50 research outputs found

    Adaptive fault-tolerant attitude tracking control for hypersonic vehicle with unknown inertial matrix and states constraints

    Get PDF
    This paper proposes an adaptive fault-tolerant control (FTC) method for hypersonic vehicle (HSV) with unexpected centroid shift, actuator fault, time-varying full state constraints, and input saturation. The occurrence of unexpected centroid shift has three main effects on the HSV system, which are system uncertainties, eccentric moments, and variation of input matrix. In order to ensure the time-varying state constraints, a novel attitude state constraint control strategy, to keep the safe flight of HSV, is technically proposed by a time-varying state constraint function (TVSCF). A unified controller is designed to handle the time-varying state constraints according to the proposed TVSCF. Then, the constrained HSV system can be transformed into a novel free-constrained system based on the TVSCF. For the variation of system input matrix, input saturation and actuator fault, a special Nussbaum-type function is designed to compensate for those time-varying nonlinear terms. Additionally, the auxiliary systems is designed to compensate the constraint of system control inputs. Then, it is proved that the proposed control scheme can guarantee the boundedness of all closed-loop signals based on the Lyapunov stability theory. At last, the simulation results are provided to demonstrate the effectiveness of the proposed fault-tolerant control scheme.</p

    A novel method to determine droop coefficients of DC voltage control for VSC-MTDC system

    Get PDF
    For droop control in voltage source converter based multi-terminal HVDC systems, the determination of droop coefficients is a key issue, which directly affects both power distribution and DC control performances. This paper proposes a novel design of droop coefficients considering the requirements of power distribution, DC voltage control and system stability. Considering the power margins of different converters, the ratio relationship among droop coefficients is established. Converters with larger power margins take bigger portion of power mismatch to avoid overload problem. Furthermore, the integral square error of converters DC voltage is adopted as the DC voltage control performance index, and optimization of droop coefficients to achieve coordinated DC voltage control of steady-state deviation and transient variation, is derived. Finally, the constraint of droop coefficients is established to guarantee the DC system stability after power disturbance. Case studies are conducted on the Nordic 32 system with an embedded 4-terminal DC grid to demonstrate the feasibility and effectiveness of the proposed droop control scheme

    Task-evoked functional connectivity does not explain functional connectivity differences between rest and task conditions

    Get PDF
    During complex tasks, patterns of functional connectivity differ from those in the resting state. However, what accounts for such differences remains unclear. Brain activity during a task reflects an unknown mixture of spontaneous and task-evoked activities. The difference in functional connectivity between a task state and the resting state may reflect not only task-evoked functional connectivity, but also changes in spontaneously emerging networks. Here, we characterized the differences in apparent functional connectivity between the resting state and when human subjects were watching a naturalistic movie. Such differences were marginally explained by the task-evoked functional connectivity involved in processing the movie content. Instead, they were mostly attributable to changes in spontaneous networks driven by ongoing activity during the task. The execution of the task reduced the correlations in ongoing activity among different cortical networks, especially between the visual and non-visual sensory or motor cortices. Our results suggest that task-evoked activity is not independent from spontaneous activity, and that engaging in a task may suppress spontaneous activity and its inter-regional correlation

    Atmospheric Chemistry of 2-Amino-2-methyl-1-propanol : A Theoretical and Experimental Study of the OH-Initiated Degradation under Simulated Atmospheric Conditions

    Get PDF
    The OH-initiated degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was investigated in a large atmospheric simulation chamber, employing time-resolved online high-resolution proton-transfer reaction-time-of-flight mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations reproduce the experimental rate coefficient of the AMP + OH reaction, aligning k(T) = 5.2 × 10-12 × exp (505/T) cm3 molecule-1 s-1 to the experimental value kexp,300K = 2.8 × 10-11 cm3 molecule-1 s-1. The theoretical calculations predict that the AMP + OH reaction proceeds via hydrogen abstraction from the -CH3 groups (5-10%), -CH2- group, (>70%) and -NH2 group (5-20%), whereas hydrogen abstraction from the -OH group can be disregarded under atmospheric conditions. A detailed mechanism for atmospheric AMP degradation was obtained as part of the theoretical study. The photo-oxidation experiments show 2-amino-2-methylpropanal [CH3C(NH2)(CH3)CHO] as the major gas-phase product and propan-2-imine [(CH3)2C=NH], 2-iminopropanol [(CH3)(CH2OH)C=NH], acetamide [CH3C(O)NH2], formaldehyde (CH2O), and nitramine 2-methyl-2-(nitroamino)-1-propanol [AMPNO2, CH3C(CH3)(NHNO2)CH2OH] as minor primary products; there is no experimental evidence of nitrosamine formation. The branching in the initial H abstraction by OH radicals was derived in analyses of the temporal gas-phase product profiles to be BCH3/BCH2/BNH2 = 6:70:24. Secondary photo-oxidation products and products resulting from particle and surface processing of the primary gas-phase products were also observed and quantified. All the photo-oxidation experiments were accompanied by extensive particle formation that was initiated by the reaction of AMP with nitric acid and that mainly consisted of this salt. Minor amounts of the gas-phase photo-oxidation products, including AMPNO2, were detected in the particles by CHARON-PTR-ToF-MS and GC×GC-NCD. Volatility measurements of laboratory-generated AMP nitrate nanoparticles gave ΔvapH = 80 ± 16 kJ mol-1 and an estimated vapor pressure of (1.3 ± 0.3) × 10-5 Pa at 298 K. The atmospheric chemistry of AMP is evaluated and a validated chemistry model for implementation in dispersion models is presented

    Comparative and phylogenetic analyses based on the complete chloroplast genome of Cornus subg. Syncarpea (Cornaceae) species

    No full text
    This study presents a comprehensive analysis of the chloroplast (cp) genomes of Cornus species, including comparative and phylogenetic evaluations, as well as examinations of their genomic structure and composition. The cp genomes exhibit a typical circular quadripartite structure and demonstrate highly similar gene order and genomic structure. The complete cp genome size of the 10 taxa in this study is 156,965 bp to 157,383 bp, where the length of the large single-copy (LSC) region is 86,296 bp to 86,691 bp, small single-copy (SSC) region is 18,386 bp to 18,454 bp, and inverted repeat (IR) region is 23,143 bp to 26,112 bp. A total of 131 genes were found, including 86 protein-coding genes (PCGs), eight rRNA genes, and 37 tRNA genes. The mean GC content of the 10 taxa is 38.145%, where the LSC region is 36.396%, the SSC region is 32.372%, and the IR region is 43.076%. Despite the relatively conserved nature of the cp genome within the species of Cornus, 25–31 simple sequence repeats (SSRs) were identified in the 10 taxa in our study. The SSRs were found to be distributed in the LSC, SSC, and IR regions in Cornus hongkongensis subsp. hongkongensis, C. hongkongensis subsp. elegans, C. hongkongensis subsp. gigantea, and C. hongkongensis subsp. tonkinensis, while the SSR was not found in the IR region of the other six taxa. Thus, whole cp genomics is a valuable tool for species identification, taxonomic clarification, and genomic evolutionary analysis. Furthermore, our findings reveal that C. hongkongensis and C. hongkongensis subsp. gigantea, along with Cornus kousa and Cornus elliptica, form sister groups. Notably, C. hongkongensis subsp. ferruginea and C. hongkongensis subsp. melanotricha did not exhibit affinity with C. hongkongensis subsp. hongkongensis. Our study furnishes essential data for further research on their classification and provides novel insights into the relationship within Cornus subg. Syncarpea

    Enhancing the Transferability of Targeted Attacks with Adversarial Perturbation Transform

    No full text
    The transferability of adversarial examples has been proven to be a potent tool for successful attacks on target models, even in challenging black-box environments. However, the majority of current research focuses on non-targeted attacks, making it arduous to enhance the transferability of targeted attacks using traditional methods. This paper identifies a crucial issue in existing gradient iteration algorithms that generate adversarial perturbations in a fixed manner. These perturbations have a detrimental impact on subsequent gradient computations, resulting in instability of the update direction after momentum accumulation. Consequently, the transferability of adversarial examples is negatively affected. To overcome this issue, we propose an approach called Adversarial Perturbation Transform (APT) that introduces a transformation to the perturbations at each iteration. APT randomly samples clean patches from the original image and replaces the corresponding patches in the iterative output image. This transformed image is then used to compute the next momentum. In addition, APT could seamlessly integrate with other iterative gradient-based algorithms, incurring minimal additional computational overhead. Experimental results demonstrate that APT significantly enhances the transferability of targeted attacks when combined with traditional methods. Our approach achieves this improvement while maintaining computational efficiency

    Rector Sizing Criterion for Continuous Operation of Meshed HB-MMC Based MTDC System Under DC Faults

    No full text
    corecore