22 research outputs found

    One-way Quantum Key Distribution System based on Planar Lightwave Circuits

    Full text link
    We developed a one-way quantum key distribution (QKD) system based upon a planar lightwave circuit (PLC) interferometer. This interferometer is expected to be free from the backscattering inherent in commercially available two-way QKD systems and phase drift without active compensation. A key distribution experiment with spools of standard telecom fiber showed that the bit error rate was as low as 6% for a 100-km key distribution using an attenuated laser pulse with a mean photon number of 0.1 and was determined solely by the detector noise. This clearly demonstrates the advantages of our PLC-based one-way QKD system over two-way QKD systems for long distance key distribution.Comment: 23 pages, 5 figure

    Quantum key distribution with an efficient countermeasure against correlated intensity fluctuations in optical pulses

    Get PDF
    Quantum key distribution (QKD) allows two distant parties to share secret keys with the proven security even in the presence of an eavesdropper with unbounded computational power. Recently, GHz-clock decoy QKD systems have been realized by employing ultrafast optical communication devices. However, security loopholes of high-speed systems have not been fully explored yet. Here we point out a security loophole at the transmitter of the GHz-clock QKD, which is a common problem in high-speed QKD systems using practical band-width limited devices. We experimentally observe the inter-pulse intensity correlation and modulation-pattern dependent intensity deviation in a practical high-speed QKD system. Such correlation violates the assumption of most security theories. We also provide its countermeasure which does not require significant changes of hardware and can generate keys secure over 100 km fiber transmission. Our countermeasure is simple, effective and applicable to wide range of high-speed QKD systems, and thus paves the way to realize ultrafast and security-certified commercial QKD systems

    Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength-division multiplexing clock synchronization

    Full text link
    We demonstrated ultra fast BB84 quantum key distribution (QKD) transmission at 625 MHz clock rate through a 97 km field-installed fiber using practical clock synchronization based on wavelength-division multiplexing (WDM). We succeeded in over-one-hour stable key generation at a high sifted key rate of 2.4 kbps and a low quantum bit error rate (QBER) of 2.9%. The asymptotic secure key rate was estimated to be 0.78-0.82 kbps from the transmission data with the decoy method of average photon numbers 0, 0.15, and 0.4 photons/pulse.Comment: 7 pages, 3 figures, v2 : We added a comment on the significance of our work, some minor corrections, and reference

    Support for UNRWA's survival

    Get PDF
    The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA) provides life-saving humanitarian aid for 5·4 million Palestine refugees now entering their eighth decade of statelessness and conflict. About a third of Palestine refugees still live in 58 recognised camps. UNRWA operates 702 schools and 144 health centres, some of which are affected by the ongoing humanitarian disasters in Syria and the Gaza Strip. It has dramatically reduced the prevalence of infectious diseases, mortality, and illiteracy. Its social services include rebuilding infrastructure and homes that have been destroyed by conflict and providing cash assistance and micro-finance loans for Palestinians whose rights are curtailed and who are denied the right of return to their homeland

    The Candida species that are important for the development of atrophic glossitis in xerostomia patients

    No full text
    Abstract Background The purpose of this study was to clarify the species of Candida that are important for the development of atrophic glossitis in xerostomia patients. Methods A total of 231 patients with subjective dry mouth were enrolled in the present study. Logistic regression analysis was performed to clarify the contribution of each Candida species and other variables to the development of atrophic glossitis. The dependent variable was the absence/presence of atrophic glossitis. The Candida colony-forming units (CFU) of C. albicans, C. glabrata, C. tropicalis, and C. krusei, as well as age, gender, resting (RSFR) and stimulated (SSFR) whole salivary flow rate, and denture-wearing status, were treated as explanatory variables. Results Logistic regression analysis showed that two factors were closely associated with the presence of atrophic glossitis: an increase in C. albicans CFU and a decrease in the SSFR. Conclusions C. albicans, but not non-albicans Candida, was associated with atrophic glossitis in xerostomia patients who had no systemic predisposing factors, indicating that C. albicans remains a treatment target for Candida-related atrophic glossitis
    corecore