72 research outputs found

    Land Deformation Monitoring using Synthetic Aperture Radar Interferometry

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Modélisation 3D du transfert raidatif pour simuler les images et données de spectroradiomètres et Lidars satellites et aéroportés de couverts végétaux et urbains

    Get PDF
    Les mesures de télédétection (MT) dépendent de l'interaction du rayonnement avec les paysages terrestres et l'atmosphère ainsi que des configurations instrumentales (bande spectrale, résolution spatiale, champ de vue: FOV,...) et expérimentales (structure et propriétés optiques du paysage et atmosphère,...). L'évolution rapide des techniques de télédétection requiert des outils appropriés pour valider leurs principes et améliorer l'emploi des MT. Les modèles de transfert radiatif (RTM) simulent des quantités (fonctions de distribution de la réflectance (BRDF) et température (BTDF), forme d'onde LiDAR, etc.) plus ou moins proches des MT. Ils constituent l'outil de référence pour simuler les MT, pour diverses applications : préparation et validation des systèmes d'observation, inversion de MT,... DART (Discrete Anisotropic Radiative Transfer) est reconnu comme le RTM le plus complet et efficace. J'ai encore nettement amélioré son réalisme via les travaux de modélisation indiqués ci-dessous. 1. Discrétisation de l'espace des directions de propagation des rayons. DART simule la propagation des rayons dans les paysages terrestres et l'atmosphère selon des directions discrètes. Les méthodes classiques définissent mal le centroïde et forme des angles solides de ces directions, si bien que le principe de conservation de l'énergie n'est pas vérifié et que l'obtention de résultats précis exige un grand nombre de directions. Pour résoudre ce problème, j'ai conçu une méthode originale qui crée des directions discrètes de formes définies. 2. Simulation d'images de spectroradiomètre avec FOV fini (caméra, pushbroom,...). Les RTMs sont de type "pixel" ou "image". Un modèle "pixel" calcule une quantité unique (BRDF, BTDF) de toute la scène simulée via sa description globale (indice foliaire, fraction d'ombre,...). Un modèle "image" donne une distribution spatiale de quantités (BRDF,...) par projection orthographique des rayons sur un plan image. Tous les RTMs supposent une acquisition monodirectionnelle (FOV nul), ce qui peut être très imprécis. Pour pouvoir simuler des capteurs à FOV fini (caméra, pushbroom,...), j'ai conçu un modèle original de suivi de rayons convergents avec projection perspective. 3. Simulation de données LiDAR. Beaucoup de RTMs simulent le signal LiDAR de manière rapide mais imprécise (paysage très simplifié, pas de diffusions multiples,...) ou de manière précis mais avec de très grands temps de calcul (e.g., modèles Monte-Carlo: MC). DART emploie une méthode "quasi-MC" originale, à la fois précise et rapide, adaptée à toute configuration instrumentale (altitude de la plateforme, attitude du LiDAR, taille de l'empreinte,...). Les acquisitions multi-impulsions LiDAR (satellite, avion, terrestre) sont simulées pour toute configuration (position du LiDAR, trajectoire de la plateforme,...). Elles sont converties dans un format industriel pour être traitées par des logiciels dédiés. Un post-traitement convertit les formes d'onde LiDAR simulées en données LiDAR de comptage de photons. 4. Bruit solaire et fusion de données LiDAR et d'images de spectroradiomètre. DART peut combiner des simulations de LiDAR multi-impulsions et d'image de spectro-radiomètre (capteur hyperspectral,...). C'est une configuration à 2 sources (soleil, laser LiDAR) et 1 capteur (télescope du LiDAR). Les régions mesurées par le LiDAR, dans le plan image du sol, sont segmentées dans l'image du spectro-radiomètre, elle aussi projetée sur le plan image du sol. Deux applications sont présentées : bruit solaire dans le signal LiDAR, et fusion de données LiDAR et d'images de spectro-radiomètre. Des configurations d'acquisition (trajectoire de plateforme, angle de vue par pixel du spectro-radiomètre et par impulsion LiDAR) peuvent être importées pour encore améliorer le réalisme des MT simulées, De plus, j'ai introduit la parallélisation multi-thread, ce qui accélère beaucoup les calculsRemote Sensing (RS) data depend on radiation interaction in Earth landscapes and atmosphere, and also on instrumental (spectral band, spatial resolution, field of view (FOV),...) and experimental (landscape/atmosphere architecture and optical properties,...) conditions. Fast developments in RS techniques require appropriate tools for validating their working principles and improving RS operational use. Radiative Transfer Models (RTM) simulate quantities (bidirectional reflectance; BRDF, directional brightness temperature: BTDF, LiDAR waveform...) that aim to approximate actual RS data. Hence, they are celebrated tools to simulate RS data for many applications: preparation and validation of RS systems, inversion of RS data... Discrete Anisotropic Radiative Transfer (DART) model is recognized as the most complete and efficient RTM. During my PhD work, I further improved its modeling in terms of accuracy and functionalities through the modeling work mentioned below. 1. Discretizing the space of radiation propagation directions.DART simulates radiation propagation along a finite number of directions in Earth/atmosphere scenes. Classical methods do not define accurately the solid angle centroids and geometric shapes of these directions, which results in non-conservative energy or imprecise modeling if few directions are used. I solved this problem by developing a novel method that creates discrete directions with well-defined shapes. 2. Simulating images of spectroradiometers with finite FOV.Existing RTMs are pixel- or image-level models. Pixel-level models use abstract landscape (scene) description (leaf area index, overall fraction of shadows,...) to calculate quantities (BRDF, BTDF,...) for the whole scene. Image-level models generate scene radiance, BRDF or BTDF images, with orthographic projection of rays that exit the scene onto an image plane. All models neglect the multi-directional acquisition in the sensor finite FOV, which is unrealistic. Hence, I implemented a sensor-level model, called converging tracking and perspective projection (CTPP), to simulate camera and cross-track sensor images, by coupling DART with classical perspective and parallel-perspective projection. 3. Simulating LiDAR data.Many RTMs simulate LiDAR waveform, but results are inaccurate (abstract scene description, account of first-order scattering only...) or require tremendous computation time for obtaining accurate results (e.g., Monte-Carlo (MC) models). With a novel quasi-MC method, DART can provide accurate results with fast processing speed, for any instrumental configuration (platform altitude, LiDAR orientation, footprint size...). It simulates satellite, airborne and terrestrial multi-pulse laser data for realistic configurations (LiDAR position, platform trajectory, scan angle range...). These data can be converted into industrial LiDAR format for being processed by LiDAR processing software. A post-processing method converts LiDAR waveform into photon counting LiDAR data, through modeling single photon detector acquisition. 4. In-flight Fusion of LiDAR and imaging spectroscopy.DART can combine multi-pulse LiDAR and cross-track imaging spectroscopy (hyperspectral sensor...). It is a 2 sources (sun, LiDAR laser) and 1 sensor (LiDAR telescope) system. First, a LiDAR multi-pulse acquisition and a sun-induced spectro-radiometer radiance image are simulated. Then, the LiDAR FOV regions projected onto the ground image plane are segmented in the spectro-radiometer image, which is also projected on the ground image plane. I applied it to simulate solar noise in LiDAR signal, and to the fusion of LiDAR data and spectro-radiometer images. To further improve accuracy when simulating actual LiDAR and spectro-radiometer, DART can also import actual acquisition configuration (platform trajectory, view angle per spectro-radiometer pixel / LiDAR pulse). Moreover, I introduced multi-thread parallelization, which greatly accelerates DART simulation

    Hepatic Autophagy Deficiency Compromises FXR Functionality and Causes Cholestatic Injury

    Get PDF
    Autophagy is important for hepatic homeostasis, nutrient regeneration and organelle quality control. We investigated the mechanisms by which liver injury occurred in the absence of autophagy function. We found that mice deficient in autophagy due to the lack of Atg7 or Atg5, key autophagy‐related genes, manifested intracellular cholestasis with increased levels of serum bile acids, a higher ratio of TMCA/TCA in the bile, increased hepatic bile acid load, abnormal bile canaliculi and altered expression of hepatic transporters. In determining the underlying mechanism, we found that autophagy sustained and promoted the basal and upregulated expression of Fxr in the fed and starved conditions, respectively. Consequently, expression of Fxr and its downstream genes, particularly Bsep, and the binding of FXR to the promoter regions of these genes, were suppressed in autophagy‐deficient livers. In addition, co‐deletion of Nrf2 in autophagy deficiency status reversed the FXR suppression. Furthermore, the cholestatic injury of autophagy‐deficient livers was reversed by enhancement of FXR activity or expression, or by Nrf2 deletion

    Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes

    Get PDF
    International audienceSatellite and airborne optical sensors are increasingly used by scientists, and policy makers, and managers for studying and managing forests, agriculture crops, and urban areas. Their data acquired with given instrumental specifications (spectral resolution, viewing direction, sensor field-of-view, etc.) and for a specific experimental configuration (surface and atmosphere conditions, sun direction, etc.) are commonly translated into qualitative and quantitative Earth surface parameters. However, atmosphere properties and Earth surface 3D architecture often confound their interpretation. Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for linking remotely sensed data to the surface parameters. Still, many existing models are oversimplifying the Earth-atmosphere system interactions and their parameterization of sensor specifications is often neglected or poorly considered. The Discrete Anisotropic Radiative Transfer (DART) model is one of the most comprehensive physically based 3D models simulating the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths. It has been developed since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as well as the 3D radiative budget, of urban and natural landscapes for any experimental configuration and instrumental specification. It is freely distributed for research and teaching activities. This paper presents DART physical bases and its latest functionality for simulating imaging spectroscopy of natural and urban landscapes with atmosphere, including the perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR) waveform and photon counting signals

    3D radiative transfer model for simulating satellite and airborne imaging spectroscopy and LIDAR data of vegetation ad urban canopies

    No full text
    Les mesures de télédétection (MT) dépendent de l'interaction du rayonnement avec les paysages terrestres et l'atmosphère ainsi que des configurations instrumentales (bande spectrale, résolution spatiale, champ de vue: FOV,...) et expérimentales (structure et propriétés optiques du paysage et atmosphère,...). L'évolution rapide des techniques de télédétection requiert des outils appropriés pour valider leurs principes et améliorer l'emploi des MT. Les modèles de transfert radiatif (RTM) simulent des quantités (fonctions de distribution de la réflectance (BRDF) et température (BTDF), forme d'onde LiDAR, etc.) plus ou moins proches des MT. Ils constituent l'outil de référence pour simuler les MT, pour diverses applications : préparation et validation des systèmes d'observation, inversion de MT,... DART (Discrete Anisotropic Radiative Transfer) est reconnu comme le RTM le plus complet et efficace. J'ai encore nettement amélioré son réalisme via les travaux de modélisation indiqués ci-dessous. 1. Discrétisation de l'espace des directions de propagation des rayons. DART simule la propagation des rayons dans les paysages terrestres et l'atmosphère selon des directions discrètes. Les méthodes classiques définissent mal le centroïde et forme des angles solides de ces directions, si bien que le principe de conservation de l'énergie n'est pas vérifié et que l'obtention de résultats précis exige un grand nombre de directions. Pour résoudre ce problème, j'ai conçu une méthode originale qui crée des directions discrètes de formes définies. 2. Simulation d'images de spectroradiomètre avec FOV fini (caméra, pushbroom,...). Les RTMs sont de type "pixel" ou "image". Un modèle "pixel" calcule une quantité unique (BRDF, BTDF) de toute la scène simulée via sa description globale (indice foliaire, fraction d'ombre,...). Un modèle "image" donne une distribution spatiale de quantités (BRDF,...) par projection orthographique des rayons sur un plan image. Tous les RTMs supposent une acquisition monodirectionnelle (FOV nul), ce qui peut être très imprécis. Pour pouvoir simuler des capteurs à FOV fini (caméra, pushbroom,...), j'ai conçu un modèle original de suivi de rayons convergents avec projection perspective. 3. Simulation de données LiDAR. Beaucoup de RTMs simulent le signal LiDAR de manière rapide mais imprécise (paysage très simplifié, pas de diffusions multiples,...) ou de manière précis mais avec de très grands temps de calcul (e.g., modèles Monte-Carlo: MC). DART emploie une méthode "quasi-MC" originale, à la fois précise et rapide, adaptée à toute configuration instrumentale (altitude de la plateforme, attitude du LiDAR, taille de l'empreinte,...). Les acquisitions multi-impulsions LiDAR (satellite, avion, terrestre) sont simulées pour toute configuration (position du LiDAR, trajectoire de la plateforme,...). Elles sont converties dans un format industriel pour être traitées par des logiciels dédiés. Un post-traitement convertit les formes d'onde LiDAR simulées en données LiDAR de comptage de photons. 4. Bruit solaire et fusion de données LiDAR et d'images de spectroradiomètre. DART peut combiner des simulations de LiDAR multi-impulsions et d'image de spectro-radiomètre (capteur hyperspectral,...). C'est une configuration à 2 sources (soleil, laser LiDAR) et 1 capteur (télescope du LiDAR). Les régions mesurées par le LiDAR, dans le plan image du sol, sont segmentées dans l'image du spectro-radiomètre, elle aussi projetée sur le plan image du sol. Deux applications sont présentées : bruit solaire dans le signal LiDAR, et fusion de données LiDAR et d'images de spectro-radiomètre. Des configurations d'acquisition (trajectoire de plateforme, angle de vue par pixel du spectro-radiomètre et par impulsion LiDAR) peuvent être importées pour encore améliorer le réalisme des MT simulées, De plus, j'ai introduit la parallélisation multi-thread, ce qui accélère beaucoup les calculsRemote Sensing (RS) data depend on radiation interaction in Earth landscapes and atmosphere, and also on instrumental (spectral band, spatial resolution, field of view (FOV),...) and experimental (landscape/atmosphere architecture and optical properties,...) conditions. Fast developments in RS techniques require appropriate tools for validating their working principles and improving RS operational use. Radiative Transfer Models (RTM) simulate quantities (bidirectional reflectance; BRDF, directional brightness temperature: BTDF, LiDAR waveform...) that aim to approximate actual RS data. Hence, they are celebrated tools to simulate RS data for many applications: preparation and validation of RS systems, inversion of RS data... Discrete Anisotropic Radiative Transfer (DART) model is recognized as the most complete and efficient RTM. During my PhD work, I further improved its modeling in terms of accuracy and functionalities through the modeling work mentioned below. 1. Discretizing the space of radiation propagation directions.DART simulates radiation propagation along a finite number of directions in Earth/atmosphere scenes. Classical methods do not define accurately the solid angle centroids and geometric shapes of these directions, which results in non-conservative energy or imprecise modeling if few directions are used. I solved this problem by developing a novel method that creates discrete directions with well-defined shapes. 2. Simulating images of spectroradiometers with finite FOV.Existing RTMs are pixel- or image-level models. Pixel-level models use abstract landscape (scene) description (leaf area index, overall fraction of shadows,...) to calculate quantities (BRDF, BTDF,...) for the whole scene. Image-level models generate scene radiance, BRDF or BTDF images, with orthographic projection of rays that exit the scene onto an image plane. All models neglect the multi-directional acquisition in the sensor finite FOV, which is unrealistic. Hence, I implemented a sensor-level model, called converging tracking and perspective projection (CTPP), to simulate camera and cross-track sensor images, by coupling DART with classical perspective and parallel-perspective projection. 3. Simulating LiDAR data.Many RTMs simulate LiDAR waveform, but results are inaccurate (abstract scene description, account of first-order scattering only...) or require tremendous computation time for obtaining accurate results (e.g., Monte-Carlo (MC) models). With a novel quasi-MC method, DART can provide accurate results with fast processing speed, for any instrumental configuration (platform altitude, LiDAR orientation, footprint size...). It simulates satellite, airborne and terrestrial multi-pulse laser data for realistic configurations (LiDAR position, platform trajectory, scan angle range...). These data can be converted into industrial LiDAR format for being processed by LiDAR processing software. A post-processing method converts LiDAR waveform into photon counting LiDAR data, through modeling single photon detector acquisition. 4. In-flight Fusion of LiDAR and imaging spectroscopy.DART can combine multi-pulse LiDAR and cross-track imaging spectroscopy (hyperspectral sensor...). It is a 2 sources (sun, LiDAR laser) and 1 sensor (LiDAR telescope) system. First, a LiDAR multi-pulse acquisition and a sun-induced spectro-radiometer radiance image are simulated. Then, the LiDAR FOV regions projected onto the ground image plane are segmented in the spectro-radiometer image, which is also projected on the ground image plane. I applied it to simulate solar noise in LiDAR signal, and to the fusion of LiDAR data and spectro-radiometer images. To further improve accuracy when simulating actual LiDAR and spectro-radiometer, DART can also import actual acquisition configuration (platform trajectory, view angle per spectro-radiometer pixel / LiDAR pulse). Moreover, I introduced multi-thread parallelization, which greatly accelerates DART simulation
    corecore