control (with the BCP buffer layer) and target device (with the

- 666 YbO_x buffer layer), respectively. **b**, **d**, are TOF-SIMS profiles of both control and target
- devices after ageing at 85° C for 200 h in the N₂ atmosphere, respectively. The highlighted
- 668 secondary ion distribution: 1: Cs^+ ; 2: Rb^+ ; 3: Cu^+ , 4: I^+ ; 5: Br^+ .

Extendend Data Table 1 | Photovoltaic parameters. Summary of photovoltaic
parameters for the champion p-i-n PSCs with NBG (1.54 eV), MBG (1.59 eV), and WBG
perovskites (1.77 eV). The devices were measured from reverse scans (RS) under simulated
AM 1.5G solar irradiation at 100 mW cm⁻². For p-i-n PSCs with WBG perovskites, RS is
from 1.35 V to -0.02 V. For p-i-n PSCs with NBG and MBG perovskites, RS is from 1.22

674 V to -0.02 V).

^aThe average device parameters and standard deviations are based on 15 devices.

а

Thermally activated hopping

b

