107 research outputs found

    On the Sub-Interval Optimization Technique for Final-Value Control Systems with Magnitude Constraint

    Get PDF
    A method of designing optimal final value-control systems with magnitude constraint is presented in this paper. A second-order linear dynamical system is considered here as a controlled plant. The magnitude constraint is preassigned on the control variable without assigning any penalties on the performance criterion. The optimal final-value control problem is formulated as a two point boundary value problem, and a physically meaningful solution is obtained by introducing a new concept of sub-interval optimization technique which avoids the direct solution of the two point boundary value problem. The method presented here, can be applied to the other types of optimal control problems with magnitude constraint

    Theoretical and experimental investigation of the atomic and electronic structures at the 4H-SiC(0001)/SiO2 interface

    Get PDF
    Density functional theory calculations are carried out to investigate the atomic and electronic structures of the 4H-SiC(0001)/SiO2 interface. We find two characteristic interface atomic structures in scanning transmission electron microscopy images: One is an interface in which the density of atoms at the first interfacial SiC bilayer is greater than that in the SiC substrate, while the other is an interface where the density of atoms at the first interfacial SiC bilayer is lower. Density functional theory calculations reveal that the difference in the scanning transmission electron microscopy images is a reflection of the atomic structures of these two interfaces. In addition, it has been reported that the floating states, which appear at the conduction band edge of a 4H-SiC(0001)/SiO2 interface, affect the electronic structure of the interface and cause marked scattering of the electrons flowing along the interface [S. Iwase, C. J. Kirkham, and T. Ono, Phys. Rev. B 95, 041302(R) (2017)]. Interestingly, we find that the floating states do not appear at the conduction band edge of one of the two interfaces. These results provide physical insights into understanding and controlling the electronic structure and carrier mobility of electronic devices using wide-band-gap semiconductors

    Strong ice-ocean interaction beneath Shirase Glacier Tongue in East Antarctica

    Get PDF
    Mass loss from the Antarctic ice sheet, Earth’s largest freshwater reservoir, results directly in global sea-level rise and Southern Ocean freshening. Observational and modeling studies have demonstrated that ice shelf basal melting, resulting from the inflow of warm water onto the Antarctic continental shelf, plays a key role in the ice sheet’s mass balance. In recent decades, warm ocean-cryosphere interaction in the Amundsen and Bellingshausen seas has received a great deal of attention. However, except for Totten Ice Shelf, East Antarctic ice shelves typically have cold ice cavities with low basal melt rates. Here we present direct observational evidence of high basal melt rates (7–16 m yr−1) beneath an East Antarctic ice shelf, Shirase Glacier Tongue, driven by southward-flowing warm water guided by a deep continuous trough extending to the continental slope. The strength of the alongshore wind controls the thickness of the inflowing warm water layer and the rate of basal melting

    Role of Nitrogen on Growth and Seed Yield of Soybean and a New Fertilization Technique to Promote Nitrogen Fixation and Seed Yield

    Get PDF
    Soybean is an important crop for human food and feed for livestock. World soybean production is increasing especially in North and South America. Soybean seeds contain a high percentage of protein about 35–40%, and they require a large amount of nitrogen compared with other crops. Soybean plants make root nodules with rhizobia, and rhizobia can fix atmospheric N2 and give the fixed N to the host soybean plants. Also, soybean can absorb nitrogen usually nitrate from soil or fertilizers. The amount of total assimilated nitrogen in shoot is proportional to the soybean seed yield either from nitrogen fixation or from nitrogen absorption, and the nitrogen availability is very important for soybean cultivation. Maintenance of a high and long-term nitrogen fixation activity is very important for a high production of soybean. However, application of chemical nitrogen fertilizers usually depresses nodule formation and nitrogen fixation. Nitrate in direct contact with a nodulated part of roots causes severe inhibition of nodule growth and nitrogen fixation, although a distant part of nodules from nitrate application gives no or little effect. Deep placement of slow-release nitrogen fertilizers, coated urea, or lime nitrogen promoted the growth and seed yield and quality of soybean without depressing nitrogen fixation

    Hibikino-Musashi@Home 2023 Team Description Paper

    Full text link
    This paper describes an overview of the techniques of Hibikino-Musashi@Home, which intends to participate in the domestic standard platform league. The team has developed a dataset generator for the training of a robot vision system and an open-source development environment running on a human support robot simulator. The robot system comprises self-developed libraries including those for motion synthesis and open-source software works on the robot operating system. The team aims to realize a home service robot that assists humans in a home, and continuously attend the competition to evaluate the developed system. The brain-inspired artificial intelligence system is also proposed for service robots which are expected to work in a real home environment

    Completing the Census of Ly-alpha Emitters at the Reionization Epoch

    Full text link
    We carried out extended spectroscopic confirmations of Ly-alpha emitters (LAEs) at z=6.5 and 5.7 in the Subaru Deep Field. Now, the total number of spectroscopically confirmed LAEs is 45 and 54 at z=6.5 and 5.7, respectively, and at least 81% (70%) of our photometric candidates at z=6.5 (5.7) have been spectroscopically identified as real LAEs. We made careful measurements of the Ly-alpha luminosity, both photometrically and spectroscopically, to accurately determine the Ly-alpha and rest-UV luminosity functions (LFs). The substantially improved evaluation of the Ly-alpha LF at z=6.5 shows an apparent deficit from z=5.7 at least at the bright end, and a possible decline even at the faint end, though small uncertainties remain. The rest-UV LFs at z=6.5 and 5.7 are in good agreement, at least at the bright end, in clear contrast to the differences seen in the Ly-alpha LF. These results imply an increase in the neutral fraction of the intergalactic medium from z=5.7 to 6.5. The rest-frame equivalent width (EW_0) distribution at z=6.5 seems to be systematically smaller than z=5.7, and it shows an extended tail toward larger EW_0. The bright end of the rest-UV LF can be reproduced from the observed Ly-alpha LF and a reasonable EW_0-UV luminosity relation. Integrating this rest-UV LF provides the first measurement of the contribution of LAEs to the photon budget required for reionization. The derived UV LF suggests that the fractional contribution of LAEs to the photon budget among Lyman break galaxies significantly increases towards faint magnitudes. Low-luminosity LAEs could dominate the ionizing photon budget, though this inference depends strongly on the uncertain faint-end slope of the Ly-alpha LF.Comment: 19 pages, 14 figures. Accepted for publication in Ap

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore