14 research outputs found

    Lateral porous silicon membranes for planar microfluidic applications

    Get PDF
    Les laboratoires sur puce visent Ă  miniaturiser et Ă  intĂ©grer les fonctions couramment utilisĂ©es dans les laboratoires d'analyse afin de cibler des applications en santĂ© avec un impact prometteur sur le diagnostic mĂ©dical au lit du patient. Les membranes poreuses sont d'un grand intĂ©rĂȘt pour la prĂ©paration et l'analyse d'Ă©chantillon sur puce car elles permettent la sĂ©paration par taille/charge de molĂ©cules, mais Ă©galement leur prĂ©-concentration. Parmi les matĂ©riaux disponibles pour constituer des membranes poreuses, le silicium poreux prĂ©sente de nombreux avantages tels que le contrĂŽle prĂ©cis de la taille des pores et de la porositĂ©, une chimie de surface pratique et des propriĂ©tĂ©s optiques uniques. Les membranes de silicium poreux sont gĂ©nĂ©ralement intĂ©grĂ©es dans des puces fluidiques en les montant entre deux couches comportant des micro-canaux, formant ainsi des rĂ©seaux fluidiques Ă  trois dimensions, peu pratiques et peu adaptĂ©s Ă  l'observation directe par microscopie. Dans ces travaux de thĂšse, nous avons dĂ©veloppĂ© deux mĂ©thodes de fabrication de membranes de silicium Ă  pores latĂ©raux qui permettent leur intĂ©gration monolithique dans des systĂšmes microfluidiques planaires. Le premier procĂ©dĂ© est fondĂ© sur l'utilisation d'Ă©lectrodes localement structurĂ©es afin de guider la formation de pores de maniĂšre horizontale, en combinaison avec des substrats type silicium sur isolant (SOI) pour localiser spatialement la formation de silicium poreux dans la profondeur du canal. La deuxiĂšme mĂ©thode repose sur le fait que la formation de silicium poreux par anodisation est fortement dĂ©pendante du type de dopant et de sa concentration. Bien que nous utilisons encore le mĂȘme type d'Ă©lectrodes structurĂ©es sur les parois latĂ©rales de la membrane pour injecter le courant lors de l'anodisation, le dopage par implantation permet de confiner la membrane, de façon analogue mais Ă  la place de l'oxyde enterrĂ© du SOI. Des membranes Ă  pores latĂ©raux ont Ă©tĂ© fabriquĂ©es par ces deux mĂ©thodes et leur fonctionnalitĂ© a Ă©tĂ© dĂ©montrĂ©e en rĂ©alisant des expĂ©riences de filtrage. En plus de la filtration d'Ă©chantillon, les membranes ont Ă©tĂ© utilisĂ©es pour Ă©tudier la possibilitĂ© d'effectuer de la prĂ©-concentration Ă©lectrocinĂ©tique et de la dĂ©tection interfĂ©romĂ©trique. La sĂ©lectivitĂ© ionique des membranes microporeuse permet la prĂ©-concentration molĂ©culaire avec des facteurs de concentration pouvant atteindre jusqu'Ă  103 en 10 min en appliquant moins de 9 V. Ces rĂ©sultats sont comparables Ă  ceux rapportĂ©s dans la littĂ©rature Ă  l'aide par exemple de nanocanaux avec une consommation d'Ă©nergie beaucoup plus faible. Enfin, nous avons pu dĂ©tecter une variation de l'indice de rĂ©fraction du silicium poreux par le dĂ©calage du spectre d'interfĂ©rence lors du chargement de diffĂ©rents liquides injectĂ©s dans les membranes. Le travail prĂ©sentĂ© dans cette thĂšse constitue la premiĂšre Ă©tape dans la dĂ©monstration de l'intĂ©rĂȘt du silicium poreux pour la prĂ©paration d'Ă©chantillon et la biodĂ©tection dans des laboratoires sur puce planaires.Lab on a chip devices aim at integrating functions routinely used in medical laboratories into miniaturized chips to target health care applications with a promising impact foreseen in point-of-care testing. Porous membranes are of great interest for on-chip sample preparation and analysis since they enable size- and charge-based molecule separation, but also molecule pre-concentration by ion concentration polarization. Out of the various materials available to constitute porous membranes, porous silicon offers many advantages, such as tunable pore properties, large porosity, convenient surface chemistry and unique optical properties. Porous silicon membranes are usually integrated into fluidic chips by sandwiching fabricated membranes between two layers bearing inlet and outlet microchannels, resulting in three-dimensional fluidic networks that lack the simplicity of operation and direct observation accessibility of planar microfluidic devices. To tackle this constraint, we have developed two methods for the fabrication of lateral porous silicon membranes and their monolithic integration into planar microfluidics. The first method is based on the use of locally patterned electrodes to guide pore formation horizontally within the membrane in combination with silicon-on-insulator (SOI) substrates to spatially localize the porous silicon within the channel depth. The second method relies on the fact that the formation of porous silicon by anodization is highly dependent on the dopant type and concentration. While we still use electrodes patterned on the membrane sidewalls to inject current for anodization, the doping via implantation enables to confine the membrane analogously to but instead of the SOI buried oxide box. Membranes with lateral pores were successfully fabricated by these two methods and their functionality was demonstrated by conducting filtering experiments. In addition to sample filtration, we have achieved electrokinetic pre-concentration and interferometric sensing using the fabricated membranes. The ion selectivity of the microporous membrane enables to carry out sample pre-concentration by ion concentration polarization with concentration factors that can reach more than 103 in 10 min by applying less than 9 V across the membrane[TL1]. These results are comparable to what has already been reported in the literature using e.g. nanochannels with much lower power consumption. Finally, we were able to detect a change of the porous silicon refractive index through the shift of interference spectrum upon loading different liquids into the membrane. The work presented in this dissertation constitutes the first step in demonstrating the interest of porous silicon for all-in-one sample preparation and biosensing into planar lab on a chip

    Intégration de membranes de silicium poreux à pores latéraux dans des systÚmes microfluidiques planaires

    No full text
    Lab on a chip devices aim at integrating functions routinely used in medical laboratories into miniaturized chips to target health care applications with a promising impact foreseen in point-of-care testing. Porous membranes are of great interest for on-chip sample preparation and analysis since they enable size- and charge-based molecule separation, but also molecule pre-concentration by ion concentration polarization. Out of the various materials available to constitute porous membranes, porous silicon offers many advantages, such as tunable pore properties, large porosity, convenient surface chemistry and unique optical properties. Porous silicon membranes are usually integrated into fluidic chips by sandwiching fabricated membranes between two layers bearing inlet and outlet microchannels, resulting in three-dimensional fluidic networks that lack the simplicity of operation and direct observation accessibility of planar microfluidic devices. To tackle this constraint, we have developed two methods for the fabrication of lateral porous silicon membranes and their monolithic integration into planar microfluidics. The first method is based on the use of locally patterned electrodes to guide pore formation horizontally within the membrane in combination with silicon-on-insulator (SOI) substrates to spatially localize the porous silicon within the channel depth. The second method relies on the fact that the formation of porous silicon by anodization is highly dependent on the dopant type and concentration. While we still use electrodes patterned on the membrane sidewalls to inject current for anodization, the doping via implantation enables to confine the membrane analogously to but instead of the SOI buried oxide box. Membranes with lateral pores were successfully fabricated by these two methods and their functionality was demonstrated by conducting filtering experiments. In addition to sample filtration, we have achieved electrokinetic pre-concentration and interferometric sensing using the fabricated membranes. The ion selectivity of the microporous membrane enables to carry out sample pre-concentration by ion concentration polarization with concentration factors that can reach more than 103 in 10 min by applying less than 9 V across the membrane[TL1]. These results are comparable to what has already been reported in the literature using e.g. nanochannels with much lower power consumption. Finally, we were able to detect a change of the porous silicon refractive index through the shift of interference spectrum upon loading different liquids into the membrane. The work presented in this dissertation constitutes the first step in demonstrating the interest of porous silicon for all-in-one sample preparation and biosensing into planar lab on a chip.Les laboratoires sur puce visent Ă  miniaturiser et Ă  intĂ©grer les fonctions couramment utilisĂ©es dans les laboratoires d'analyse afin de cibler des applications en santĂ© avec un impact prometteur sur le diagnostic mĂ©dical au lit du patient. Les membranes poreuses sont d'un grand intĂ©rĂȘt pour la prĂ©paration et l'analyse d'Ă©chantillon sur puce car elles permettent la sĂ©paration par taille/charge de molĂ©cules, mais Ă©galement leur prĂ©-concentration. Parmi les matĂ©riaux disponibles pour constituer des membranes poreuses, le silicium poreux prĂ©sente de nombreux avantages tels que le contrĂŽle prĂ©cis de la taille des pores et de la porositĂ©, une chimie de surface pratique et des propriĂ©tĂ©s optiques uniques. Les membranes de silicium poreux sont gĂ©nĂ©ralement intĂ©grĂ©es dans des puces fluidiques en les montant entre deux couches comportant des micro-canaux, formant ainsi des rĂ©seaux fluidiques Ă  trois dimensions, peu pratiques et peu adaptĂ©s Ă  l'observation directe par microscopie. Dans ces travaux de thĂšse, nous avons dĂ©veloppĂ© deux mĂ©thodes de fabrication de membranes de silicium Ă  pores latĂ©raux qui permettent leur intĂ©gration monolithique dans des systĂšmes microfluidiques planaires. Le premier procĂ©dĂ© est fondĂ© sur l'utilisation d'Ă©lectrodes localement structurĂ©es afin de guider la formation de pores de maniĂšre horizontale, en combinaison avec des substrats type silicium sur isolant (SOI) pour localiser spatialement la formation de silicium poreux dans la profondeur du canal. La deuxiĂšme mĂ©thode repose sur le fait que la formation de silicium poreux par anodisation est fortement dĂ©pendante du type de dopant et de sa concentration. Bien que nous utilisons encore le mĂȘme type d'Ă©lectrodes structurĂ©es sur les parois latĂ©rales de la membrane pour injecter le courant lors de l'anodisation, le dopage par implantation permet de confiner la membrane, de façon analogue mais Ă  la place de l'oxyde enterrĂ© du SOI. Des membranes Ă  pores latĂ©raux ont Ă©tĂ© fabriquĂ©es par ces deux mĂ©thodes et leur fonctionnalitĂ© a Ă©tĂ© dĂ©montrĂ©e en rĂ©alisant des expĂ©riences de filtrage. En plus de la filtration d'Ă©chantillon, les membranes ont Ă©tĂ© utilisĂ©es pour Ă©tudier la possibilitĂ© d'effectuer de la prĂ©-concentration Ă©lectrocinĂ©tique et de la dĂ©tection interfĂ©romĂ©trique. La sĂ©lectivitĂ© ionique des membranes microporeuse permet la prĂ©-concentration molĂ©culaire avec des facteurs de concentration pouvant atteindre jusqu'Ă  103 en 10 min en appliquant moins de 9 V. Ces rĂ©sultats sont comparables Ă  ceux rapportĂ©s dans la littĂ©rature Ă  l'aide par exemple de nanocanaux avec une consommation d'Ă©nergie beaucoup plus faible. Enfin, nous avons pu dĂ©tecter une variation de l'indice de rĂ©fraction du silicium poreux par le dĂ©calage du spectre d'interfĂ©rence lors du chargement de diffĂ©rents liquides injectĂ©s dans les membranes. Le travail prĂ©sentĂ© dans cette thĂšse constitue la premiĂšre Ă©tape dans la dĂ©monstration de l'intĂ©rĂȘt du silicium poreux pour la prĂ©paration d'Ă©chantillon et la biodĂ©tection dans des laboratoires sur puce planaires

    Fabrication of lateral porous silicon membranes for planar microfluidics by means of ion implantation

    No full text
    International audienceWe introduce a new fabrication method based on ion implantation to create lateral porous silicon membranes and integrate them into planar microfluidic devices. Our proposed method relies on the fact that the formation of porous silicon by anodization highly depends on the dopant type and concentration, which can be manipulated by ion implantation. In order to confine the porosification at desired locations within silicon steps bridging microchannels, we use boron and phosphorus implantation to respectively create a p++ layer buried in an n-type silicon substrate, and a protective n-type surficial layer. The use of a metal electrode patterned onto the silicon step for current injection during anodization enables pores to propagate laterally during the membrane formation. The optimal implantation doses and energies leading to the required boron and phosphorus profiles are determined by means of process simulation and further confirmed by SIMS analysis. We demonstrate that the proposed fabrication process leads to the creation of lateral porous silicon membranes with open-ended pores adequately bridging microchannels and that we are able to manipulate the pore size (∌3–30 nm) and membrane porosity (∌15–65%) by adjusting the current density during anodization. The adequate dead-end filtration capability of the fabricated membranes was tested and demonstrates the interest of the presented fabrication process for microfluidic applications

    Biomaterial–Related Cell Microenvironment in Tissue Engineering and Regenerative Medicine

    No full text
    An appropriate cell microenvironment is key to tissue engineering and regenerative medicine. Revealing the factors that influence the cell microenvironment is a fundamental research topic in the fields of cell biology, biomaterials, tissue engineering, and regenerative medicine. The cell microenvironment consists of not only its surrounding cells and soluble factors, but also its extracellular matrix (ECM) or nearby external biomaterials in tissue engineering and regeneration. This review focuses on six aspects of biomaterial–related cell microenvironments: ① chemical composition of materials, ② material dimensions and architecture, ⑱ material–controlled cell geometry, ④ effects of material charges on cells, â‘€ matrix stiffness and biomechanical microenvironment, and â‘„ surface modification of materials. The present challenges in tissue engineering are also mentioned, and eight perspectives are predicted

    Optical interferometry on lateral porous silicon

    No full text
    International audienceWe demonstrate the transducing ability of lateral porous silicon membranes (LPSi) using optical interferometry. To this aim, we use a Fourier Transform Infra-Red spectrometer (FTIR) coupled to a microscope stage equipped with an appropriate objective in order to overcome the difficulty to obtain interference signal from the LPSi membrane with small dimensions. We have recorded reflectance spectra upon filling the membrane with various solvents and the observed shifts of Fabry-PĂ©rot fringe patterns indicate that the we are able to differentiate between solvents, thus providing a proof-of-concept of the LPSi interferometric transducer

    Design and aligner-assisted fast fabrication of a microfluidic platform for quasi-3D cell studies on an elastic polymer

    No full text
    While most studies of mechanical stimulation of cells are focused on two-dimensional (2D) and three-dimensional (3D) systems, it is rare to study the effects of cyclic stretching on cells under a quasi-3D microenvironment as a linkage between 2D and 3D. Herein, we report a new method to prepare an elastic membrane with topographic microstructures and integrate the membrane into a microfluidic chip. The fabrication difficulty lay not only in the preparation of microstructures but also in the alignment and bonding of the patterned membrane to other layers. To resolve the problem, we designed and assembled a fast aligner that is cost-effective and convenient to operate. To enable quasi-3D microenvironment of cells, we fabricated polydimethylsiloxane (PDMS) microwell arrays (formed by micropillars of a few microns in diameter) with the microwell diameters close to the cell sizes. An appropriate plasma treatment was found to afford a coating-free approach to enable cell adhesion on PDMS. We examined three types of cells in 2D, quasi-3D, and 3D microenvironments; the cell adhesion results showed that quasi-3D cells behaved between 2D and 3D cells. We also constructed transgenic human mesenchymal stem cells (hMSCs); under cyclic stretching, the visualizable live hMSCs in microwells were found to orientate differently from in a 3D Matrigel matrix and migrate differently from on a 2D flat plate. This study not only provides valuable tools for microfabrication of a microfluidic device for cell studies, but also inspires further studies of the topological effects of biomaterials on cells

    Lateral porous silicon interferometric transducer for on-chip flow-through sensing applications

    No full text
    International audienceMost porous silicon-based interferometric sensors targeting biosensing applications consist of vertical porous silicon layers created into a silicon wafer by electrochemical anodization and operate in a flow-over configuration. In this work, we present an alternative porous silicon interferometer based on porous silicon with horizontally oriented pores. This architecture permits the integration of flow-through porous silicon membranes within planar microfluidics. Fourier-transform infrared spectroscopy was used to obtain interference spectra from fabricated lateral porous silicon membranes and red shifts were observed upon filling microfluidic chips integrating the porous membranes with solvents of higher optical indices. This work proves that lateral porous silicon membranes are typical Fabry-PĂ©rot interferometers with a sensitivity of more than 150 nm/RIU and a limit of detection less than 10−3 RIU, that is comparable to vertical porous silicon layers. Moreover, we have conducted simulation studies showing that the addition of Bragg mirrors on the membranes results in spectra with narrower fringes and lateral porous silicon interferometers with improved performances. After appropriate biofunctionalization of the porous silicon surface, lateral porous silicon membrane interferometers should offer alternative solutions for the development of porous silicon flow-through biosensors monolithically integrated on-chip

    Lateral Porous Silicon Interferometric Transducer for Sensing Applications

    No full text
    International audienceIn this work, we demonstrate the transducing ability of lateral porous silicon membranes (LPSi) using optical interferometry. To this aim, we carry out Fourier-transform infrared spectroscopy measurements using a microscope equipped with an appropriate objective in order to overcome the difficulty to obtain interference signal from LPSi membranes with small dimensions. Reflectance spectra are recorded while filling the membrane with various solvents and their analysis provide estimations of the effective optical thicknesses and the resulting index of refraction of the fillers in the NIR range. The results show that the various solvents can appropriately be identified and discriminated through the derived refractive indices, thus providing a proof-of-concept of the LPSi interferometric transducer
    corecore