32 research outputs found

    One-Pot Green Synthesis and Bioapplication ofl-Arginine-Capped Superparamagnetic Fe3O4 Nanoparticles

    Get PDF
    Water-solublel-arginine-capped Fe3O4 nanoparticles were synthesized using a one-pot and green method. Nontoxic, renewable and inexpensive reagents including FeCl3,l-arginine, glycerol and water were chosen as raw materials. Fe3O4 nanoparticles show different dispersive states in acidic and alkaline solutions for the two distinct forms of surface bindingl-arginine. Powder X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the structure of Fe3O4 nanocrystals. The products behave like superparamagnetism at room temperature with saturation magnetization of 49.9 emu g−1 and negligible remanence or coercivity. In the presence of 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride, the anti-chloramphenicol monoclonal antibodies were connected to thel-arginine-capped magnetite nanoparticles. The as-prepared conjugates could be used in immunomagnetic assay

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF

    Study on Shear Mechanical Properties and Microscopic Failure Mechanism of Dentate Joints Based on DEM and Laboratory Tests

    No full text
    The stability control of the surrounding rock is greatly influenced by the rock joint’s shear mechanical characteristics and deformation failure mechanism. A numerical model of the dentate joints was created using a particle flow discrete element method (DEM). To study the shear mechanical behavior and damage evolution characteristics of the joints, a numerical simulation of the joints shear test under the same normal stress was conducted. Additionally, the joints’ shear failure mechanism and failure mode were investigated from a microscopic perspective in conjunction with laboratory tests. The results show that the shear strength steadily increases as the roughness of the rock joints increases and that it rapidly decreases after reaching its peak shear strength, indicating an obvious brittle failure. Varied rock joints exhibit significantly different micro-crack evolution, with rougher rock joints (r = 0.30, r = 0.37) exhibiting greater micro-crack production and crack extension into the model’s interior. Rock joint specimens with lower roughness (r = 0.17) had less concentration and fewer areas of contact force concentration. The shear failure mode of the rock joints gradually shifts from abrasion failure mode to snip failure mode as the roughness rises, which is largely compatible with the failure characteristics shown in the laboratory testing. The pattern of micro-crack development within the model specimen and the failure characteristics of the laboratory tests are in good agreement with the distribution characteristics of contact force on the rock joints

    Orthogonal Experimental Study on Concrete Properties of Machine-Made Tuff Sand

    No full text
    Machine-made sand instead of natural sand has become an inevitable choice for the sustainable development of the concrete industry. Orthogonal experiment and grey correlation analysis were used to investigate the performance of machine-made tuff sand concrete. The optimal concrete mix ratio of machine-made sand was obtained by orthogonal test and its working performance was verified. Grey correlation analysis was applied to compare the factors affecting the mechanical properties of the machine-made sand concrete. The test results show that the sand rate has the greatest degree of influence on slump and slump expansion. The mineral admixture has the greatest effect on the 7-day compressive strength of the concrete. Additionally, the water–cement ratio has the greatest influence on the 28-day compressive strength. The mechanical and working properties of the machine-made sand concrete reach the optimum condition when the mineral admixture is 20%, the sand rate is 46%, the stone powder content is 10% and the water–cement ratio is 0.30. Comparing different fine aggregate concretes of similar quality, we conclude that the mechanical and working properties of tuff sand concrete and limestone sand concrete and river sand concrete are similar. The compressive strengths of the mechanism concrete show the greatest correlation with roughness and the least correlation with stone powder content. The stone powder content has almost no effect on the compressive strength of concrete when the stone powder content does not exceed a certain range. The results of the study point out the direction for the quality control of concrete with machine-made sand
    corecore