327 research outputs found

    Transgenic soybean production of bioactive human epidermal growth factor (EGF)

    Get PDF
    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother's breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N' terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 ÎŒg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform

    Influence of installation height of a submersible mixer on solid‒liquid two‒phase flow field

    Get PDF
    With the increasingly severe situation of water pollution control, optimal design of the mixing flow field of submersible mixers and improving the mixing uniformity of activated sludge have become key research issues. At present, the research on the submersible mixer is mostly focused on water as the medium, and the flow field characteristics of solid-liquid two-phase flow, which is closer to the actual scene, still need more systematic research. This paper presented numerical simulations of the solid‒liquid two‒phase flow problem at various installation heights based on the coupled CFD‒DEM method in the Euler‒Lagrange framework. The velocity distribution, dead zone distribution, particles’ velocity development, particles’ mixing degree, and particles’ aggregation of the flow field were compared and analyzed for different installation heights. The results show that the flow field has two flow patterns: single‒ and double‒circulation, due to different installation heights, in which the velocity and turbulent kinetic energy of the flow field of the double‒circulation flow pattern are more uniform. The installation height affects the moment particles enter the impeller and the core jet zone, thus affecting the degree of particle mixing and the mixing time. The adjustment of the installation height also has an impact on particle aggregation. These findings indicate that the installation height significantly affects the flow field characteristics and the particle motion distribution. The coupled CFD‒DEM method can analyze the macroscopic phenomenon of the solid‒liquid two‒phase flow field of the submersible mixer from the scale of microscopic particles, which provides a theoretical approach for the optimal design of the mixing flow field. It can provide better guidance for engineering practice

    Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation

    Get PDF
    International audienceDeveloping highly active electrocatalysts for oxygen evolution reaction (OER) is critical for the commercial effectiveness of water splitting to produce hydrogen fuels. Low-cost spinel oxides have attracted increasing interest as alternatives to noble-metal-based OER catalysts. A rational design of spinel catalysts can be guided by studying the structural/elemental properties which determine the reaction mechanism and activity. Here, using densit

    A study on the multi-objective optimization method and characteristic analysis of installation locations of submersible mixer for sewage

    Get PDF
    In this study, the performance of submersible mixers in sewage treatment was improved by optimizing the installation position parameters of the mixer. The aim was to enhance the average flow velocity and mixing efficiency in the pool. The study employed ISIGHT software, integrated with Creo Parametric 6.0 software and ANSYS Workbench 2020 software, to analyze the factors affecting mean flow velocity and completed a multi-objective optimized design using Non-dominated Sorting Genetic Algorithm (NSGA-II). The study used the ISIGHT software to analyze the factors affecting mean flow velocity in the pool. The installation position parameters of the submersible mixer were selected as design variables. The study employed Creo Parametric 6.0 software to create a three-dimensional model of the pool and the submersible mixer. ANSYS Workbench 2020 software was used to simulate fluid flow in the pool. The Non-dominated Sorting Genetic Algorithm (NSGA-II) was used for multi-objective optimization. The results of the study indicated an increase of approximately 0.021 m/s in average flow velocity and an improvement of approximately 0.47% in mixing efficiency compared to pre-optimization values. The effective axial propulsion distance and effective radial diffusion radius were significantly increased by 6.71% and 8.33%, respectively, after optimization. The fluid distribution in the pool became more uniform, and the low-speed zone was greatly reduced, resulting in an enhanced flow state of the fluid in the pool and a strengthened mixing effect. The study provides insights into the control of the submersible mixer’s installation position to improve the average flow velocity inside the pool. Automatic optimization of submersible mixer installation locations using the ISIGHT software can effectively improve mixing efficiency, overall plant operating efficiency, and economic benefits in sewage treatment plants. The multi-objective optimization platform based on the ISIGHT platform for wastewater treatment mixer installation location can be successfully applied in engineering practice

    Hormonal therapy is effective and safe for cryptorchidism caused by idiopathic hypogonadotropic hypogonadism in adult males

    Get PDF
    BackgroundHormonal therapy is a reasonable treatment for cryptorchidism caused by idiopathic hypogonadotropic hypogonadism (IHH). However, the clinical evidence on whether it is effective and safe for the treatment of cryptorchidism caused by IHH is lacking.AimTo evaluate the effect of hormonal therapy in testicular descent, puberty development, and spermatogenesis in adult males with cryptorchidism caused by IHH.MethodsThis retrospective study included 51 patients with cryptorchidism caused by IHH from the Andrology Clinic of University affiliated teaching hospital. Patients were divided into two groups: group A patients received hormonal therapy; group B patients received surgical treatment for cryptorchidism followed by hormonal therapy.ResultsThe rate of successful testicular descent following hormonal therapy (19/32 in group A) or surgical treatment (11/19 in group B) shows no statistically significant difference. There was also no statistically significant difference in penile length, Tanner stage of pubic hair, testicular volume, and success rate of spermatogenesis between the two groups. Testicular atrophy was seen in a single patient in group B.ConclusionsHormone therapy in adult males with cryptorchidism caused by IHH is effective and safe regarding testicular descent, puberty development, and spermatogenesis. This study provides new insight into the treatment of cryptorchidism caused by IHH and highlights that hormonal therapy could be an effective, safe, and economic treatment option for cryptorchidism in males caused by IHH

    Searching for the nano-Hertz stochastic gravitational wave background with the Chinese Pulsar Timing Array Data Release I

    Full text link
    Observing and timing a group of millisecond pulsars (MSPs) with high rotational stability enables the direct detection of gravitational waves (GWs). The GW signals can be identified from the spatial correlations encoded in the times-of-arrival of widely spaced pulsar-pairs. The Chinese Pulsar Timing Array (CPTA) is a collaboration aiming at the direct GW detection with observations carried out using Chinese radio telescopes. This short article serves as a `table of contents' for a forthcoming series of papers related to the CPTA Data Release 1 (CPTA DR1) which uses observations from the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Here, after summarizing the time span and accuracy of CPTA DR1, we report the key results of our statistical inference finding a correlated signal with amplitude \log A_{\rm c}= -14.4 \,^{+1.0}_{-2.8} for spectral index in the range of α∈[−1.8,1.5]\alpha\in [-1.8, 1.5] assuming a GW background (GWB) induced quadrupolar correlation. The search for the Hellings-Downs (HD) correlation curve is also presented, where some evidence for the HD correlation has been found that a 4.6-σ\sigma statistical significance is achieved using the discrete frequency method around the frequency of 14 nHz. We expect that the future International Pulsar Timing Array data analysis and the next CPTA data release will be more sensitive to the nHz GWB, which could verify the current results.Comment: 18 pages, 6 figures, submitted to "Research in astronomy and astrophysics" 22nd March 202

    Chinese Antarctic Magnetometer Chain at the Cusp Latitude

    Get PDF
    A Chinese Antarctic Magnetometer (CAM) chain from Zhongshan Station (ZHS) to Dome-A (DMA) has been established since February 2009. A regular magnetometer is operated at ZHS, and four low power magnetometers are operated along the interior route from ZHS to DMA in the cusp latitude, extending over a distance of 1260 km. These stations fill an important void in the Antarctic magnetometer network. Furthermore, the CAM chain is magnetically conjugated with the Arctic region reaching from the Svalbard archipelago to Daneborg, on the east coast of Greenland. Conjugate measurements using the Arctic and Antarctic magnetometers provide excellent opportunities to investigate phenomena related to the coupling of the solar wind to the magnetosphere and ionosphere, such as magnetic impulse events, flux transfer events, traveling convection vortices and ultra-low frequency waves

    A Classification Study of Respiratory Syncytial Virus (RSV) Inhibitors by Variable Selection with Random Forest

    Get PDF
    Experimental pEC50s for 216 selective respiratory syncytial virus (RSV) inhibitors are used to develop classification models as a potential screening tool for a large library of target compounds. Variable selection algorithm coupled with random forests (VS-RF) is used to extract the physicochemical features most relevant to the RSV inhibition. Based on the selected small set of descriptors, four other widely used approaches, i.e., support vector machine (SVM), Gaussian process (GP), linear discriminant analysis (LDA) and k nearest neighbors (kNN) routines are also employed and compared with the VS-RF method in terms of several of rigorous evaluation criteria. The obtained results indicate that the VS-RF model is a powerful tool for classification of RSV inhibitors, producing the highest overall accuracy of 94.34% for the external prediction set, which significantly outperforms the other four methods with the average accuracy of 80.66%. The proposed model with excellent prediction capacity from internal to external quality should be important for screening and optimization of potential RSV inhibitors prior to chemical synthesis in drug development
    • 

    corecore