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Abstract

This paper proposes an adaptive fault-tolerant control (FTC) method for hypersonic vehi-
cle (HSV) with unexpected centroid shift, actuator fault, time-varying full state constraints,
and input saturation. The occurrence of unexpected centroid shift has three main effects
on the HSV system, which are system uncertainties, eccentric moments, and variation
of input matrix. In order to ensure the time-varying state constraints, a novel attitude
state constraint control strategy, to keep the safe flight of HSV, is technically proposed
by a time-varying state constraint function (TVSCF). A unified controller is designed to
handle the time-varying state constraints according to the proposed TVSCF. Then, the
constrained HSV system can be transformed into a novel free-constrained system based
on the TVSCF. For the variation of system input matrix, input saturation and actuator fault,
a special Nussbaum-type function is designed to compensate for those time-varying non-
linear terms. Additionally, the auxiliary systems is designed to compensate the constraint
of system control inputs. Then, it is proved that the proposed control scheme can guaran-
tee the boundedness of all closed-loop signals based on the Lyapunov stability theory. At
last, the simulation results are provided to demonstrate the effectiveness of the proposed
fault-tolerant control scheme.

1 INTRODUCTION

Atmospheric reentry technology is regarded as the basis for
a wide range of space applications, such as planetary explo-
ration, specimen return, the development of future vehicles and
space planes, space transportation of crew and cargo, unmanned
aerial vehicles serving satellites in orbit and other innovative
applications in aerospace field. During the past decades, reen-
try guidance and control problems have become the research
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hotspots in the aerospace field [1, 2]. So far, hypersonic vehicle
(HSV) has been the most complicated flight process because it
provides a more reliable and cost efficient way to access space.
Especially for the reentry stage of HSV, it is necessary to guide
the HSV to a given landing area smoothly and safely under the
condition of great initial reentry kinetic energy and potential
energy [3]. At the same time, the overload, dynamic pressure and
aerodynamic heating are kept within the allowable range, which
is the main challenge for the guidance and control design of the
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re-entry stage of the HSV, and it is also the distinguishing feature
of other aircraft [4]. The reentry phase of HSV has the follow-
ing characteristics: large airspace, transonic speed, multi-stage,
nonlinear, strong coupling, severe constraints and severe uncer-
tainty [5, 6]. In recent years, there have been a great number
of research results, such as predictive control [7], fuzzy control
[8], optimal control [9], adaptive sliding mode control [10] and
robust control [11].

The task of HSV attitude control in the reentry phase is
to make the vehicle track the angle of attack and pitch angle
commands provided by the guidance loop, while ensuring the
sideslip angle to be near zero. The papers [12, 13] develop Euler
equation to describe the dynamic model of X233 reentry into
the atmosphere, and design two sliding mode controllers. The
sliding mode controller of the inner loop is designed for the
dynamic model of the aircraft, and the sliding mode controller
of the outer loop is designed for the kinematic model of the
angular velocity of the aircraft. The biggest advantage of this
control scheme is that it can achieve the tracking of a given angle
and angular velocity command at the same time. The paper [14]
designs a feedback linearized controller based on the concept
of time scale separation for lift-type reentry vehicles to track the
guidance commands of standard orbits. Combined feedback lin-
earization with proportional-integral-derivative, the paper [15]
designs a tracking controller for the reentry vehicle to track the
desired angle of attack and X-axis angular rate. The paper [16]
studies the attitude control problem of X-38 re-entry into the
atmosphere based on the method of fuzzy logic. The whole
process of the re-entry vehicle is divided into five stages, and
each flight stage corresponds to different actuator structures. In
[17], for the uncertainty of the flight dynamics characteristics
of HSV, the re-entry attitude control problem is demonstrated
to obtain robustness against uncertainty based on H∞ control
theory and model-following adaptive control theory. However,
when HSV control surface faults and structural damages occur
during the reentry process, the above methods often fail to meet
the stringent requirements for autonomy and safety. Therefore,
it is necessary to consider the possible faults of the system
when designing the attitude controller, and fault-tolerant con-
trol is crucial for HSV to guarantee its safety and achieve the
control goal.

For the variation of aircraft centroid, it is an serious and com-
plex fault-tolerant control (FTC) problem of HSV [18]. The
occurrence of unexpected centroid shift has three main effects
on the HSV system, which are system uncertainties, eccentric
moments, and variation of input matrix [19]. The nonlinear air-
craft dynamics with unexpected centroid shift are presented in
[19]. In [20], a novel adaptive control scheme is introduced to
handle the centroid shift fault. In [21], a linearized HSV model
with unexpected centroid shift problem is described. However,
the linearized model may trigger the absence of the system
coupling, resulting in the performance degradation of the con-
troller, especially what a fault occurrence. For the variation of
the inertial matrix, the paper [22] tries to resolve such a prob-
lem by assuming that the minimum and maximum bounds of
the inertial matrix are known, but this assumption restricts the
application of this strategy because the mentioned bounds are

hard to be obtained. Besides, based on data-driven techniques
[23], a model free control scheme is proposed for the uncertain-
ties of system. However, it should be noted that it is difficult to
obtain the training data of the inertial matrix of HSV with cen-
troid shift. In a word, how to online identify the inertial matrix
of the HSV with uncertainties and ensure its function in a FTC
controller is still full of challenges.

In summary, it is an interesting and important topic to inves-
tigate the FTC problem of HSV subject to an unexpected
centroid shift, actuator fault, time-varying full state constraints
and system input saturation. The major contributions are
summarized as follows:

(i) Compared with the former FTC methods, the time-varying
full state constraints are first applied into the FTC algo-
rithm designed in this paper for the HSV with unknown
inertial matrix, eccentric moment, external disturbance,
actuator fault and system input saturation, and the desired
tracking performance can be achieved.

(ii) A special auxiliary system based on a Nussbaum-type func-
tion is designed to eliminate the effects of the unknown
inertial matrix, actuator fault and input constraints, which
can be regarded as a complement to the FTC algorithm.

(iii) To handle the problem of the time-varying state con-
straints, a time-varying state constraint function (TVSCF)
is developed so that the constrained HSV system can be
transformed into a novel free-constrained system.

The article is organized in the following parts. Section 2 is
devoted to establish the model of HSV with unexpected cen-
troid shift, actuator fault, and so forth. Section 3 gives some
definitions and preliminaries. Subsequently, the adaptive fault-
tolerant anti-saturation controller is proposed in Section 4. The
stability analysis is proposed in Section 5 and followed by
Section 6, in which the numerical simulations are conducted
to evaluate the effectiveness of the designed FTC algorithm.
Finally, the conclusion is provided in Section 7.

2 PROBLEM FORMULATION

2.1 HSV attitude dynamics with unexpected
centroid shift

2.1.1 Attitude angle dynamic equation

The reentry attitude dynamics of hypersonic vehicle considered
in this paper are given by [24]. The attitude system of HSV is
described by

�̇� = ℜ(𝛾)𝜔, (1)

where 𝛾 = [𝜇, 𝛼, 𝛽]T denotes the attitude angle vector, and
𝜔 = [p, q, r ]T represents the angular rate vector. 𝜇, 𝛼, 𝛽, p, q and
r represent the bank angle, the angle of attack, the sideslip angle,
roll rate, pitch rate and yaw rate, respectively. The rotational
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WANG ET AL. 1399

FIGURE 1 Three-dimensional view of HSV with centroid shift,
Ob → O′

b
.

matrix ℜ(𝛾) in (1) is expressed as

ℜ(𝛾) =

⎡⎢⎢⎢⎣
cos𝛼 0 sin𝛼

sin𝛼 0 − cos𝛼

0 1 0

⎤⎥⎥⎥⎦ , (2)

2.1.2 Attitude angular rate dynamic equation

As depicted in Figure 1, the centroid shift refers to the phe-
nomenon that the original centroid of the HSV (Ob) moves to
the new location (O′

b
). Inspired by the work in [25] and [26],

the HSV attitude angular rate dynamic with unexpected cen-
troid shift, system uncertainty and external disturbance can be
developed as

(J∗ + ΔJ )�̇� = −𝜔×(J∗ + ΔJ )𝜔 + Λ + v + d , (3)

where J∗ ∈ R3×3 represents the inertial matrix of the HSV
without uncertainties, and it is displayed as follows:

J∗ =

⎡⎢⎢⎢⎣
Jxx 0 −J ′xz

0 Jyy 0

−J ′xz 0 Jzz

⎤⎥⎥⎥⎦ , (4)

where Jxx , Jyy, Jzz denote the moments of inertia. J ′xz is the prod-
uct of inertia. d stands for the external disturbance moment.
Besides, the operator 𝜔×, which is a skew-symmetric matrix
acting on 𝜔, can be expressed as follows:

𝜔× =

⎡⎢⎢⎢⎣
0 −r q

r 0 −p

−q p 0

⎤⎥⎥⎥⎦ . (5)

In what follows, based on previous research in [26–28], it
can be concluded that the effects of centroid shift are mainly
in these three aspects: (a) variation of inertial matrix; (b) sys-
tem uncertainty; and (c) eccentric moment, and the details are
delivered as follows:

(a) Variation of inertial matrix: ΔJ ∈ R3×3 represents an uncer-
tain part of J∗ which results from the centroid shift, and it
is delivered as

ΔJ =

⎡⎢⎢⎢⎣
ΔJxx −Jxy −Jxz

−Jxy ΔJyy −Jyz

−Jxz −Jyz ΔJzz

⎤⎥⎥⎥⎦ (6)

where Jxy, Jxz and Jyz are the products of inertia which
results from the unknown centroid shift vector �̄� =
[Δx, Δy, Δz]T , presented in Figure 1. The expressions of
the uncertain inertial matrix are [29]:

ΔJxx = M
(
Δy2 + Δz2

)
, (7a)

ΔJyy = M
(
Δx2 + Δz2

)
, (7b)

ΔJzz = M
(
Δx2 + Δy2

)
, (7c)

ΔJxy = MΔxΔy, (7d)

ΔJxz = MΔxΔz, (7e)

ΔJyz = MΔyΔz. (7f)

where M represents the mass of HSV. Δx, Δy and Δz are
the three components of the centroid shift vector �̄� along
the aircraft body frame Obxyz . It is worth noting that due
to the existence of the uncertain inertial matrix (J∗ + ΔJ ),
it is difficult to construct the controller by inverting inertial
matrix, such as backsteping control [30], dynamics surface
control [31], and so on.

(b) System uncertainty: In this paper, by multiplying the inverse
matrix (J∗ + ΔJ )−1 to the both sides of (3), it can be seen
that the system uncertainty caused by ΔJ is difficult to
separate from −(J∗ + ΔJ )−1𝜔×(J∗ + ΔJ )𝜔. Furthermore,
based on (3), (6) and (7), one has Jxy ≠ 0 and Jyz ≠ 0
when [Δx, Δy, Δz]T ≠ 0. Therefore, (J∗ + ΔJ ) has become
a coupled matrix instead of J∗.

(c) Eccentric moment: The unexpected centroid shift results in the
occurrence of eccentric momentΛwhich is formulated by

Λ =

⎡⎢⎢⎢⎣
0 −vz vy

vz 0 −vx

−vy vx 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Δx

Δy

Δz

⎤⎥⎥⎥⎦ = Θ×𝜍 (8)

where vx , vy and vz represent the three components of the
moment vector v along the aircraft body coordinate Obxyz ,
which is depicted in Figure 1.
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1400 WANG ET AL.

2.2 Actuator fault and system input
saturation

As for control moment vector v in (3), v = [v1, v2, v3]T is the
function of 𝛿, and it is described as

v = BFu(𝛿) + Bū, (9)

where B ∈ R3×8 is the actuator distribution matrix that char-
acterizes the effect of each control surface on the angular rate
system. u(𝛿) stands for the control input with saturation non-
linearities. In this paper, X-33 has four sets of control surfaces,
such as rudders, body flaps, and inboard and outboard elevons,
respectively. It can be represented by 𝛿 = [𝛿1, 𝛿2, … , 𝛿8]T . F =
diag{ fl 1, fl 2, … , fl 8}with 0 ≤ fli ≤ 1 (li = 1, 2, … , 8) represents
the fault matrix that reflects the health condition of the cor-
responding actuator, and ū denotes the unexpected control
moment caused by actuator fault and other reasons. With this
setting, the following common fault types of actuator can be
taken into consideration: a) partial loss of effectiveness; b)
locking; and c) null and continuous bias [32].

Considering actuator symmetric input constraints, u(𝛿i )
represents the controller with input saturation, shown as [33]

u(𝛿i ) = sat(𝛿i ) =

⎧⎪⎨⎪⎩
𝛿i max, 𝛿i > 𝛿i max

𝛿i , |𝛿i | ≤ 𝛿i max

𝛿i min, 𝛿i < −𝛿i max

(10)

where 𝛿i max is the maximum deflection angle of control sur-
faces 𝛿i . Then, define 𝜅(𝛿) = [𝜅1(𝛿1), 𝜅2(𝛿2), … , 𝜅8(𝛿8)]T , and
a hyperbolic tangent function is applied to approximate u(𝛿) in
(10):

u(𝛿) = 𝜅(𝛿) + 𝜀(𝛿), (11)

𝜅i (𝛿i ) = 𝛿i max tanh (𝛿i∕𝛿i max), (12)

where 𝜀(𝛿i ) represents the fitting error, which satisfies |𝜀i (𝛿i )| =|sat(𝛿i ) − 𝜅
i
(𝛿i )| ≤ 𝛿i max(1 − tanh(1)).

According to the mean-value theorem and the assumption
that 𝜅(0) = 0 [34], it is obtained that

𝜅i (𝜏i ) =
𝜕𝜅i (⋅)

𝜕𝛿i

𝛿i = hi𝛿i . (13)

In addition, define H = diag{hi}, i = 1, 2, … , 8, and (11) can
be reformed as u(𝛿) = H𝛿 + 𝜀(𝛿). Thus, the control moment
vector in (9) can be rewritten as

v = BΥ𝛿 + B
(
F 𝜀(𝛿) + ū

)
(14)

where Υ = diag{ fli hi}, i = 1, 2, … , 8. It should be mentioned
that the matrix Υ is time-varying which reflects the control
surface fault and saturation.

2.3 Problem statement

Considering the HSV attitude model with unexpected cen-
troid shift, actuator fault and input saturation, an adaptive
fault-tolerant control scheme is designed to fulfil the following
control objectives:

(i) The system output 𝛾 = [𝛼, 𝛽, 𝜇]T tracks the desired tra-
jectory 𝛾r = [𝛼r , 𝛽r , 𝜇r ]T , and the steady-state behavioural
boundedness of the attitude angles is preserved.

(ii) All signals are bounded and stable in the entire closed-loop
system.

Before designing the fault-tolerant controller, some assump-
tions are needed.

Assumption 1. The desired tracking command signals 𝛾r and
its time-derivative �̇�r is continuous and bounded. Moreover, all
states of the HSV attitude model are available.

Assumption 2. The inverse matrix J−1 = (J∗ + ΔJ )−1 exists.

Assumption 3. The eccentric moment Λ is uncertain but
bounded, which satisfies ‖Λ‖ ≤ 𝜅Λ with 𝜅Λ being a positive
constant. In addition, the disturbance d in (3) satisfies ‖d‖ ≤
𝓁d , where 𝓁d represents an unknown positive constant.

Assumption 4. In this paper, we focus on the fault-tolerant
control strategy. Thus, the time of fault occurrence is assumed
to be known in this paper and it is regarded as a sign that system
state constraints are needed. The time of fault occurrence can
be obtained by the methods shown in [35, 36].

Remark 1. Assumption 1 ensures the desired trajectory 𝛾r and
its derivatives to be bounded, and it is frequently employed in
current relevant literatures [26]. In addition, the states of the
HSV system can be measured by various sensors on the aircraft,
and this assumption is mainly for convenience of designing the
state feedback controller [9]. According to the discussion in [27]
and [28], it can be obtained that when the centroid of the HSV
shifts, the variation of the moment of inertia J will not affect the
invertibility of the matrix J∗ + ΔJ , so Assumption 2 is reason-
able. Assumption 3 indicates that the eccentric moment which
results from the unexpected centroid shift is bounded, and such
an assumption also appears in [26–29].

3 PRELIMINARY KNOWLEDGE

3.1 Time-varying state-constraint function

A continues function 𝜁(⋅) is defined as a time-varying state
constraint function if it is endorsed by the following property:

𝜁(t ) =
x(t )(

F1(t ) + x(t )
)T (

F2(t ) − x(t )
) , (15)
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WANG ET AL. 1401

where the initial condition x(0) satisfies x(0) ∈ ℘, and both
F1(t ) and F2(t ) are time-varying constraint functions. Through
an inspection of (16), it is straightforward to verify that 𝜁
approaches infinity as x tends to the boundary of ℘ ∶=
[−F1(t ),F2(t )], that is, for any initial state x(0) ∈ ℘

𝜁 → ±∞ if and only if x → −F1(t ) or x → F2(t ) (16)

The prominent property of the designed TVSCF is that for
any x(T ) ∈ ℘, if 𝜁 ∈ L∞ for any t ≥ T , it is sufficient to
achieve that x(t ) ∈ ℘, that is to say, the state constraints can be
guaranteed if only 𝜁 is ensured to be bounded. Therefore, the
problem of state constraints can be attributed to making sure
the boundedness of 𝜁 for all t ≥ T .

Remark 2. Examining (15) with respect to F , an important
aspect that deserves attention is that the case of setting Fj → ∞
combined with the rule of L.Hospital makes

lim
Fj→∞

x j(
Fj + x j

)(
Fj − x j

) = x j (17)

where Fj , j = 1, 2, 3 stands for the element of F , and it is
an important property when it comes to the fault-tolerant
control:

(1) When a fault occurs, the extra states constraints should be
made for the requirement of safety. To this aim, a safety aero
℘ described by F is proposed, as shown in (15) and (16);

(2) As for the normal condition, namely, without resorting to
the additional state constraints, combined with (17), it is
apparent that (15) can be transformed as a common state
of HSV.

Contrary to the common practice with respect to the barrier
Lyapunov function (BLF) [37, 38], shown as

Vb =
1
2

log
ℑ2

b

ℑ2
b
− zT z

(18)

where z represents the constrained variable and ℑb is the con-
straint bound value, that is, Vb → ∞ if ‖z‖→ ℑb. However,
if the constraint requirement is not required in normal condi-
tion, that is, Vb → ∞, then Vb → 0 instead of the Lyapunov
quadratic form zT z∕2, which means that the usual BLF can not
handle the cases with or without constraints in a unified scheme.
In this work, a novel BLF is presented to handle the system with
or without the states constraint requirements in a unified way by
adjusting the parameters of F (t ).

In addition, for the time-varying constraint functions, a mild
assumption is provided as follows:

Assumption 5. The constraint function Fj (t ) is positive and
time-varying, and its kth derivative (k = 0, 1, 2) is bounded
and continuous.

Remark 3. There exist some positive constant vectors L0, L1,
and L2, so that the desired signal 𝛾ri (t ), i = 1, 2, 3 and its
time derivatives �̇�ri , �̈�ri satisfy 𝛾ri ∈ Dc ∶= {𝛾ri ∈ R ∶ −Fi (t ) <

−L0i ≤ 𝛾ri (t ) ≤ L0i < Fi (t )} and |𝛾(l )
ri (t )| < Lli . What is more,

[𝛾ri , �̇�ri , �̈�ri ]
T ∈ Ω𝛾r

is continuous and available in the known
compact set Ω𝛾r

∶= {[𝛾ri , �̇�ri , �̈�ri ]
T ∶ 𝛾ri + �̇�ri + �̈�ri ≤ B0} ⊂

R3, where B0 is a positive constant.

3.2 Nussbaum-type function

A Nussbaum function is firstly proposed to be a control-
direction selector[39]. Since the matrix Υ in (14) is time-varying,
we use the Nussbaum gain to estimate it in this paper.

Definition 1. The properties of Nussbaum-type function N (⋅)
are introduced as follows [34, 38]:

lim
𝜗→∞

inf
1
𝜗 ∫

𝜗

0
N
(
𝜉
)
d𝜉 = −∞

lim
𝜗→∞

sup
1
𝜗 ∫

𝜗

0
N
(
𝜉
)
d𝜉 = +∞ (19)

Based on (19), the Nussbaum function is developed as

N
(
𝜉
)
= e𝜉

2∕2
(
𝜉2 + 2

)
sin
(
𝜉
)
. (20)

Lemma 1 [34]. V (t ) and 𝜉i (t )(i = 1, 2, … ,m) are assumed as the

smooth functions in [0, t f ) with V (t ) ≥ 0 and 𝜉i (0) = 0. If N (⋅)
satisfied (20) and the following inequality holds

V (t ) = c0 + e−c1t

N∑
i=1

∫
t

0

(
−gi (𝜏)N

(
𝜉i (𝜏)
)
+ 1
)
�̇�i (𝜏)ec1𝜏d𝜏

(21)

where c0 represents a bounded constant, then V (t ), 𝜉i (t ) and∑N

i=1 ∫ t

0
gi (𝜏)N (𝜉i (𝜏))�̇�i (𝜏)d𝜏 are bounded on [0, t f ). In (21), c0 is a

bounded constant. The constant c1 satisfies c1 > 0. gi (t ) is a time-varying

parameter which is selected from the unknown set g ∶= [𝜓−, 𝜓+] (all

gi (t ) have the same sign).

4 ADAPTIVE FAULT-TOLERANT
ALTITUDE CONTROL DESIGN

In this section, an adaptive FTC scheme is proposed for the
HSV reentry attitude dynamics (1) and (3) subject to unexpected
centroid shift, actuator fault and system states constraints. The
fault-tolerant control structure is described in Figure 2.
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1402 WANG ET AL.

FIGURE 2 Fault-tolerant control block diagram of HSV attitude model with unexpected centroid-shift.

4.1 Adaptive fault-tolerant controller design

Based on backstepping method, the coordinate transformation
is constructed as

z1 = 𝜁1 − 𝛼0, (22a)

z2 = 𝜔 − 𝛼2 f , (22b)

𝛼0 =
𝛾c

(F1 + 𝛾r )T (F2 − 𝛾r )
, (22c)

where 𝜁1 is provided by (15) to handle the time-varying state
constraints:

𝜁1 =
𝛾

(F1 + 𝛾)T (F2 − 𝛾)
, (23)

and z j ( j = 1, 2) denotes the “’virtual error,” besides, 𝛼2 f ∈ R3

can be obtained by the first-order filter:

𝜀2�̇�2 f + 𝛼2 f = 𝛼1, (24)

where 𝜀2 is the designed parameter with the positive elements,
and 𝛼1 ∈ R3 represents the virtual control. Furthermore, we
define

y2,i = 𝛼2 f ,i − 𝛼1,i , i = 1, 2, 3, (25)

which facilitates the stability analysis, as seen shortly.
Now, the control design process is carried out step by step.
Step 1: By taking derivative of 𝜁1 in (23) with respect to time,

it is straightforward to show that

�̇�1 = 𝜂1�̇� + 𝜂2, (26)

where

𝜂1 =
F T

1 (t )F2(t ) + 𝛾T 𝛾[(
F1(t ) + 𝛾

)T (
F2(t ) − 𝛾

)]2 ,

𝜂2 =

[(
Ḟ T

1 F2 + F T
1 Ḟ2
)
+
(
Ḟ2 − Ḟ1

)
𝛾
]
𝛾[(

F1(t ) + 𝛾
)T (

F2(t ) − 𝛾
)]2 (27)

Thus, the time derivative of z1 = 𝜁1 − 𝛼0 along (26) is

ż1 = 𝜂1
(
ℜ𝜔 + f1

)
+ 𝜂2 − 𝜂𝛾1�̇�c − 𝜂𝛾2 (28)

where

𝜂𝛾1 =
F T

1 (t )F2(t ) + 𝛾T
c 𝛾c[(

F1(t ) + 𝛾c

)T (
F2(t ) − 𝛾c

)]2 ,
𝜂𝛾2 =

[(
Ḟ T

1 F2 + F T
1 Ḟ2
)
+
(
Ḟ2 − Ḟ1

)
𝛾c

]
𝛾c[(

F1(t ) + 𝛾c

)T (
F2(t ) − 𝛾c

)]2
are the computable and bounded functions in the set ℘.

Afterwards, recalling the definition of z2 and y2 as given in
(22b) and (25) respectively, we have

𝜔 = z2 + y2 + 𝛼1, (29)

which leads to

ż1 = 𝜂1ℜz2 + 𝜂1ℜy2 + 𝜂1ℜ𝛼1 + 𝜂1 f1 + 𝜂2 − 𝜂𝛾1�̇�c − 𝜂𝛾2.

(30)

To continue, the derivative of
1

2
zT

1 z1 is

zT
1 ż1 = zT

1 𝜂1ℜ𝛼1 + Ξ1, (31)

where Ξ1 = zT
1 (𝜂1ℜz2 + 𝜂1ℜy2 + 𝜂1 f1 + 𝓁0) and 𝓁0 = 𝜂2 −

𝜂𝛾1�̇�c − 𝜂𝛾2. According to Young’s inequality, it can be con-
cluded that

zT
1 𝜂1 f1 ≤ ℜ‖z1‖2

𝜂2
1‖ f1‖2

+
1

4ℜ
, (32a)
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WANG ET AL. 1403

zT
1 𝜂1ℜy2 ≤ ℜ

ℜ
2

ℜ
‖z1‖2

𝜂2
1 +

1
4
‖y2‖2

, (32b)

zT
1 𝓁0 ≤ ℜ‖z1‖2‖𝓁0‖2

+
1

4ℜ
, (32c)

where ℜ and ℜ are positive constants.
Therefore, we arrive at

Ξ1 ≤ ℜb1‖z1‖2
Φ1 + Δ1 + zT

1 𝜂1ℜz2 +
1
4
‖y2‖2

, (33)

where b1 is the virtual unknown constant parameter with

b1 = max

⎧⎪⎨⎪⎩1, ‖ f1‖2
,
ℜ

2

ℜ

⎫⎪⎬⎪⎭. (34)

Besides, Φ1 = 𝜂2
1 + ‖𝓁0‖2 > 0 represents a known and com-

putable scalar function, and Δ1 =
1

2ℜ
stands for an unknown

positive constant.
The virtual control 𝛼1 is constructed as follows:

𝛼1 = −
1
𝜂1

(
c1z1 + z1b̂1Φ1

)
, (35)

̇̂b1 = 𝜆1‖z1‖2
Φ1 + 𝜎1b̂1, (36)

where c1 > 0, 𝜆1 > 0 and 𝜎1 > 0 are design parameters, and b̂1
is the estimation value of b1.

Define the estimate error of b1 as b̃1 = b1 − b̂1. Ideally, the
Lyapunov function candidate is selected as

V1 =
1
2

zT
1 z1 +

ℜ

2𝜆1
b̃T

1 b̃1 +
1
2

yT
2 y2, (37)

Subsequently, V̇1 can be calculated as

V̇1 ≤ zT
1 ż1 +

ℜ

𝜆1
b̃T

1
̇̂b1 + yT

2 ẏ2

≤ zT
1 g1𝜂

1
1𝛼1 + g

1
b1‖z1‖2

Φ1 + Δ1 + zT
1 𝜂1

1g1z2

+
1
4
‖y2‖2

−
ℜ

𝜆1
b̃T

1
̇̂b1 + yT

2 ẏ2. (38)

After substituting (35) and (36) into (38), it follows

V̇1 ≤ −ℜc1‖z1‖2
+

ℜ𝜎1

𝜆1
b̃T

1 b̂1 + Δ1 + zT
1 𝜂1ℜz2 +

1
4
‖y2‖2

+ yT
2 ẏ2

≤ −ℜc1‖z1‖2
−

ℜ𝜎1

𝜆1
‖b̃1‖2

+ Γ1 + zT
1 𝜂1ℜz2 +

1
4
‖y2‖2

+ yT
2 ẏ2

(39)

where the facts that 0 < ℜ ≤ ‖ℜ‖ in the set D1 and
ℜ𝜎1

𝜆1
b̃T

1 b̂1 ≤ ℜ𝜎1

2𝜆1
‖b1‖2 −

ℜ𝜎1

2𝜆1
‖b̃1‖2 are used, and Γ1 = Δ1 +

ℜ𝜎1

2𝜆1
‖b1‖2.

By taking account of the expression of y2 and the first-order
filter described by (24) and (25), we have

ẏ2 = �̇�2 f − �̇�1 = −
y2

𝜀2
+ ℏ1(⋅), (40)

where

−ℏ1 = �̇�1 =
𝜕𝛼1

𝜕𝜂1
�̇�1 +

𝜕𝛼1

𝜕z1
ż1 +

𝜕𝛼1

𝜕b̂1

̇̂b1 +
𝜕𝛼1

𝜕Φ1
Φ̇1 (41)

is continuous function, then the following inequality can be
obtained:

yT
2 ẏ2 = −

yT
2 y2

𝜀2
+ yT

2 ℏ1

≤
(

1
4
−

1
𝜀2

)
yT
2 y2 + ℏT

1 ℏ1 (42)

Therefore, (39) can be derived as

V̇1 ≤ −ℜc1‖z1‖2
−

ℜ𝜎1

𝜆1
‖b̃1‖2

+ Γ1 + ℏT
1 ℏ1 + zT

1 𝜂1ℜz2

+

(
1
2
−

1
𝜀2

)
yT
2 y2. (43)

Choose
1

𝜀2
≥ 1

2
+ 𝜀∗2 , where 𝜀∗2 > 0 is a positive constant to

be designed, then (43) is rewritten as follows:

V̇1 ≤ −ℜc1‖z1‖2
−

ℜ𝜎1

𝜆1
‖b̃1‖2

+ 𝜀∗2 yT
2 y2

+ zT
1 𝜂1ℜz2 + Γ1 + ℏT

1 ℏ1, (44)

in which the term zT
1 𝜂1ℜz2 will be coped with in Step 2 and ℏ1

will be dealt with in Step 3.
Step 2: The uncertainty of inertial matrix ΔJ in (6) follows

the potential irreversibility of J and the time-varying coefficient
matrix Υ of (14). Therefore, inspired by [40] and combined
with Assumption 2, the following dynamic system is tactfully
constructed:

�̇� = −k𝜐𝜐 + g(𝜐c ), 𝜐c (0) = 0, (45)

where k𝜐 = kT
𝜐 > 0, 𝜐c represents an auxiliary intermediate

state to be designed, g(𝜐c ) is a hyperbolic tangent function.
For the purpose of handling the input saturation, we design an
auxiliary system:

ℏ̇ = kℏℏ +
(
𝜐 − g(𝜐c )

)
, (46)

where kℏ is a positive definite diagonal matrix to be designed.
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1404 WANG ET AL.

Define 𝜏 = 𝛿, and the error can be expressed as

z3 = 𝜏 −𝜛, (47)

where 𝜛 is constructed based on the following low-pass filter:

c�̇� = −𝜛 + 𝜐, 𝜛(0) = 0, (48)

where c is a positive time constant to be chosen. Besides, in
(22b) and (22c), 𝛼2 f and 𝜐 are stabilizing functions. For the
convenience of analysis, the filter error is defined as y3 = 𝜛 −
𝜐.

Considering (3), (14), (22) and (48), we obtain

J ż2 = −𝜔×J𝜔 − J �̇�2 f + BΥ
(
z3 +𝜛

)
+ 𝜂𝜏 + d , (49)

where 𝜂𝜏 = Λ + F 𝜀(𝜏) + ū stands for the complex distur-
bances caused by unexpected centroid shift, the fault and
saturation of control surfaces. In order to simplify analysis,
define R = −𝜔×J𝜔 − J �̇�2 f . It can be observed that R is lin-
ear function with respect to J . Therefore, a linear operator
L(⋅) ∶ R3 → R3×6 is proposed: for ∀x ∈ R3, one yields Jx =
L(x )𝜃, where 𝜃 = [J11, J12, J13, J22, J13, J33]T with Ji j being the
element of J . Consequently, R could be linearly parameterized
as R = Y (⋅)𝜃 where Y (⋅) ∈ R3×6 is a known regression matrix
made as

Y (⋅) = −𝜔×L(𝜔) − L(�̇�2 f ). (50)

Similar to [34], define b2 = [‖𝜃‖, 𝜂𝜏, dm]T and Θ2 =
[‖Y (⋅)‖, 1, 1]T . Then, recalling Assumption 3, the following
inequality holds:

‖Y (⋅)𝜃 + 𝜂𝜏 + d‖2 ≤ ‖Y (⋅)𝜃‖2
+ ‖𝜂𝜏‖2

+ ‖d‖2 ≤ bT
2 Θ2.

(51)

According to Lemma 1 in [40], it can be concluded that
BΥBT is a positive definite matrix for ∀t ∈ R, so 𝜎 ≤
min(BΥBT ) holds, where 𝜎 > 0 is a constant.

Define 𝜆 = 1∕𝜎, b = 𝜆bΔ = [𝜆bT
2 , 𝜆b2]T , and Θ =

[ΘT
2 , ‖B‖]T , where b > 0 is a constant. For the purpose

of designing control law and analysing the stability of the
closed-loop system, consider the following Lyapunov function
candidate:

V2 = V1 +
1
2

zT
2 Jz2 +

𝜎

2𝜗b

b̃T b̃ +
𝜎

2𝜗𝜆
�̃�2, (52)

where b̂ and �̂� are the estimations of b and 𝜆, respectively.
Their estimation errors are defined as b̃ = b − b̂ and �̃� = 𝜆 − �̂�.
Besides, 𝜗b and 𝜗𝜆 represent the design parameters. Then,
differentiating (52) and recalling (49) yields

V̇2 = V̇1 + zT
2 BΥ
(
z3 +𝜛

)
+ zT

2 (R + 𝜂𝜏 + d ) −
𝜎

2𝜗b

b̃T ̇̂b

−
𝜎

2𝜗𝜆
�̃� ̇̂𝜆

≤ V̇1 + zT
2 BΥ
(
z3 + y3 + 𝜐

)
− b3‖B‖‖z2‖ + bT

ΔΘ‖z2‖
−

𝜎

2𝜗b

b̃T ̇̂b −
𝜎

2𝜗𝜆
�̃� ̇̂𝜆 (53)

Then, add and subtract b3‖B‖‖z2‖ to the right side of the
inequality (53) at the same time, and the above inequality (53)
can be calculated as

V̇2 ≤ V̇ ∗
1 + zT

2 𝜎𝜆Φ2 + zT
2 BΥ𝜐 + zT

2 BΥ
(
z3 + y3

)
− b3‖B‖‖z2‖ + 𝜎bT Θ‖z2‖ − 𝜎

2𝜗b

b̃T ̇̂b −
𝜎

2𝜗𝜆
�̃� ̇̂𝜆 (54)

where V̇ ∗
1 = V̇1 − zT

2 Φ2 and Φ2 is designed for eliminating the
coupled term in V1 with the details being

Φ2 = ℜT 𝜂1z1. (55)

To continue, we introduce a key inequality: for any 𝜀 > 0 and
x ∈ R, it yields

0 ≤ |x| − x
√

x2 + 𝜀2 ≤ |x| − x2(|x| + 𝜀) < 𝜀. (56)

Further, applying the above inequality (56), it is easily derived
that

b̂T Θ‖z2‖ ≤ (b̂T Θ)2‖z2‖2√
(b̂T Θ)2‖z2‖2

+ 𝜑2

+ 𝜑

�̂�‖Φ‖‖z2‖ ≤ �̂�2‖Φ‖2‖z2‖2√
�̂�2‖Φ‖2‖z2‖2

+ 𝜑2

+ 𝜑 (57)

where 𝜑 is a positive constant to be designed later. What is more,
combined with Young’s inequality, it can be obtained that

‖zT
2 BΥ
(
z3 + y3

)‖ ≤ 1
𝜄
‖z2‖2

+
𝜄

2
‖B‖2
(‖z3‖2

+ ‖y3‖2
)
,

(58)

where 𝜄 > 0 is a constant.
For the purpose of ensuring the closed-loop system to be

stable, the following virtual control law is selected as

𝜐 = N (𝜉 )�̄�, (59)

�̄� = −BT
(
k2 + k(t )

)
z2, (60)

and the corresponding adaptive laws are designed as

�̇� = −k𝜉diag(z2)�̄�, (61)

̇̂b = 𝜗bΘ‖z2‖ − 𝜗b𝓁1b̂, (62)

̇̂𝜆 = 𝜗𝜆‖Φ2‖‖z2‖ − 𝜗𝜆𝓁2�̂�, (63)

where k2 > 0, k𝜉 > 0, 𝜗b > 0, 𝜗𝜆 > 0, and 𝓁i > 0 (i = 1, 2)
are the controller parameters which is needed to be designed.
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WANG ET AL. 1405

Especially, in (59), k(t ) is introduced as

k(t ) =
(b̂T Θ)2√

(b̂T Θ)2‖z2‖2
+ 𝜑2

+
�̂�2‖Φ‖2√

�̂�2‖Φ‖2‖z2‖2
+ 𝜑2

(64)

Inserting (59)–(63) together with the inequalities (57) and (58)
into (54), V̇2 can be rewritten as

V̇2 ≤ −ℜc1‖z1‖2
−

ℜ𝜎1

2𝜆
‖b̃1‖2

− 𝜀∗2 yT
2 y2 + ℏT ℏ + Γ1

−
(

k2𝜎 −
1
𝜄

)‖z2‖2
−

𝜎𝓁1

2
b̃T

2 b̃2 −
𝜎𝓁2

2
�̃�2 − b3‖B‖‖z2‖

+ Ξ +
𝜄

2
‖B‖2
(‖z3‖2

+ ‖y3‖2
)

+

3∑
i=1

1
k𝜉i

(
−giN (𝜉 ) + 1

)
�̇�i , (65)

where Ξ =
1

2
𝜎𝓁1bT

2 b2 +
1

2
𝜎𝓁2𝜆

2 + 2𝜎𝜑 is a bounded posi-
tive scalar.

Step 3: Based on (45)–(47), ż3 can be calculated as

ż3 = −𝜅𝜐𝜐 + 𝜐c − �̇� + kℏℏ (66)

In order to construct the controller 𝜐c , we consider the
following Lyapunov function:

V3 = V2 +
1
2

zT
3 z3 +

1
2

yT
3 y3. (67)

Then, recalling (48) and (66), we have

V̇3 ≤ V̇2 + zT
3

(−𝜅𝜐 + 𝜐c − �̇� + kℏℏ) −
‖y3‖2

c
+ ‖y3‖‖�̇�‖

(68)

Then, the intermediate control function 𝜐c is designed as
follows

𝜐c = −k3z3 + 𝜅𝜐 + �̇� − kℏℏ, (69)

where k3 > 0 is the designed parameter.
Then, combined with (68) and (69), by the aid of Young’s

inequality, we have

V̇3 ≤ −V̇2 − k3‖z3‖2
−

(
1
c
−

1
2a1
‖�̇�‖2

)‖y3‖2
+

a1

2
, (70)

where a1 > 0 is a positive constant. Combined with (65), we
have that

V̇3 ≤ − g
1
c1‖z1‖2

−
g

1
𝜎1

2𝛾1
‖b̃1‖2

−
(

k2𝜎 −
1
𝜗

)‖z2‖2

−
𝜎𝓁1

2
b̃T

2 b̃2 −
𝜎𝓁2

2
�̃�2 − 𝜀∗2 yT

2 y2 + Ξ +
a1

2
+ Γ1

−

(
k3 −

𝜗

2
‖B‖2
)‖z3‖2

−

(
1
c
−

1
2a1
‖�̇�‖2

−
𝜗

2
‖B‖2
)‖y3‖2

+ zT
2 BΥℏ − b2‖B‖‖z2‖

+

3∑
i=1

1
k𝜉i

(
−giN (𝜉 ) + 1

)
�̇�i . (71)

5 STABILITY ANALYSIS

In this section, the stability analysis of the whole closed-loop
system are given by the following theorem.

Theorem 1. Consider the attitude system of HSV described by (1)–(3),

with unexpected centroid shift (3) and (8), actuator fault and system input

saturation (9)–(14) as well as the time-varying state constraints (15). Sup-

pose that the Assumptions 1–5 hold. If the controller designed in (35), (59)

and (69) and the adaptive laws (36), (62) are utilized, then the following

properties are achieved:

(i) All the signals in the closed systems are bonded;

(ii) The system output 𝛾 closely tracks the designed index 𝛾r in that

the tracking errors is ultimately uniformly bounded. Furthermore, the

constraint ‖x(t )‖ ≤ F1 never be violated under the initial condition‖x(t0)‖ ≤ F1.

Proof. Based on the definition of (59)–(64), it is obtained that �̇�
is a continuous function. As a consequence, for ∀𝜀 > 0, ℑ ∶=
{(z1, z2, z3, b̃1, b̃2, y2, y3, �̃�) ∶ V3 < 0} is compact. Therefore,‖�̇�‖ has a maximum value M on the set ℑ. It should be noted
that the auxiliary state ℏ is also bounded on ℑ. Afterwards,
selecting b2 ≥ sup

V3≤p
{‖ℏ‖}, we have

zT
2 BΥℏ − b2‖B‖‖z2‖ ≤ 0. (72)

Thus, we can obtain that

V̇3 ≤ − g
1
c1‖z1‖2

−
g
1
𝜎1

2𝛾1
‖b̃1‖2

−
(

k2𝜎 −
1
𝜗

)‖z2‖2

−
𝜎𝓁1

2
b̃T

2 b̃2 −
𝜎𝓁2

2
�̃�2 − 𝜀∗2 yT

2 y2

+ Ξ +
a1

2
+ Γ1 −

(
k3 −

𝜗

2
‖B‖2
)‖z3‖2

−

(
1
c
−

1
2a1
‖�̇�‖2

−
𝜗

2
‖B‖2
)‖y3‖2

+

3∑
i=1

1
k𝜉i

(
−giN (𝜉 ) + 1

)
�̇�i ,

≤ − ΠV3 + N +

3∑
i=1

1
k𝜉i

(
−giN (𝜉 ) + 1

)
�̇�i , (73)

where

Π = min{2g
1
, c1, 2
(

k2𝜎 −
1
𝜗

)
𝜆max(J ), k3
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1406 WANG ET AL.

−
𝜗

2
‖B‖2

, 𝜎1, 𝓁1𝜂1, 2𝜀
∗
2 , 2

(
1
c
−

1
2a1
‖�̇�‖2

−
𝜗

2
‖B‖2
)
, 𝓁2𝜂2}

 = Ξ +
a1

2
+ Γ < ∞.

Then, eΠt is applied to multiply the both sides of (73). By
integrating (73) over [0, t ], one has

V (t ) ≤ 
Π

+V (0)e−Πt +

3∑
i=1

1
k𝜉i

t

∫
0

|||(−giN (𝜉 ) + 1
)
�̇�i
|||d𝜏
(74)

Because gi (i = 1, 2, 3) locates in the closed interval
[𝜓−, 𝜓+], combined with (74) and Lemma 1, V (t ), 𝜉,
∫ t

0
(−giN (𝜉 ) + 1)�̇�i d𝜏 are bounded on [0, t f ). Based on the

positive definition of V = V1 +V2 +V3, V1, V2 and V3, it can
be obtained that V1, V2 and V3 are also bounded over [0, t f ).
Thus, zi (i = 1, 2, 3) is bounded on [0, t f ).

For the purpose of analysing the convergence of the whole
closed-loop system states before and after the fault, some
expositions and deduces are shown as follows.

By taking integration of (73), we have

0 ≤ V3(t ) ≤ N

Π
+

(
V3(0) −

N

Π

)
e−Πt (75)

When HSV locates in a normal condition, there is no extra
requirement for the system state constraint. F1 is selected large
enough to release the performance of aircraft. By taking F1 →
∞, we have

‖z1(t )‖ ≤√N

Π
+

(
V3(0) −

N

Π

)
e−Πt (76)

where z1 ultimately converge to a residual set, which is free from
the constrains of F1.

When the fault occurs, the attitude states of HSV can be reg-
ulated to satisfy the initial conditions meeting the demands of
new constraint F1. Then, the states of HSV can remain in this
prescribed safety set by the designed controller. During [t0, t ),
the integration of the above inequality (73) is calculated as

V3(t ) ≤ ∫ −ΠV3dt + ∫ Ndt +V3(0) ≤ Nt +V3(0). (77)

According to (73) and (77), one has

ℑ2
b
zT

1 z1

ℑ2
b
− zT

1 z1

≤ ℘t +V (0) (78)

When the fault occurs, (78) is reshaped as(
ℑ2

b
+℘t +V (0)

)
eT
𝛾 e𝛾 ≤ ℑ2

b
℘t +ℑ2

b
V (0), (79)

zT
1 z1 ≤ ℑ2

b
℘t +ℑ2

b
V (0)

ℑ2
b
+℘t +V (0)

. (80)

According to (80), when t → ∞, we have

zT
1 z1 ≤ ℑ2

b
. (81)

As a conclusion, when HSV does not have fault, there is
no extra requirement of system state constraints. ℑb → ∞ is
introduced and analyzed. When the fault occurs, the system
states should be constrained. ℑb can be set with the time of
fault occurrence based on the actual situation of the aircraft at
that time.

5.1 Parameter projection

The parameter projection algorithm is designed to avoid param-
eters drifting. As a consequence, b̂1, b̂2, �̂� are constrained to
reside inside compact sets Ωb1

, Ωb2
and Ω𝜆, respectively. The

compact sets are introduced as [41–44]:

Ωbi
=
{

b̂i ∶ b
i
≤ b̂i ≤ bi

}
, i = 1, 2, (82)

Ω𝜆 =
{
�̂� ∶ 𝜆 ≤ �̂� ≤ 𝜆

}
, (83)

where bi , b
i
, (i = 1, 2) and 𝜆, 𝜆 denote the upper bound and

lower bound of b̂i and �̂�, respectively. Afterwards, ̇̂b1, ̇̂b2, ̇̂𝜆 are
modified as

̇̂b1 = Proj
(

b̂1, 𝛾1‖z1‖2
Φ1 − 𝜎1b̂1

)
, (84)

̇̂b2 = Proj
(
b̂2, 𝜂1Θ‖z2‖ − 𝜂1𝓁1b̂2

)
, (85)

̇̂𝜆 = Proj
(
�̂�, 𝜂2‖gT

1 𝜂
1
1z1‖‖z2‖ − 𝜂2𝓁2�̂�

)
. (86)

Then, let a = [b̂1, b̂2, �̂�] and b = [𝛾1‖z1‖2Φ1 − 𝜎1b̂,
𝜂1Θ‖z2‖ − 𝜂1𝓁1b̂2, 𝜂2‖gT

1 𝜂
1
1z1‖‖z2‖ − 𝜂2𝓁2�̂�]. Therefore,

the modified adaptive laws can be rewritten as

Proj(ai , bi ) =

⎧⎪⎨⎪⎩
0, if ai = ai , bi > 0

0, if ai = a
i
, bi < 0

bi , else

(87)

where i is the lower annotation of the adaptive laws, such as
i = {b1, b2, 𝜆}.

Subsequently, combined with (73) and (75), it is easily con-
cluded that V3 is bounded. Then, form the definition of V3,
it implies the boundedness of V1 and V2. Based on bound-
edness of V1 and (76), we can refer that the tracking error
lim

F1→∞
z1 = 𝜁1 − 𝛼0 is ultimately uniformly bounded. Further,

we can infer form the boundedness of V3 that z2, z3, b̃1, b̃2,
�̃� and y2, y3 are bounded.
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WANG ET AL. 1407

TABLE 1 Position limits of the control surface of X-33.

Effector Notation

Lower bound

(deg)

Upper bound

(deg)

Right inboard elevons 𝛿1 −25 25

Left inboard elevons 𝛿2 −25 25

Right body flaps 𝛿3 −30 30

Left body flaps 𝛿4 −30 30

Right rudders 𝛿5 −15 25

Left rudders 𝛿6 −15 25

Right outboard elevons 𝛿7 −60 30

Left outboard elevons 𝛿8 −30 60

FIGURE 3 Attack angle response in Case 1.

6 SIMULATION STUDY

In this section, considering the HSV attitude model suffering
from unexpected centroid shift, control surface faults, the simu-
lation results are provided to valid the effective of the proposed
FTC scheme.

6.1 Simulation conditions

In simulation, the re-entry vehicle model considered in [45] is
discussed. The actuator position limits of the X-33 vehicle are
listed in Table 1 [25, 46]. The moment of the inertia matrix is
given by [47]

J =

⎡⎢⎢⎢⎣
554, 486 0 −23, 002

0 1, 136, 949 0

−23, 002 0 1, 376, 852

⎤⎥⎥⎥⎦ (88)

Consider that the HSV is carrying out a hypersonic reen-
try flight with the speed of 3 km∕s, and the flight altitude
is 30 km as well as a mass of M = 136, 820 kg. The initial

FIGURE 4 Sideslip angle response in Case 1.

FIGURE 5 Bank angle response in Case 1.

FIGURE 6 Angular rate responses in Case 1.
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1408 WANG ET AL.

FIGURE 7 Responses of control surfaces in Case 1.

FIGURE 8 Responses of attitude angles with two different methods in
Case 1.

FIGURE 9 Responses of attitude rates with two different methods in
Case 1.

values of the system are 𝛼(0) = 0.1 rad, 𝛽(0) = 0.01 rad, 𝜇(0) =
0.2 rad, p(0) = 0.1 rad∕s, q(0) = 0.1 rad∕s, r (0) = 0.1 rad∕s.
The reference trajectories are 𝛼c = 0.1 rad among 1–12 s, 𝛼c =
0.25 rad during 12–25 s and 𝛼c = 0.1 rad during t > 25 s. Dur-
ing the whole simulation, 𝛽 stays at 0 rad and 𝜇 maintains at
0.2 rad. The full-state constraints are listed as follows: F𝛼 =
7.2 − 0.3 × sin(0.5t ) deg, F𝛽 = 0.6 − 0.08 × sin(0.6t ) deg and
F𝜇 = 13.5 − 0.4 × cos(0.5t ) deg. The disturbance of HSV
fast-loop is set as d = [0.05 sin(t ), 0.08 sin(t ), 0.03 sin(t )]T .
As for the fault-tolerant controller, the partial parame-
ters of slow-loop of HSV are that c1 = 4, 𝜆1 = 0.2 and
𝜎1 = 0.1, and the initial value b̂1 are set as b̂1(0) = 0. As
for the fast control-loop of HSV, the design parameters
are chosen as b̂(0) = 0, �̂�(0) = 0, 𝜀2 = 0.01, c = 0.01, k2 =
diag{0.5, 0.5, 0.5}, k𝜉 = diag{0.05, 0.03, 0.05}, 𝜗b = 8, 𝜗𝜆 =
10, 𝓁1 = 0.002, 𝓁2 = 0.005, k3 = diag{3.5, 3.5, 3.4}, 𝜅𝜐 = 3,
kℏ = 2.5.

6.2 Simulation results and analysis

In order to analyze the bad influence of unknown centroid shift
and control surface fault, the simulation is made by two cases.
In case 1, we give the simulation results to focus on the HSV
model with the unknown centroid shift, failure of actuator as
well as disturbance. In Case 2, the comparative simulation is
carried out to further verify the effectiveness of the proposed
fault-tolerant control.

Case 1: In this case, the actuator fault and centroid shift
appear in the system. We set the actuator fault with F =
diag{0.2, 1, 0, 0.3, 1, 0.3, 1, 0} and ū = [0, 0, 0.2, 0, 0, 0, 0, 0.2]T .
The fault occurrence time is t f = 10 s. Besides, the cen-
troid shift also occurs in 10 s, matching [Δx, Δy, Δz]T =
[25, 24, 23]T cm. The simulation results for this case are shown
in Figures 3–9.
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WANG ET AL. 1409

FIGURE 10 Attack angle response in Case 2.

FIGURE 11 Sideslip angle response in Case 2.

FIGURE 12 Bank angle response in Case 2.

Figures 3–5 depict the output tracking performances of the
proposed method. Before the fault and centroid shift occur
(before 10 s), the output responses show the good tracking
effect. After 10 s, when the actuator fault and centroid shift
occur, attack angle 𝛼, sideslip angle 𝛽 and bank angle 𝜇 have
some transient oscillations. After 10–12 s, the simulation results

are still good. The reason is that the actuator fault, eccentric
moments and system can also be estimated. After 12 s, the larger
deflection of control surface is needed to satisfy the demand of
the preset reference trajectories. In addition, from Figures 3–5,
it is obviously observed that all the HSV system outputs
are within the predefined time-varying constraints under the
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1410 WANG ET AL.

FIGURE 13 Angular rate responses in Case 2.

proposed controller. Figure 6 shows that the system states: roll
rate p, pitch rate q and yaw rate r remain stable and tracking
the virtual input signals as well. The deflections of control sur-
faces 𝛿1 − 𝛿8 are shown in Figure 7, from which it can be seen
that the responses of 𝛿1 − 𝛿8 have some transient oscillations
when the actuator fault and centroid shift occur at 10 s, which
means the remaining fault-free control surfaces can automat-
ically compensate the actuator faults and maintain the whole
control system to be stable.

To verify the effectiveness of the proposed FTC strat-
egy under the time-varying full state constraints, we compare
the proposed controller with prescribed performance control
method in [34]. The paper [34] employs a decaying func-
tion of time to predefine a bounded region for restricting the
tracking error, but the prescribed performance control scheme
is only valid around certain work points. The comparative

simulation results for this case are shown in Figures 8 and 9.
It can be seen that our proposed controller owns the more sat-
isfactory tracking performance than that in [34]. In particular,
when the reference trajectory 𝛼c changes at 12 and 25 s, the
method in [34] takes more time to ensure the tracking error
within the predefined bounded region, which results in the
chattering phenomenon.

Case 2: In this case, to further verify the effectiveness of
the proposed fault-tolerant control strategy, we compare our
scheme with the nonlinear general predictive control method
given by [27] for HSV.

In [27], the HSV model is divided into a short-period sub-
system and a long-period subsystem based on response time. A
sliding mode controller is designed for the slow-subsystem of
HSV, and a nonlinear general predictive controller is developed
for the fast-subsystem, in which the state constraints are not
taken into consideration. The simulation conditions are all same
with the above mentioned. The comparative simulation results
for this case are shown in Figures 10–14.

Figures 10–12 depict the comparative output response
curves. It can be observed that the transient responses of the
HSV system outputs have been significantly improved using
the proposed FTC strategy. Moreover, compared with the
responses with or without state constraint, we have that the
output responses exceed the preset constraints based on the
controller provided in [27]. Figure 13 shows the responses of
attitude angular rate (p, q, r ), from which it can be seen that
compared with the simulation curves without state constrains,
the angular rates based on the proposed method can better track
the corresponding virtual input signals. In Figure 14, the deflec-
tions of the control surfaces are shown. It can be observed that
the input curves of the control method in [27] have a bad tran-
sient performance with large overshoot and long stability time.
In summary, when the states of HSV are constrained by the
modified barrier Lyapunov function, the simulation results with

FIGURE 14 Responses of control surfaces in Case 2.
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WANG ET AL. 1411

TABLE 2 The tracking performance comparison of different schemes for HSV.

Tracking accuracy (deg) Convergence times (s)

Method Attack angle Sideslip angle Bank angle Attack angle Sideslip angle Bank angle CPU times (s)

The proposed method |�̃�| < 0.0076 |𝛽| < 0.1488 |�̃�| < 0.0511 1.56 3.29 1.24 22.57

The method in [34] |�̃�| < 0.0249 |𝛽| < 0.2034 |�̃�| < 0.1529 13.54 12.45 6.27 26.42

The method in [27] |�̃�| < 0.0485 |𝛽| < 0.7157 |�̃�| < 0.1859 10.88 35.54 36.68 25.28

state constraint show the good tracking performance. Thus,
when designing a fault-tolerant controller, the state constraint
should be taken into consideration. The state constraint strat-
egy developed in this paper can be a useful way to handle such
a problem.

Finally, in order to illustrate the effective tracking perfor-
mance of the proposed FTC approach in this paper, we compare
the tracking performance of the three different control algo-
rithms in terms of convergence time, tracking accuracy and
CPU time. Table 2 gives the tracking performance comparison
results. In Table 2, �̃�, 𝛽, and �̃� denote the tracking errors of
attack angle, sideslip angle, and bank angle, respectively; The
tracking accuracy denotes the convergence domain of the HSV
attitude system output, and the convergence time presents the
time when the output tracking error first reaches the corre-
sponding convergence domain. Combined with the comparing
results in Figures 3–5, 8–12, and Table 2, we can observe that
the proposed method in this paper has higher tracking accuracy
and shorter convergence time than others. In addition, the CPU
time of the proposed method is shortest among them, which
indicates that this scheme has low computational complexity.
In summary, the developed fault tolerant controller has more
efficient robustness and fault tolerant capacity.

7 CONCLUSION

In this paper, the time-varying full state constraints are intro-
duced into the proposed adaptive FTC method for hypersonic
reentry vehicle attitude system with unexpected centroid shift,
actuator fault, and input saturation. The adaptive fault-tolerant
controller is consisted of back-stepping control and auxiliary
control system. The system input saturation and the variation of
system input structure are governed by the Nussbaum technol-
ogy. Besides, to handle the system time-varying state constraints,
the modified barrier Lyapunov function method has been devel-
oped by introducing a time-varying state constraint function
to transform the constrained HSV system into a novel free-
constrained system. The whole signals of closed loop system
are bounded and the system is stable, which have been proved
by the Lyapunov theorem of stability. At last, the simulation
results have testified the designed effectiveness of fault-tolerant
algorithm. In future work, we will consider the problem that
the rudders cannot be used due to the high speed, where the
HSV attitude system will have non-minimum phase character-
istics. Inspired by the jobs in [9, 48, 49], the output tracking
problem of the non-minimum phase HSV system will be
investigated with the unexpected centroid shift.
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