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Abstract

Radiation propagation and interaction within Earth landscapes and atmosphere are decisive factors for

data acquired by Earth observation devices. These data depend on instrumental (spectral band, spatial

resolution, field of view (FOV), etc.) and experimental (landscape and atmosphere architecture and op-

tical properties, etc.). The rapid developments in remote sensing techniques requires appropriate tools

for validating their working principles and improving the operational use of remote sensing data. Ra-

diative Transfer Model (RTM) is a celebrated tool to simulate remote sensing measurements for various

applications, including validation of existing systems, inversion for implicit parameters retrieval, prepa-

ration of future systems, etc. Discrete Anisotropic Radiative Transfer (DART) model is recognized by

the scientific community as one of the most complete and efficient RTMs.

This dissertation presents my contributions to DART. Traditional RTMs simulate products, as land-

scape Bidirectional reflectance/temperature distribution function (BRDF/BTDF) or single-pulse wave-

form of LIght Detection and Ranging (LIDAR) device, which in many cases do not correspond to actual

data. My general objective was to design and implement new modeling into DART for improving its

potential to simulate actual remote sensing data (e.g. camera, pushbroom imager, LIDAR, etc.), for any

realistic sensor and platform configurations. This new modeling makes it possible to compare simu-

lated and actual data in a pixel-wise or pulse-wise manner, which greatly expands and improves DART

practicability and efficiency.

My contributions concern 4 domains in DART. Each one constitutes a chapter of this dissertation.

1. Discretization of the directions over the 4π space.

DART uses discrete ordinate and exact kernel methods to simulate radiation propagation in an

Earth/atmosphere scene. A novel approach for the 4π space discretization and oversampling is im-

plemented in DART. Traditional methods do not define, or inaccurately, the solid angle centroids

and geometric shapes. These defects result in non-conservative energy or imprecise modeling if

the total number of directions is small. The new approach provides discretized directions with

well-defined shape, and uniform or cosine-weighted distribution of solid angles, which improves

simulation results.

2. Simulating images of passive sensors with finite FOV.

Existing RTMs can be categorized as pixel-level and image-level models. Pixel-level models use

abstract description of a simulated scene (e.g. total leaf area index, overall fraction of shadows,
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etc.), and calculate a quantity such as BRDF and BTDF for the whole scene. Image-level models

generate radiance, reflectance or temperature images of the scene, through orthographic projection

of rays that exit the scene onto an image plane. Pixel-level and image-level models neglect the

multi-directional acquisition in the sensor finite FOV, which is not realistic for pixel-wise compar-

isons with large-scale remote sensing data. Here, a sensor-level model called converging tracking

and perspective projection (CTPP) is implemented for simulating images of cameras and cross-

track sensors, by coupling DART with classical perspective projection and parallel-perspective

projection, respectively.

3. Simulating LIDAR data.

Many RTMs have LIDAR waveform simulation implemented, but their results are inaccurate (e.g.

abstract scene description, or account of first-order scattering only) or take very large computa-

tion time. For example, pure Monte-Carlo (MC) models have the trade-off between processing

speed and precision. DART employs a novel quasi-MC method, which provides accurate results

with fast processing speed, for any instrumental configuration (platform altitude, LIDAR orien-

tation, footprint size, etc...). Multi-pulse data are generated for simulating satellite, airborne and

terrestrial laser data, with realistic configurations (LIDAR position, platform trajectory, scan an-

gle range, etc.). They can be converted into industrial LIDAR data format for being processed

by dedicated LIDAR data processing softwares. A post-processing approach is also developed

to convert LIDAR waveform into photon counting LIDAR data, through modeling single photon

detector acquisition.

4. In-flight Fusion of LIDAR and imaging spectrometer data.

The combined simulation of multi-pulse LIDAR and passive cross-track imaging spectrometers,

including hyperspectral sensors, is integrated into DART. This method is specially designed for

data of imaging spectrometer and LIDAR multi-sensor system, in which all sensors share the

same acquisition geometry. It corresponds to a two sources (sun and laser LIDAR) and one sensor

(LIDAR telescope) system. Basically, the approach starts with the simulation of a LIDAR multi-

pulse acquisition and the sun-induced radiance image of a passive sensor. Then, the LIDAR FOV

projected regions in the ground image plane are segmented from the passive sensor image, which

is also projected on the ground image plane. Two applications are presented: estimation of solar

noise in LIDAR signal (especially in photon-counting LIDAR) in Section 4.2, and in-flight fusion

of LIDAR and imaging spectrometer data in Section 5.

In addition to these modeling improvements, DART can now import actual acquisition configura-

tions (i.e., platform trajectory and view angles per pixel / LIDAR pulse) for simulating actual LIDAR

and imaging spectrometer data. It further facilitates the comparison of actual and simulated data. Multi-

thread parallelization in also comprehensively introduced, which greatly accelerates DART simulations.
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Résumé

La propagation du rayonnement et son interaction dans les paysages terrestres et l’atmosphère sont des

facteurs décisifs pour les données acquises par les instruments d’observation de la Terre. Ces don-

nées dépendent des configurations instrumentales (bande spectrale, résolution spatiale, champ de vision

(FOV), etc.) et expérimentales (architecture et propriétés optiques du paysage et de l’atmosphère, etc.).

L’évolution rapide des techniques de télédétection nécessite des outils appropriés pour valider leurs

principes de travail et améliorer l’utilisation opérationnelle des données de télédétection. Les modèles

de transfert radiatif (RTM) sont l’outil de référence pour simuler les mesures de télédétection pour di-

verses applications : validation des systèmes existants, inversion des mesures en termes de paramètres

implicites, préparation de futurs systèmes, etc. Le modèle DART (Discrete Anisotropic Radiative Trans-

fer) est reconnu par la communauté scientifique que le RTM le plus complet et efficace.

Cette thèse présente mes contributions à DART. La majorité des RTMs simulent des produits, comme

les fonctions de distribution de la réflectance (BRDF) et température (BTDF) ou bien la forme d’onde

LIDAR d’impulsion unique, ce qui dans de nombreux cas ne correspond pas aux données réelles. Mon

objectif général a été de concevoir, implanter et mettre en œuvre une nouvelle modélisation dans DART

pour améliorer sa capacité à simuler les données de télédétection (e.g., caméra, pushbroom spectrora-

diomètre, LIDAR, etc.), pour toute configuration réaliste de capteur et de plates-forme. Cette nouvelle

modélisation permet de comparer les données réelles et simulées par pixel ou par impulsion LIDAR, ce

qui élargit considérablement le potentiel de DART, et améliore donc son efficacité.

Mes contributions concernent quatre domaines dans DART. Chacun constitue un chapitre de cette

thèse.

1. La discrétisation les directions de l’espace 4π .

DART utilise les méthodes des ordonnées discrètes et du noyau exact pour simuler la propagation

du rayonnement dans les paysages terrestres et l’atmosphère dans l’espace 4π . Une nouvelle

approche pour discrétiser et sur-échantillonner cet espace a été conçue et implantée dans DART.

Les méthodes classiques ne définissent pas, ou mal, le centroïde et la forme des angles solides, ce

qui implique une non conservation de l’énergie et une modélisation imprécise si le nombre total de

directions est petit. La nouvelle approche fournit des directions discrétisées avec une forme bien

définie, de distribution uniforme ou pondérée par le cosinus de l’angle zénithal, ce qui améliore

les résultats de simulation.
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2. Simuler des images de spectroradiomètre avec FOV fini.

Les RTMs peuvent être classés comme des modèles "pixel" et "image". Les modèles "pixel"

calculent une quantité unique (e.g., BRDF, BTDF) pour l’ensemble de la scène simulée, à partir

d’une description abstraite de cette scène (e.g., indice foliaire total, fraction globale d’ombres,

etc.). Les modèles "image" produisent une distribution spatiale de luminance, réflectance ou tem-

pérature de la scène. Les images sont générées par projection orthographique des rayons qui

sortent de la scène sur un plan image. Ces 2 types de modèles négligent le fait que l’acquisition

est multi-directionnelle, car le FOV d’un capteur ne peut en général être supposé nul. Cette simpli-

fication peut entrainer de fortes erreurs lors de comparaisons pixel par pixel entre mesures réelles

et simulées. Le modèle CTPP a été conçu et implémenté pour résoudre ce problème. Il est basé

sur le suivi de rayons convergeants et la projection perspective. Il permet de simuler des images

de caméras, pushbroom, etc.

3. Simuler des données LIDAR.

Beaucoup de RTMs intègrent la possibilité de simuler des formes d’onde LIDAR, mais en général

de manière imprécise (e.g., représentation de la scène, prise en compte de la seule diffusion d’ordre

1, etc.) ou avec de très grands temps de calcul. Ainsi, les modèles Monte-Carlo classiques doivent

faire le compromis entre la vitesse de traitement et la précision. DART emploie une méthode

"quasi-Monte Carlo" qui permet d’obtenir des résultats précis avec des vitesses de traitement rapi-

des, pour toute configuration instrumentale (altitude de la plateforme, attitude du LIDAR, taille de

l’empreinte, etc.). Les données multi-impulsions sont générés pour simuler les LIDARs satellites,

avions et terrestres, avec des configurations réalistes (position du LIDAR, trajectoire de la plate-

forme, plage de l’angle de vue, etc.). Elles peuvent être converties au format de données LIDAR

"industrielles" pour être traitées par des logiciels dédiés de traitement de données LIDAR. Une

approche de post-traitement est également développée pour convertir les simulations de formes

d’onde LIDAR en données LIDAR de comptage de photons, via la modélisation de l’acquisition

par des détecteurs à comptage de photons.

4. Fusion de données LIDAR et d’image de spectroradiomètre.

La simulation combinée de LIDAR multi-impulsions et d’image de spectro-radiomètre, y compris

les capteurs hyperspectraux, est intégrée dans DART. Il s’agit d’une configuration à deux sources

(soleil, laser LIDAR) et un système de capteur (télescope du LIDAR). L’approche débute par

la simulation ’une acquisition multi-impulsions LIDAR et de l’image d’un spectro-radiomètre.

Ensuite, les régions LIDAR FOV localisées dans le plan image du sol sont segmentées au sein

de l’image du spectro-radiomètre, qui est également projetée sur le plan image du sol. Deux

applications sont présentées : estimation du bruit solaire dans le signal de LIDAR (surtout en

comptage de photons LIDAR), et fusion de données LIDAR et d’images de spectro-radiomètre.

En plus de ces améliorations de modélisation, DART peut désormais importer des configurations
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d’acquisition réelles (trajectoire de la plateforme, angle de vue par pixel du spectro-radiomètre et par

impulsion LIDAR) pour simuler des données LIDAR et images réalistes de spectro-radiomètre. La

comparaison précise de données réelles et simulées est ainsi possible. De plus, parallélisation multi-

thread a été implémentée, ce qui accélère grandement les simulations DART.
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General introduction

Satellite and airborne sensors are increasingly used by scientists and policy makers for studying and

managing the Earth’s environment, including forests, agriculture crops, and urban areas. Generally

speaking, remote sensing (RS) observations make it possible to study land surfaces (e.g. digital eleva-

tion model, soil moisture, etc.), as well as biophysical (e.g., leaf area index, leaf angle distribution, etc.)

and biochemical (e.g., chlorophyll content, etc.) properties of vegetation, at different time and space

resolutions, over different areas. For this objective, RS data acquired with given instrumental (spectral

resolution, view direction, sensor field-of-view, etc.) and experimental (surface and atmosphere con-

ditions, sun direction, etc.) configurations are commonly translated into qualitative and quantitative

parameters that characterize the Earth’s surfaces.

Among RS techniques, Imaging Spectroscopy (IS) and Light Detection and Ranging (LiDAR) are

celebrated tools for mapping the Earth landscapes from the ultraviolet to the thermal infrared (TIR)

spectral domain (0.32µm - 15µm). Their retrieved data from passive and active acquisitions are essen-

tially complementary to each other, which help estimating both constitution and structure of the Earth’s

surfaces.

IS is a passive RS technique which measures upwelling spectral radiance value per pixel, combin-

ing both emitted and reflected components of the Earth’s landscape and the atmosphere. The received

radiance flux per pixel can be transformed into reflectance (ratio of reflected and incident radiation),

usually in the visible (VIS) and the short-wave infrared (SWIR) spectral domains, and into brightness

temperature, usually in the TIR domain. In the spectral domain from VIS to SWIR, RS signals are

mostly due to the reflection of solar radiation from the atmosphere and Earth surfaces. When acquired

under appropriate conditions, the recorded reflected radiometric signals from an imaging spectrometer

provide information about the biophysical and biochemical properties of the Earth’s ecosystems (Asner,

1998; Ustin et al., 2004). At sensor level, satellite imaging spectrometers acquire top of atmosphere

(TOA) radiance, and airborne sensors acquire radiance with partial atmosphere ranging from ground up

to their altitudes. Most imaging spectrometers mounted on satellites and aircrafts are usually cross-track

imagers (e.g. linear pushbroom camera, whiskbroom scanner), while those mounted on UAVs are usu-

ally frame cameras. They acquire data through their finite field of views (FOVs) with appropriate sensor

models. They generate images using different geometry configurations: classical perspective projection

(Sonka et al., 2008) for cameras, and parallel-perspective projection (Chai and Shum, 2000; Gupta and

Hartley, 1997) for cross-track imagers.
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LiDAR is an active RS technique which generates laser beam (i.e., pulse) as a radiation source

and measure the amplitudes and the travel time (time of flight) between the pulse emission and returns

to calculate the ranges (distance) to each of the objects encountered by the pulse. LiDAR devices are

increasingly used in RS and terrestrial systems for many applications: topography (Hladik et al., 2013b),

vegetation architecture and dimensions (Montesano et al., 2015; Popescu et al., 2011; Yang et al., 2013),

urban mapping (Yan et al., 2015), bathymetry (Quadros et al., 2008), atmosphere constituents (Zhang

et al., 2011), etc. The return amplitude of each LiDAR pulse can also be converted into the apparent

reflectance of the target. The combination of range measurements with knowledge of platform location

and attitude provides a three-dimensional (3-D) representation of the observed landscape. Therefore,

through measurements of multiple pulses, data from multiple LiDAR pulses can be used to infer 3-

D structure of vast landscapes (Lefsky et al., 2002). LiDAR waveform is the temporal discretization

of the ranged backscattered signal. In addition, a waveform records continuous returned signal when

pulse penetrates through atmosphere and vegetation, which informs the constituents and distributions

of mediums. RS LiDARs are usually categorized according to the size of the region covered by their

illumination pulses, which is inferred by platform altitude and beam divergence. Those onboard satellites

have large footprint, like the 64m diameter footprint of the Geoscience Laser Altimeter System (GLAS)

of the Ice, Cloud and land Elevation Satellite (ICESat) (Zwally et al., 2002). Those onboard aircrafts

(airborne laser scan (ALS)), have usually small footprint, like the less than 1m footprint diameter of

the LiDAR system on the Carnegie Airborne Observatory (CAO) for altitudes less than 2km (Asner

et al., 2012, 2007). In addition, ground based LiDAR devices, also called terrestrial laser scan (TLS), is

increasingly used. For example, for vegetation studies, it is used for tree structure retrieval through the

calculation of the location of the observed scattering elements (Rosell et al., 2009). Points from TLS

acquisitions can lead to precise 3D tree representations that can be used further by computer graphics

software for visualization and by models (Côté et al., 2011, 2009) to simulate remotely sensed data.

Model simulations with this 3D vegetation representation (Schneider et al., 2014a) has proved to be

more accurate than with abstract vegetation representation with turbid medium (Ross, 1981).

Models (i.e., reflectance model) that simulate the reflection of solar radiations from Earth surfaces

and the atmosphere are essential tools for understanding and using RS signals in the VIS, NIR and

SWIR spectral domains. There exists different categories of reflectance models. They are derived from

a number of sources including radiative transfer (RT) theory (Chandrasekhar, 1969), planetary astron-

omy (Hapke et al., 1993) and many other areas of physical science and engineering. The diversity of

influences and methods developed and tested for a whole range of other applications may be regarded as

an advantage. Indeed, it explains an ability of adaptation. There is often a great deal of crossovers from

one model category to another, and several approaches are often combined in a single model. Some

major model categories are introduced below.

Empirical models are generally the simplest type of reflectance model. They do not describe the

biophysical parameters and processes that shape the bidirectional reflectance factor (BRF), but they

provide a mathematical description of observed patterns in BRF datasets. They attempt to describe the
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reflectance of the Earth surfaces under various viewing and illumination conditions by fitting some func-

tions (usually polynomials) to the observed reflectance data. This approach has two major advantages:

1) No assumption is necessarily made regarding the studied landscape (i.e., Earth scene); 2) The chosen

function can be arbitrarily complex in order to describe the surface reflectance to a desired degree of ac-

curacy. In practice, the functions that are selected are simple enough for analytical inversion of RS data.

More complex functions may fit a wide variety of reflectance data, but are also more likely to fit to an

inaccurate result than a lower order polynomial under certain circumstances. Empirical models can rely

on simplified physical principles of geometrical optical (GO) models and RT theory. For example, linear

kernel driven (LiK) models (Liu et al., 2010; Roujean et al., 1992; Wanner et al., 1995) calculate BRF

as the sum of an isotropic term and anisotropic functions (kernels) that characterize volume and surface

scattering. MODIS, POLDER, MSG/SEVIRI, AVHRR, VEGETATION land surface BRF/albedo prod-

ucts are mainly generated using LiK models to invert the BRF parameters of multi-angular bidirectional

reflectance in clear skies (You et al., 2014). Another example is the Rahman-Pinty-Verstraete (RPV)

model (Rahman et al., 1993), and its latter inversion accelerating versions: the Modified RPV (MRPV)

(Martonchik, 1997) and EMRPV (Engelsen et al., 1996) models. These models are widely used for their

analytical nature and use of only a few input parameters. The major disadvantage of empirical models is

the limited linkage between their input parameters and the physical scattering behavior of Earth surfaces,

as well as the RT theories. As a result, empirical reflectance models tend to be very useful for correction

/ normalization of directional effects in multi-angular reflectance data, but of little use for the derivation

of biophysical parameters from reflectance data.

Increasing demand for more universal satellite data products for landscape characteristics has spurred

advances in theoretical understanding and modeling of IS and LiDAR signals of 3-D landscapes for var-

ious experimental and instrumental configurations (radiometric accuracy, spatial/spectral/temporal res-

olutions, etc.). IS signals correspond essentially to the BRF and brightness temperature function (BTF).

Instrumental configuration is given by sensor technical specifications, including: FOV, full width at half

maximum (FWHM), spectral sampling, and viewing geometry. Experimental configuration corresponds

to:

• The date of acquisition, which defines the angles of sun direction.

• Landscape geometrical configuration and optical properties.

• Atmospheric geometry and optical properties (gas and aerosol density profiles, scattering phase

functions and single scattering albedo).

Physical models are formulated by considering the fundamental physical principles of radiation

interaction within the atmosphere and Earth landscapes according to experimental and instrumental

configurations. They all approximate the description of the propagation medium (i.e., the simulated

scene). For example, a real vegetation canopy is a structurally complex arrangement of objects (e.g.,

leaves, stems, buds, gaps between leaves etc.), which can all be considered as scattering elements in the
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context of radiation interception. In addition, the 3-D spatial distribution of all canopy elements, with

their own optical properties, must be considered. However, this realistic 3D description is likely to be

extremely computationally expensive. Furthermore, the atmosphere and ground with topography must

be considered. Most models use approximations of radiation laws. Some models such as Monte Carlo

ray tracing (MCRT) and Radiosity have been developed to simulate photon transport exactly, but their

computation times are usually tremendous.

Physical models work with landscapes that are simulated as homogeneous or heterogeneous scenes.

Most common homogeneous models, also called turbid models, represent vegetation as a superposition

of horizontally homogeneous layers that are filled with turbid medium. Turbid medium (Ross, 1981) is

the most common technique that is used to simplify the description of vegetation in order to model its

scattering, and consequently its reflectance. It is a medium such that there is a length scale in which the

locations of absorbing and scattering elements (leaves) in the medium (canopy) are amenable to be de-

scribed using the concept of statistical density distribution of infinitely small planar elements (Smolander

et al., 2006). The very first physical models used this turbid representation to model general trends such

as the evolution of crop BRF/BTF in relation to phenological LAI changes. The two major drawbacks

of turbid models are that scatterers are assumed to be homogeneously distributed and that the size of

the scatterers within the canopy is not considered. However, canopy reflectance strongly depends on

effects (e.g., shadows) due to the heterogeneous distribution of scatterers. Moreover, the sizes and ori-

entations of scatterers control specific features of canopy reflectance such as the hot spot effect (Kuusk,

1991) with its sharp peak in reflectance observed in and around the backscatter (opposition) direction.

Usually, improvement of physical models requires advancement in representation of landscapes, as their

3-D complexity (i.e., topography, tree and building distribution, etc.) greatly affects optical observa-

tions. Classically, representation of heterogeneous landscapes is based on i) discretization of the spatial

variable into a 3-D set of spatial nodes called voxels (Kimes and Kirchner, 1982; Myneni et al., 1991)

that contain turbid medium, and/or ii) representation of each individual landscape element with facets

as geometrical primitives.

Geometric optical (GO) models simulate the BRF of objects on the Earth surface as a function of

their physical dimensions and structures, using the laws of geometric optics. For instance, they represent

a forest stand as a combination of approximated geometrical shapes of tree crowns with corresponding

shadows and background forest floor material (Peddle et al., 2003). All these parameters are defined

with surface optical properties that integrate implicitly the volume light scattering. Modeling is based

on the computation of scene fractions of sunlit canopy, sunlit background, and shadows, which is a

potential source of modeling inaccuracy. Therefore, GO models perform better in simulations of "open"

landscapes (e.g., sparse forest stands). Li and Stralher (Li and Strahler, 1992) developed one of the first

GO models. The more recent 4-scale model (Chen and Leblanc, 1997) simulates tree crowns as discrete

geometrical objects: cone and cylinder for conifers, and spheroid for deciduous trees. Individual leaves

in deciduous canopies and shoots in conifer canopies, defined with a given angular distribution, are

populating branches with a single inclination angle. This model uses a geometrical multiple scattering
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scheme with view factors (Chen and Leblanc, 2001). The 5-Scale model (Leblanc and Chen, 2000)

is an extension of the 4-Scale model that includes the LIBERTY model (Dawson et al., 1998), which

simulates needle-leaf optical properties.

Radiative transfer models (RTM), also called physical RTMs, use physically described mechanisms

to simulate the propagation of radiation through Earth systems, and consequently RS acquisitions. They

rely on RT equation, which relates the change in radiation along a ray path to local absorption, scattering

and thermal emission. Since these models work with realistic representations of Earth landscapes, they

can be robust and accurate. Generally speaking, simulation of bottom of atmosphere (BOA) and TOA

BRF and BTF involves RT of four components:

1. Soil (e.g., Hapke model (Hapke, 1981))

2. Foliar element (e.g., PROSPECT model (Feret et al., 2008; Jacquemoud and Baret, 1990))

3. Canopy (e.g., SAIL model (Verhoef, 1984))

4. Atmosphere (e.g., MODTRAN (Berk et al., 1987) or 6S (Vermote et al., 1997) models). Some

models, such as DART (Gastellu-Etchegorry et al., 1996; Grau and Gastellu-Etchegorry, 2013),

directly simulate the Earth-atmosphere interactions using inputs from soil and leaf RTMs.

Multiple scattering and consequently energy conservation are usually the major sources of inaccu-

racies of these models, because, conversely to 1st order scattering, it has no simple analytical form.

Major solutions of RTMs are based on either of the following four mathematical methods: i) N-flux,

ii) Radiosity, iii) Successive Orders of Scattering, and iv) Monte Carlo. In case of N-flux method, the

radiation is propagated along N discrete ordinates (directions), which correspond to N RT equations.

For example, the SAIL model (Verhoef, 1984) uses four differential equations corresponding to four

directional fluxes within a horizontally homogeneous landscape: one sun flux, two isotropic upward and

downward fluxes and one flux along a sensor viewing direction. However, a more detailed consideration

of the RT anisotropy can require a much larger number of fluxes (e.g., more than 100) (Yin et al.,

2013b). Contrary to the N-flux method that computes the volumetric radiation balance in the 3-D space,

the Radiosity method (Borel et al., 1991) is based on the radiation balance equation of a finite number

M of discrete scatterers, which requires computation of the view factors between all M elements. It is,

therefore, based on inversion of a M×M matrix, which is time consuming if M is too large, e.g. in case of

complex landscape elements such as trees. The Successive Orders of Scattering (SOS) method is one of

the oldest and conceptually simplest solutions of the multiple scattering. It uses an iterative calculation

of successive orders of scattering, where total radiance vector is expressed as a sum of contributions from

photons scattered a number of times ranging from 0 to a pre-defined maximum number. For example, the

SOSVRT model (Duan et al., 2010) simulates polarized RT in vertically inhomogeneous plane-parallel

media. The Monte Carlo (MC) method involves simulation of the chain of scattering events incurred by

a photon in its path from the source to the receiver or to its absorber. An advantage of this technique

is explicit computation of only single scattering properties (Disney et al., 2000). However, it requires
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long computational time, which is a strong technical limiting constraint. Indeed, every object within a

scene must be represented accurately in three dimensions along with associated radiometric properties

and this information must be stored in memory. In addition, many rays must be fired per image pixel

in order to achieve a convergent solution that represents the scattering behavior of the scene to within

some accuracy threshold. Thus, a numerical integration (i.e., Monte Carlo integration) must be carried

out. Clearly, the more detailed the scene, the more calculations are required for each photon. Well-

known examples of MC models are Drat (Lewis, 1999), FLIGHT (North, 1996) Raytran (Govaerts and

Verstraete, 1998), and DELiS (Ristorcelli, 2013; Ristorcelli et al., 2014).

In short, RTMs that can consider the Earth and atmosphere complexity are, therefore, ideal tools for

linking remotely sensed data to the surface parameters. Comparison of actual and simulated remotely

sensed data is difficult if simulated data are not realistic in terms of both geometry and radiometry. Many

works have been devoted for improving RTMs and accurate simulations of the 3-D Earth’s surfaces

constructed by explicit physical features and elements with associated optical properties. Comparing

with other models, 3-D model can provide more accurate results in straight-forward modeling of RS

products because of its comprehensive parameterization and detailed accounts of ray propagation and

interactions in 3-D space. However, due to the the complexity of 3-D models, the processing speed is

usually slower, which is the most obvious disadvantage. The inversion of 3-D model is more complete

since many parameters are considered in the model. There are several inversion approaches for 3-D

models. By fixing all parameters except a limited number of interesting ones, some analytical inversion

approaches of other models can be directly applied to the products of 3-D models. For some case when

a simple analytical inversion does not exist or can not reach the required accuracy level, look-up tables

are uaually applied which can be quite accurate but require a large ammount of computational time.

Intercomparison among RTMs is gradually developed with the increasing requirement of modeling

accuracy. The RAMI (Radiative Transfer Model Intercomparison) experiment of the Joint Research Cen-

ter of European Commission is a typical example (Pinty et al., 2001b, 2004; Widlowski et al., 2011a,b,

2007). This experiment has been continuously improved during the past 15 years. It provides reference

reflectance values of simple and complex 3-D Earth scenes. One of the main challenges faced by RAMI

is the lack of absolute reference standards from actual measurements. Any comparison of RTMs with

actual data is quite complicated due to numerous factors, such as errors of geometric construction of

3-D scenes, incomplete object parameterization and sensor noise associated to the measurements. The

RAMI defined references are based on the convergent results throughout years of experiments using

several “credible” RT models (Widlowski et al., 2008). Another challenge of the intercomparison exper-

iment is the limitation of comparable results provided by RTMs. Most comparisons were only done for

the scene BRF, albedo (terminology following (Schaepman-Strub et al., 2006)), and to a lesser extent,

LiDAR waveform of a single pulse.

The Discrete Anisotropic Radiative Transfer (DART) model is one of the most comprehensive physi-

cally based 3-D models that simulates the Earth-atmosphere radiation interaction from visible to thermal

infrared wavelengths (Gastellu-Etchegorry et al., 1996, 2012, 2004a). It uses discrete ordinate and exact
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kernel methods to simulate radiation propagation in an Earth/atmosphere scene. It has been developed

since 1992. It models optical signals at the entrance of imaging radiometers and laser scanners on-

board satellites and airplanes, as well as the 3-D radiative budget, of urban and natural landscapes for

any experimental configuration and instrumental specification. It is recognized as one of the “credible”

RTMs and provides references in RAMI experiments. It is freely distributed for research and teaching

activities.

The content of the 5 chapters of this dissertation is introduced below. It mostly corresponds to

6 publications in rank A journals (3 published, 2 submitted, and 1 to be submitted soon). The main

objective of this dissertation is to improve DART model for simulating RS signals with realistic accounts

of the sensor configuration and acquisition geometry. I introduced new modeling approaches that link the

DART simulations with IS and LiDAR measurements for better validation of the current RS devices, and

more comprehensive preparation for future systems. A major objective was to simulate IS and LiDAR

data which can be pixel-wisely and pulse-wisely compared with actual data. Chapter 1 introduces DART

general modeling theory. For more detailed information, Gastellu-Etchegorry et al. (1996) is the best

reference. In addition, chapter 1 summarizes the most recent DART developments (V5) which are

separately presented in the following chapters. Chapters 2 to 5 present the four modeling developments

that I designed and implemented during my PhD. They focus on different but implicitly connected topics

in DART:

• Chapter 2: Direction discretization and oversampling.

In DART, the angular distribution of directions that are used to track radiation can impact a lot the

simulation of RS signals. I designed and implemented a new method, iterative uniform squared

discretization (IUSD), for discretizing the 4π space of discrete directions along which rays and

photons propagate in DART. It combines the advantages of both traditional DOM and FVM,

with well defined shape and exact center for the description of each discretized direction. It uses

“squared” angular sectors with an analytical expression that allows one to construct the direction

with flexible input parameters. With this approach, scattering calculation can combine both nu-

merical quadrature and analytical integration. The 0th and 1st moments of traditional direction

discretization method are exactly verified. A regional direction oversampling approach is also

implemented for the case of very anisotropic scattering (e.g. hot spot). Different cases are inves-

tigated: optimal shape of angular sectors on the 4π sphere, oversampling of planes and angular

zones, and use of directions that are not centered on their associated sectors Ωn for more accu-

rate RT modeling. Results show that the IUSD method is more accurate than the Sn DOM, the

Nθ ×Nφ FVM and the FTn FVM methods in the case of multiple scattering within turbid medium

simulation.

• Chapter 3: Simulation of passive sensor images through finite sensor field on view (FOV).

The FOV of RS sensors (e.g. imaging spectrometers) is not zero. Hence, pixels of the same

acquired image are observed under various sensor viewing directions. One important constraint
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for comparing RTM with sensor data is the neglect of sensor geometric configuration in RTMs.

Indeed, mapping 3-D objects onto a 2-D image plane (IP) (a mesh grid with pre-defined size), uses

a specific projection method, which impacts the radiance value acquired by a passive sensor as 2

ways: the geometrical distortion by the projection (e.g. object near to the sensor appears larger on

the image), and the directional variation of reflectance according to different view angles within

its FOV. In machine vision, classical perspective projection (Sonka et al., 2008) is applied for

cameras, and parallel-perspective projection (Chai and Shum, 2000; Gupta and Hartley, 1997;

Zhu et al., 2004) is applied for cross-track imagers. They are both crucial for obtaining exact

radiance values and their spatial distribution in the IPs. I introduced a modeling approach that

links DART to 3-D perspective projection to simulate actual sensor acquisitions: the so-called

convergent tracking and perspective projection (CTPP). With this implementation, the original

simulation results of DART are assessed for various research domains, including: 1. Passive

sensor imaging; 2. Video captured by unmanned aerial vehicle (UAV); 3. Local hot spot (HS)

effect in a RS image; 4. Pixel-wise comparison between simulated orthorectified perspective-

projection images; and 5. Radiance variation among images acquired by airborne and spaceborne

systems with different sensor altitudes. This modeling approach allowed me to improve the results

of Schneider et al. (2014a) for pixel-wise comparison of at-sensor radiance image between DART

simulation and APEX (Appendix II).

• Chapter 4: Simulation of LiDAR data. It contains two sections.

– Section 4.1: Simulation of the waveform of a single LiDAR pulse. Waveform LiDAR (wL-

iDAR) measures time of flight of returned signals, transforms signals into analog electrical

counts in volts, and records them as continuous temporal bins (Shan and Toth, 2008). A

LiDAR waveform can reflect both distance from the LiDAR position to a scattering ele-

ment through a sharp peak in the waveform, and the distribution of a continuous medium

(e.g. air, water, turbid vegetation...) through waveform amplitude variation as a laser pulse

penetrates the medium. A general-purpose simulation tool of wLiDAR can help to eval-

uate the influences of instrumental and experimental configurations on remotely acquired

waveforms, and to develop inversion algorithms for specific system. This section presents

a new quasi-MCRT model that was designed and implemented into DART to simulate wL-

iDAR. Basically, it relies on two new methods for accelerating the selection of scattering

directions, and tracking photons in the direct mode. It provides accurate results with fast

processing speed, for any instrumental configuration (platform altitude, LiDAR orientation,

footprint size, etc.). An atmosphere model is also implemented and validated with analytical

evaluation, which does not exist in most RTMs.

– Section 4.2: Simulation of LiDAR data for multiple pulses. Waveform acquisition associ-

ated to the emission of multiple pulses along different directions leads to 3-D point cloud

that informs on the optical properties and locations of the scattering elements which give rise
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to the measured signals (Wagner, et al., 2006). Among wLiDAR devices, airborne laser scan

(ALS) uses small-footprint LiDAR for acquisition over a swath that is defined by the plat-

form and sensor configuration (Mallet and Bretar, 2009). The decomposed points from ALS

pulses can be classified into Earth surface types (ground, vegetation canopy, etc.) (Zhang

et al., 2003). Similarly, TLS is increasingly used for tree structure retrieval through the

calculation of the location of the observed scattering elements (Rosell et al., 2009). This

section presents an extension of the single pulse LiDAR model of DART to simulate multi-

pulse satellite, airborne and terrestrial LiDAR acquisition. An important practical advan-

tage is that output data can be converted into an industrial LiDAR format, the sorted pulse

data (SPD) (Bunting et al., 2013b), and hence processed into point cloud by the associated

open-source data processing software, the SPDlib (Bunting et al., 2013a). DART was also

extended for simulating photon counting LiDAR (pcLiDAR) (Montesano et al., 2015). Fur-

thermore, solar noise in LiDAR signal is simulated. DART LiDAR modeling is illustrated

with the simulation of a few systems, including the wLiDAR system of the CAO, the ILRIS

terrestrial LiDAR system of Optech Inc (www.optech.com), the Multiple Altimeter Beam

Experimental LiDAR (MABEL, McGill et al. (2013)) of NASA’s Goddard Space Flight

Center, as well as the Advanced Topographic Laser Altimeter System (ATLAS, Anthony

et al. (2010)) which will be onboard the upcoming 2nd generation of NASA Ice, Cloud, and

Land Elevation Satellite (ICESat-2, Abdalati et al. (2010)).

• Chapter 5: In-flight Fusion of IS and LiDAR multi-sensor system.

RS devices with different specifications, such as active and passive sensors, can provide comple-

mentary information about the Earth’s surfaces. IS and LiDAR data are complementary to each

other, which helps estimating both constitution and structure of the Earth’s ecosystem. In order

to facilitate data registration and fusion, the preferred solution is often to install all RS sensors

of interest on board the same platform. Then, data fusion can be achieved during the acquisition

with a so-called in-flight fusion method (Asner et al., 2007). It can be achieved also after acqui-

sition with a post processing method. Several Imaging Spectrometer and LiDAR Multi-sensor

Systems (ISLMS) have been employed in airborne RS, including Carnegie Airborne Observa-

tory (CAO, Asner et al. (2012, 2007)), National Ecological Observatory’s Airborne Observation

Platform (NEON AOP, Kampe et al. (2010)), and NASA Goddard’s LiDAR, Hyperspectral and

Thermal Airborne Imager (G-LIHT, Cook et al. (2013)). Chapter 5 presents a new approach which

I designed and recently implemented in DART to simulate in-flight fusion of ISLMS data. This

approach combines the passive sensor image simulation presented in Chapter 3 and multi-pulse

LiDAR data simulation in Chapter 4. It corresponds to a two sources (sun and laser LiDAR) and

one sensor (LiDAR telescope) system. Examples of in-flight fusion are demonstrated for both

urban and vegetation landscapes.

Most mentioned developments are implicitly connected. For example: the virtual direction and vir-
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tual flux concepts introduced in Chapter 2 are the prerequisites of the automatic steering virtual direction

(ASVD) and flux in Chapter 3. Similarly, the ASVD and its virtual flux introduced in Chapter 3 are the

prerequisites of Ray Carlo approach in Chapter 4. In addition, the fusion algorithms presented in Chap-

ter 5 combine multi-view sensor image simulation (Chapter 3) and multi-pulse simulation (Chapter 4),

which is used for simulating LiDAR solar noise estimation. These connections are further elaborated in

the abstract of each chapter, and the final conclusion of this dissertation.

I want to stress that all the presented developments rely on a very strong collaborations with other

members of the DART team, both in computer science and physical modeling. For example, I collab-

orated a lot with Nicolas Lauret for designing and improving LiDAR modeling. he fact that DART is

a patented code with licenses distributed by Paul Sabatier University, but managed by the DART team,

and also the fact that all improvements are integrated in the DART version that is available to licensees,

is very demanding for the team in three major domains:

• Design and implementation of new modeling and functionalities. These developments are usu-

ally done in the frame of projects or collaborations with licensees, with the objective to improve

DART science, whatever the requests of licensees. For example, collaboration with NASA GSFC

was very fruitful for developing LiDAR modeling, in the frame of the preparation of DESDynl

mission. Generally speaking, the introduction / improvement of new functionalities is decided

during our weekly meetings. Then, it is designed and implemented by the scientists who is the

most concerned. Any new implementation is realized under the supervision of Nicolas Lauret

who acts as the responsible of DART computer science.

• Help to DART licensees. Usually, licensees can ask for help and/or clarification of DART func-

tionalities. Jean-Philippe Gastellu-Etchegorry manages relationships with all licensees, including

the DART web site. He answers to questions of licensees and gives them some help. Some-

times, especially if there is a need to correct or improve DART functionalities and if fits with

the scientific/technological domain of one of us, a member of the team takes in charge the task.

For example, SQL databases are managed by Thomas Cajgfenger, Tristan Gregoire and Jordan

Guilleux. Any new implementation is done under the control of Nicolas Lauret.

• Computer science work for maintaining DART as an operational model. It implies many tasks for

maintaining and up-dating operating systems, C++ libraries, Java, Python, SQL libraries, and also

for managing the non regression tests, the cross-compilation, the distribution of DART versions,

etc. This is mostly done by Tristan Gregoire under the supervision of Nicolas Lauret. The tasks to

perform cannot always be known in advance. For example, late 2014, we realized that Java SWT

code that is used for DART graphic user interface (GUI) is no more compatible with most recent

Linux versions. It implies to rewrite the whole DART GUI, which requires about 18 months of

development. By the way, the GUI will be much improved. This GUI development is being done

by Jordan Guilleux, in collaboration with Nicolas Lauret.
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Introduction générale

Les capteurs embarqués sur satellite et aéroporté sont de plus en plus utilisés par les scientifiques et

par les décideurs politiques pour étudier et gérer notre environnement : forêts, zones agricoles, espace

urbain, etc. Il s’agit de capteurs passifs et actifs qui opèrent avec des caractéristiques instrumentales très

diverses (domaines spectraux, champ de vue, résolutions spatiale, temporelle, spectrale et radiométrique,

etc.), différentes configurations (direction et heure d’observation, d’observation, etc.) et qui mesurent

différentes quantités (énergie, temps, phase, fréquence,. . . ). Par suite, la télédétection constitue un outil

unique pour étudier notre planète à différentes échelles de temps et d’espace. Ainsi, elle renseigne sur les

propriétés biophysiques de la végétation comme la biomasse foliaire, et l’humidité des sols. Pour cela,

les mesures de télédétection acquises pour une configuration instrumentale donnée (résolution spatiale,

direction de visée, etc.) et une configuration expérimentale donnée (état de surface, condition atmo-

sphérique, direction solaire, etc.) sont plus ou moins directement traduites en paramètres quantitatifs et

qualitatifs des surfaces terrestres.

Les spectroradiomètres imageurs et les LiDARs sont les techniques de télédétection mises en avant

pour cartographier les paysages terrestres et leurs propriétés biophysiques à partir de mesures dans les

domaines spectraux du visible à l’infrarouge thermique. Les radiomètres imageurs mesurent les flux

(luminances) sous forme de vecteurs bidimensionnels (2D). Ces luminances peuvent être transformées

en réflectance (BRF) de surface (rapport des flux réfléchi et incident) si elles sont acquises dans les

bandes du visible et proche infrarouge, et en température de brillance de surface (BTF) si elles sont

acquises dans l’infrarouge thermique. Les satellites imageurs spectroscopiques mesurent des luminances

au sommet de l’atmosphère (TOA). Ces luminance résultent de mécanismes de diffusion et d’absorption

du rayonnement solaire au sein des paysages terrestres et de l’atmosphère. Les mesures des capteurs

aéroportés sont plus ou moins affectées par l’atmosphère selon leur altitude. Les capteurs LIDAR ont un

mode d’ acquisition très différent des radiomètres. Ce sont des capteurs actifs qui utilisent un faisceau

laser comme source de photons. Ils mesurent le temps de trajet des photons qu’ils émettent entre leur

émission et leur réception, sachant que ces photons ont été diffusés par l’atmosphère ou par un élément

de la surface terrestre observée. Cette mesure renseigne sur la distance entre le LiDAR et le diffuseur. La

combinaison de ces mesures de distance avec la connaissance de la position et attitude de la plateforme

permet d’obtenir une représentation tridimensionnelle (3D) du paysage observé.

La demande croissante de produits de surface dérivés de mesures satellites a induit de grandes

avancées concernant la compréhension et la modélisation des mesures des spectroradiomètres et des
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LiDARs acquises pour les paysages terrestres 3D, pour différentes configurations expérimentales et

instrumentales (précision radiométrique, résolutions spatiale, spectrale et temporelle, etc.). La config-

uration instrumentale est définie par des quantités caractéristiques du capteur comme le champ de vue

(FOV), la largeur à mi-hauteur (FWHM), l’échantillonnage spectral, et la géométrie d’observation. La

configuration est souvent définie par la date d’acquisition (direction solaire), l’architecture et les pro-

priétés optiques des éléments du paysage observé et les conditions atmosphériques (profils de densités

des gaz et aérosols, fonctions de diffusion, albédo de diffusion simple).

Les modèles qui représentent les mesures de télédétection sont essentiels pour comprendre et in-

terpréter ces mesures, mais aussi pour concevoir les futures missions satellites chargées d’observer la

Terre et son atmosphère. Il existe de nombreux types de modèles. Ils reposent sur des approches plus

ou moins complexes qui font appel à différents domaines des mathématiques et de l’ingénierie. Cette

diversité d’influences et de méthodes développées et testées sur un vaste champ d’applications peut être

vue comme un avantage, car elle indique une certaine capacité d’adaptation. Les modèles sont souvent

classés en différentes catégories. Il y a en général beaucoup de recouvrement entre les approches util-

isées, et différentes approches sont souvent combinées en un seul modèle. Les principales approches

utilisées pour représenter la réflectance des surfaces terrestres sont résumées ci-dessous.

Les modèles empiriques sont en général les modèles les plus simples pour représenter le facteur de

réflectance bidirectionnel (BRF). En effet, ils ne s’appuient pas sur les paramètres biophysiques carac-

téristiques des paysages observés. Ils tentent simplement de décrire la réflectance des surfaces terrestres

pour des conditions variables d’illumination et de visée en ajustant au BRF observé des fonctions qui

sont souvent de simples polynômes. Cette approche a deux avantages majeurs. 1) Aucune hypothèse

sur le type de scène terrestre considéré n’est nécessaire. 2) La fonction choisie peut être arbitrairement

complexe afin de décrire le comportement de la réflectance de surface avec un degré de précision désiré.

En pratique, les fonctions qui sont sélectionnées sont suffisamment simples pour une inversion analy-

tique des données de télédétection. Des fonctions plus complexes peuvent ajuster un jeu plus varié de

mesures de réflectance, mais sont aussi plus enclins à ajuster un "mauvais" résultat qu’un polynôme

de degré inférieur. Les modèles empiriques peuvent utiliser des approches très simplifiées dérivées de

l’optique géométrique (GO) et de la théorie de transfert radiatif (TR). Ainsi, les modèles linéaires à

noyau calculent la réflectance directionnelle comme la somme de fonctions isotrope et anisotrope (noy-

aux) qui caractérisent la diffusion de volume et de surface. Par exemple, les produits de surface (albedo,

etc.) MODIS, POLDER, MSG/SEVIRI, AVHRR, VEGETATION sont en général obtenus par inversion

des mesures satellites avec de tels modèles. Le modèle appelé "Pinty-Verstraete" (RPV), et sa version

ultérieure adaptée à l’inversion MRVP (Modified RPV), est un autre exemple. Ces modèles sont très

répandus, du fait de leur forme analytique et de leur faible nombre de paramètres d’entrée.

Le désavantage majeur des modèles empiriques est qu’ils ne lient pas leurs paramètres d’entrée au

comportement diffusif des surfaces terrestres. Par suite, ces modèles tendent à être très utiles pour la

correction et normalisation des effets directionnels dans les jeux de données multi-angulaires, mais peu

efficaces, voire inutiles, pour dériver des paramètres de surface des mesures de réflectance.
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Les modèles physiques peuvent relier leurs paramètres d’entrée au comportement diffusif des sur-

faces terrestres. Ils sont formulés en considérant les principes physiques fondamentaux de l’interaction

du rayonnement avec l’atmosphère et les surfaces terrestres. Tous ces modèles font des hypothèses sim-

plificatrices sur le milieu de propagation (i.e., scène simulée). Ainsi, un couvert végétal est un ensemble

d’éléments (feuilles, aiguilles, branches, etc.) qui peuvent tous jouer le rôle de diffuseurs. De plus,

l’arrangement spatial (i.e., architecture) de ces éléments doit aussi être pris en compte, mais une prise

en compte réaliste peut être très coûteuse en termes de temps calcul. De plus, l’atmosphère et le relief

doivent aussi être pris en compte. La plupart des modèles utilisent des approximations des lois qui régis-

sent le rayonnement. Les modèles basés sur le suivi de rayon avec l’approche Monte Carlo (MCRT) ont

été conçus pour simuler de manière exacte la propagation de photons et donc du rayonnement.

Les modèles physiques opèrent avec des paysages qui sont simulés comme des scènes homogènes

ou hétérogènes. Dans une scène dite homogène, la végétation est représentée comme la superposition

couches homogènes horizontales qui sont remplies par un milieu turbide. La plupart des modèles qui

opèrent sur des scènes homogènes sont souvent appelés "modèles turbides". Le milieu turbide (Ross,

1981) est le mode de représentation le plus simple pour décrire la végétation dans le but de modéliser sa

diffusion, et par suite sa réflectance. C’est un milieu tel qu’il existe une dimension spatiale en deçà de

laquelle la position des éléments foliaires absorbants et diffusants du couvert végétal peut être décrite

comme une distribution statistique d’éléments plans infiniment petits (Smolander, 2006). Les premiers

modèles physiques utilisaient cette approche pour simuler les tendances générales, comme l’évolution

des réflectances et températures de brillance des cultures en lien avec l’évolution du LAI. Les mod-

èles turbides ont deux limitations majeures : les diffuseurs sont supposés être distribués de manière

homogène et la taille des diffuseurs n’est pas prise en compte, alors que la réflectance de la végéta-

tion dépend beaucoup des effets (ombre,. . . ) dus à l’hétérogénéité de la distribution des diffuseurs.

L’orientation des diffuseurs est uniquement prise en compte de manière statistique. La représentation

turbide des milieux ne permet pas une prise en compte réaliste de l’architecture des couvets. Il en ré-

sulte une simulation souvent très inexacte de phénomènes comme le hot spot (phénomène d’opposition)

qui donne souvent lieu à un pic de réflectance selon la direction dite de rétrodiffusion. La représenta-

tion des paysages avec prise en compte de leur hétérogénéité repose sur i) la discrétisation de l’espace

en une distribution spatiale 3D de nœuds appelés voxels (Kimes, 1982 ; Myneni, 1991) qui contien-

nent de la matière turbide, et/ou ii) la représentation de chaque élément de paysage par des primitives

géométriques, ici appelées facettes. D’une manière générale, l’amélioration des modèles physiques re-

quiert l’amélioration de la modélisation de l’architecture des paysages, car leur complexité 3D (i.e.,

relief, distribution d’arbres et de maisons, etc.) affecte beaucoup les mesures de télédétection.

Les modèles basés sur l’optique géométrique (GO: Geometric optical models) simulent la réflectance

des surfaces terrestres comme une fonction de leurs dimensions physiques et de leur architecture. Ainsi,

ils peuvent traiter une parcelle forestière comme une distribution spatiale de formes géométriques asso-

ciées aux couronnes des arbres, au-dessus d’un plan horizontal, avec des parties éclairées et non éclairées

(Peddle, 2003). Chaque partie est caractérisée par des propriétés optiques prédéfinies qui intègrent de
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manière implicite les diffusions de volume qui surviennent dans les couronnes d’arbres. Cette approche

simplificatrice est une source potentielle d’importante imprécision. Par suite, les modèles géométriques

sont plus adaptés aux couverts ouverts (e.g., parcelle forestière peu dense). Li and Stralher (1992)

ont développé un des premiers modèles géométriques. Le modèle "4-scale" (Chen, 1997) simule les

couronnes d’arbre comme des éléments géométriques discrets : cône et cylindre pour les conifères, et

des ellipsoïdes pour les décidus. Les feuilles dans les couverts de décidus, et les pousses dans les cou-

verts de conifères, définies par des distributions angulaires données, sont distribuées sur les branches.

Ce modèle utilise une approche géométrique basée sur les facteurs de vue, pour simuler les diffusions

multiples (Chen, 2001). Le modèle "5-Scale" (Leblanc, 2000) est une extension du modèle "4-Scale". Il

inclue le modèle foliaire LIBERTY (Dawson, 1998) pour simuler les propriétés optiques de feuilles et

aiguilles.

Les modèles de transfert radiative (MTR) simulent la propagation du rayonnement dans les paysages

terrestres et l’atmosphère à partir d’une approche basée sur la modélisation physique des mécanismes

de diffusion mis en jeu. Ils s’appuient sur l’équation du transfert radiatif. Cette équation exprime

en tout point le changement du champ de rayonnement (luminance) le long d’une direction du fait

des phénomènes locaux d’absorption, de diffusion et d’émission thermique. Ces modèles peuvent être

robustes et précis, car ils peuvent travailler avec des représentations réalistes des paysages terrestres.

En général, la simulation de la réflectance et de la température de brillance à toute altitude, du bas

au haut de l’atmosphère, s’appuie sur 4 composantes :

1. Sol (e.g., modèle d’Hapke (Hapke, 1981)).

2. Elément foliaire (e.g., modèle PROSPECT (Jacquemoud, ; Feret, 2008)).

3. Couvert (e.g., modèle SAIL model (Verhoef, ).

4. Atmosphère (e.g., modèles MODTRAN (, ) et 6S (Vermote, 1997). Des modèles comme DART

(Gastellu-Etchegorry et al., 1996) simulaent la propagation du rayonnement dans le système "terre

- atmosphere".

Les diffusions multiples, et par suite la conservation de l’énergie, constituent la principale source

d’imprécision de ces modèles, car contrairement aux diffusions d’ordre 1, elles ne peuvent être représen-

tées par une expression analytique simple.

Les solutions des modèles de transfert radiatifs (TR) s’appuient en général sur une des approches

mathématiques suivantes : i) La méthode des N-flux ii) La méthode de radiosité iii) La méthode des

ordres successifs de diffusion (Successive Orders of Scattering : SOS) et iv) La méthode Monte-Carlo.

Dans la méthode N-flux, le rayonnement se propage le long de N directions discrètes, qui correspondent

aux équations du modèle de transfert radiatif. Par exemple, le modèle SAIL (Verhoef, 1984) utilise

quatre équations différentielles correspondantes aux quatre flux directionnels dans un paysage horizon-

talement homogène : une équation gère la propagation du flux solaire, deux équations gèrent la propa-

gation des 2 flux isotropes montants et descendants et une équation gère la propagation du rayonneent
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selon la direction d’observation du capteur. En fait, une modélisation relativement précise, dans le cas

de milieux réels, c’est à dire en présence de flux diffus non isotropes, peut nécessiter un beaucoup plus

grand nombre d’équations différentielles et de flux associés (ex : plus de 100) (Yin et al., 2013b). La

méthode de radiosité (Borel et al., 1991) repose sur un principe différent. Elle s’appuie sur des équations

qui expriment l’équilibre radiatif d’un nombre fini M de diffuseurs et absorbants, à l’aide de facteurs de

vue entre tous ces M éléments. Sa solution repose sur l’inversion de matrices qui nécessitent un temps

de calcul conséquent si M est trop grand, comme dans le cas de paysages contenant des éléments com-

plexes, comme les arbres. La méthode des ordres successifs de diffusion est une des plus anciennes

méthodes, et conceptuellement une des solutions les plus simples, pour représenter les diffusions multi-

ples. Elle utilise un calcul itératif de la diffusion. Ainsi, le modèle SOSVRT (Duan et al., 2010) simule

le TR polarisé dans des milieux plans, hétérogènes selon la verticale. La méthode de Monte-Carlo (MC)

implique la simulation d’une chaine d’évènements (diffusion, absorption) d’un photon à partir d’un

point source qui pour des raisons techniques n’est en général pas la source de rayonnement du système

étudié, mais le détecteur. L’avantage majeur de cette technique est que toute diffusion multiple est traitée

comme une suite de diffusions d’ordre 1. Elle ne s’appuie donc pas, à l’inverse des autres modèles, sur

des approximations de la modélisation des diffusions multiples (Disney et al., 2000). Sa contrainte ma-

jeure est le temps de calcul. En effet, de nombreux rayons doivent être envoyés pour chaque pixel de

l’image à simuler afin d’obtenir une solution convergente qui représente le comportement de la diffu-

sion des rayons à l’intérieur de la scène avec une précision donnée. Ainsi, une intégrale sur les photons

mesurés doit être effectuée, ce qui implique que plus la scène est détaillée, et plus le nombre de calculs

à effectuer pour chaque photon est grand. Des exemples connus de modèles sont Drat (Lewis, 1999),

FLIGHT (North, 1996) et Raytran (Govaerts, 1998).

En résumé, les modèles de transfert radiatifs peuvent opérer sur des représentations réalistes des

surfaces terrestres la Terre et de l’atmosphère, ce qui fait d’eux des outils idéaux pour relier les mesures

de télédétection aux paramètres de surface. Le modèle de transfert radiatif DART (Discrete Anisotropic

Radiative Transfer) est un des modèles 3D les plus complets pour simuler le transfert radiatif dans

le système "Terre - Atmosphère", dans le domaine spectral du visible à l’infrarouge thermique. Ce

modèle est développé depuis 1992. Il a pour objectif de simuler le signal optique des spectro-radiomètres

imageurs et des LiDARs multi-impulsions embarqués à bord des satellites et des avions, ainsi que le

bilan radiatif 3D, pour tout paysage naturel et urbain, et pour toutes les configurations expérimentales et

instrumentales. Il est distribué par l’Université Paul Sabatier sous forme de licences gratuites pour les

activités de recherche et d’enseignements.

Les 5 chapitres de ce mémoire présentent les travaux réalisés durant cette thèse. Ils correspondent à

6 papiers dans des journaux de rang A : 3 papiers publiés, 2 papiers soumis et 1 papier prêt à être soumis.

Mon objectif majeur a été d’améliorer le modèle DART dans le but de simuler les mesures des LiDARs

et radiomètres imageurs avec plus de précision, c’est-à-dire en prenant en compte leurs caractéristiques

instrumentales et leur géométrie d’acquisition. Le modèle DART est ainsi devenu beaucoup mieux

adapté à la validation des systèmes d’observation actuels et à la préparation des misions spatiales futures.
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Le premier chapitre introduit les généralités sur la modélisation dans DART. Pour des informations plus

détaillées sur la modélisation théorique développée, la meilleure référence est Gastellu-Etchegorry et al.

(1996). De plus, il résume la plupart des développements récents dans DART, qui sont présenté dans les

chapitres 2 à 5. Il s’agit de développements différents, mais très interdépendants.

• Chapitre 2: Discrétisation et sur-échantillonnage des directions. La distribution angulaire des

directions utilisées pour le suivi de rayons peut beaucoup impacter la simulation des mesures de

télédétection. J’ai conçu et implémenté une nouvelle méthode appelée "iterative uniform squared

discretization: IUSD" qui discrétise l’espace 4π en un nombre fini de directions discrètes le long

desquelles le rayonnement se propage dans DART. Cette méthode combine les avantages des

méthodes classiques DOM et FVM : forme angulaire bien définie et un point central exact pour

chaque direction. Elle utilise des secteurs angulaire carrés. L’emploi d’une expression analytique

pour décrire ce secteurs permet l’ajout de directions quelconques (e.g., direction d’observation

d’un satellite) et le sur-échantillonnage de régions angulaires. Un intérêt majeur de l’approche est

que le transfert radiatif peut ensuite être calculé avec une approche qui combine des intégrations

numériques et des intégrations analytiques, ce qui accélère beaucoup les calculs. Les moments

0th et 1st de la discrétisation classique sont exactement définis. Le sur-échantillonnage de régions

de la sphère est bien adapté au cas de la diffusion anisotrope (e.g. hot spot). Plusieurs cas sont

étudiés : forme optimale des secteurs angulaires sur la sphère 4π , sur-échantillonnage de plans et

régions de la sphère, et emploi de directions non centrées sur leurs secteurs angulaires Ωn pour

améliorer la modélisation du transfert radiatif. Les résultats montrent la supériorité de la méthode

IUSD par rapportaux méthodes DOM et FVM.

• Chapitre 3 : Simulation de capteurs passifs imageurs avec champ de vue (FOV) fini. Le FOV des

capteurs de télédétection n’est pas nul, comme cela est en général considéré dans les modèles de

télédétection. Par suite, les pixels d’une même image sont observés selon des directions de visée

différentes. Négliger cette variation des directions de visée est source d’incohérence entre les

mesures simulées et mesurées. En effet, la création d’images d’objets 3D sur un plan 2D implique

une projection spécifique qui conditionne les luminances mesurées : distorsion géométrique (e.g.

un objet proche du capteur apparaît plus grand dans l’image), et variation angulaire de la lumi-

nance selon la direction de visée à l’intérieur du FOV. En synthèse d’image, la projection "per-

spective" (Sonka et al., 2008) est utilisée pour les caméras, et la projection "parallèle-perspective"

(Chai and Shum, 2000; Gupta and Hartley, 1997; Zhu et al., 2004) est utilisée pour les capteurs qui

observent dans un plan qui coupe la direction de la plateforme. La prise en compte de ces projec-

tions est essentielle pour obtenir des simulations précises. Par suite, j’ai introduit dans DART une

modélisation qui tient compte de la projection perspective 3D: la méthode "convergent tracking

and perspective projection : CTPP". Ainsi, le domaine d’application de DART a été largement

étendu. Cette approche a été utilisée pour améliorer les résultats obtenus par Schneider et al.

(2014a) lors de la comparaison pixel à pixel de simulations DART et du capteur hyperspectral
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APEX (Appeendix II) dans le cas d’une forêt alpine.

• Chapitre 4. LiDAR. Ce chapitre comprend 2 sections.

– Section 4.1: Simulation de forme d’onde due à une impulsion LiDAR. Un LiDAR forme

d’onde (wLiDAR) mesure le temps de retour de l’impulsion qu’il a émise. Le signal élec-

tyrique associé est enregistré en tant que suite de points de mesure (bin) (Shan and Toth,

2008). Une forme d’onde LiDAR indique à la fois la distance entre le LiDAR et le milieu

observé et la distribution de la matière à l’intérieur de ce milieu. Le fait de disposer de

modèles d’acquisition LiDAR est essentiel pour bien comprendre et exploiter les mesures

LiDARs. Cette section présente la modélisation quasi Monte Carlo originale qui a été intro-

duite dans DART pour simuler les mesures LiDARs. Cette modélisation s’appuie sur deux

méthodes originales conçues pour accélérer le choix des directions de diffusion et pour ef-

fectuer le suivi des photons en mode direct. Elle opère pour toute configuration (altitude de

la plateforme, direction de visée, dimension du footprint, etc.). La modélisation au sein de

l’atmosphère est introduite, ce qui est très original par rapport aux autres modèles LiDARs

de la communauté scientifique.

– Section 4.2: Simulation de mesure LiDAR multi-impulsions. L’acquisition de formes d’onde

associées à l’émission de multiples impulsions selon différentes directions génère un nuage

3-D de points qui renseignent sur les propriétés optiques et la position des diffuseurs qui sont

à l’origine des signaux mesurés (Wagner, et al., 2006). Les wLiDARs embarqués sur avion

(airborne laser scan : ALS) opèrent avec un petit footprint dans une zone définie par la plate-

forme et la configuration du LiDAR (Mallet and Bretar, 2009). Les points du nuage 3-D peu-

vent être classés en tant qu’élément d’occupation du sol (sol, couvert végétal, etc.) (Zhang

et al., 2003). De même les TLSs sont de plus en plus utilisés pour mesurer l’architecture des

arbres (Rosell et al., 2009). Cette section présente une extension de la modélisation LiDAR

mono-impulsion de DART au cas de la confguration LiAR multi-impulsions satellite, aéro-

portée et terrain. Un point technique important est que les produits de simulation peuvent

être exportés dans un format standard : sorted pulse data (SPD) (Bunting et al., 2013b). Par

suite, les produits DART peuvent être traités avec SPDlib (Bunting et al., 2013a), c’est-à-

dire un logiciel de traitement LiDAR dédié. J’ai aussi étendu la modélisation DART au cas

des LiDARs dits à comptage de photons (pcLiDAR) (Montesano et al., 2015). De plus, j’ai

introduit la modélisation du bruit solaire. La modélisation LiDAR est illustrée avec la sim-

ulation de plusieurs systèmes : Carnegie Airborne Observatory (CAO : Asner et al. (2012,

2007)), ILRIS terrestrial LiDAR system de Optech Inc (www.optech.com), et le Multiple Al-

timeter Beam Experimental LiDAR (MABEL, McGill et al. (2013)) de la NASA. Le cas de

l’Advanced Topographic Laser Altimeter System (ATLAS : Anthony et al. (2010)) qui sera

prochainement embarqué sur le satellite "Ice, Cloud, and Land Elevation Satellite" (ICESat-

2, Abdalati et al. (2010)) est aussi considéré.
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• Chaptre 5: Fusion en vol de mesures de radiomètre et LiDAR. Des capteurs avec différentes car-

actéristiques t /ou qui opèrent selon différentes configurations fournissent des informations com-

plémentaires sur les surfaces terrestres observées. Ceci est typiquement le cas des mesures des

LiDARs et radiomètres. Pour faciliter la superposition géométrique de ces types d’information,

une solution classique consiste à embarquer les différents capteurs considérés sur la même plate-

forme. Cette approche permet de fusionner les données acquises directement en vol (Asner et al.,

2007), ou bien après. Plusieurs systèmes opèrent ainsi : CAO, NEON AOP (National Ecological

Observatory’s Airborne Observation Platform : Kampe et al. (2010)), et G-LIHT (Goddard’s Li-

DAR, Hyperspectral and Thermal Airborne Imager : Cook et al. (2013)). J’ai conçu une méthode

originale de fusion des données de LiDAR et de radiomètre. L’approche repose sur la simulation

de capteur à FOV non nul introduite au chapitre 3 et la modélisation LiDAR multi-impulsion in-

troduite au chapitre 4. Il s’agit d’une configuration à deux sources (soleil, LiDAR) et un capteur

(LiDAR). Cette fusion est illustrée ave le cas de couverts urbains et végétaux.

Les développements présentés ci-dessus ont été réalisés en étroite collaboration avec les membres

de l’équipe DART, à la fois pour la partie informatique et pour la modélisation physique. Ainsi, j’ai

beaucoup collaboré avec Nicolas Lauret pour la conception et l’amélioration de la modélisation LiDAR.

D’autre part, le fait que DART soit distribué sous la forme de licences (par l’Université Paul Sabatier) à

des utilisateurs qui travaillent dans des domaines et centres de recherche très divers a de fortes implica-

tions sur les méthodes de travail au sein de l’équipe DART, comme indiqué ci-dessous.

• Conception et implémentation de nouvelle modélisation et de nouvelles fonctionnalités.

Ces développements sont souvent effectués dans le cadre de projets ou collaborations avec des

détenteurs de licences, avec l’objectif de développer la physique de DART. Par exemple, la col-

laboration avec NASA GSFC a contribué au développement de la modélisation du LiDAR, dans le

cadre de la préparation de la mission DESDynl mission. En général, l’introduction / amélioration

de nouvelles fonctionnalités est décidée lors de réunions hebdomadaires, et est réalisée par les

personnes de l’équipe les plus concernées, sous la supervision de Nicolas Lauret qui assure le rôle

de responsable de l’informatique de DART.

• Aide pour les détenteurs de licences DART.

Vu le nombre de licenciés DART, des demandes d’aide et de clarification sont régulièrement trans-

mises à l’équipe. Jean-Philippe Gastellu-Etchegorry gère les relations avec tous les détenteurs de

licence, y compris le site internet de DART. Certaines demandes se traduisent par le besoin de

corriger ou d’améliorer une fonctionnalité de DART. Ce travail est alors réalisé par le membre de

léquipe le plus concerné par la demande scientifique/technologique. Par exemple, Thomas Ca-

jgfinger et Tristan Grégoire gèrent les demandes concernant les bases de données SQL, Jordan

Guilleux et Nicolas Lauret gèrent les demandes concernant l’interface graphique, etc. Durant ma

thèse, j’ai géré les questions concernant la modélisation du TR atmosphérique et du LiDAR, ainsi
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que la simulation de caméra et pushbroom. Toute nouvelle implémentation est effectuée sous le

contrôle de Nicolas Lauret.

• Travail informatique pour maintenir DART opérationnel.

Le maintien de DART en tant qu’outil opérationnel implique beaucoup de travail, au vu de

l’importance du code (400 000 lignes de code) et des outils informatiques mis en jeu. Ainsi,

il est nécessaire de maintenir et mettre à jour les systèmes d’exploitation, les librairies C++, Java,

Python, les librairies SQL. Il est aussi nécessaire de maintenir et mettre à jour les systèmes qui

gèrent les tests de non régression, la compilation croisée, la distribution des versions de DART,

etc. Ceci est majoritairement fait par Tristan Gregoire et Nicolas Lauret. Les tâches à effectuer

ne sont pas toujours prévisibles. Par exemple, fin 2014, il est apparu que le code Java SWT qui

est utilisé dans l’interface graphique de DART (GUI) est de moins en moins compatible avec

l’évolution des systèmes Linux. Ceci implique de réécrire entièrement l’interface graphique de

DART, c’est-à-dire près de 18 mois de développement. Ce développement est effectué par Jordan

Guilleux. Il débouchera sur une interface très améliorée de DART. Tout le travail informatique est

fait sous la supervision de Nicolas Lauret.

19



20



Chapter 1

Introduction to DART Version 5

Radiative transfer models capable of simulating the Earth and atmosphere complexity are, therefore,

ideal tools for linking remotely sensed data to the surface parameters. The Discrete Anisotropic Radia-

tive Transfer (DART) model is one of the most comprehensive physically based 3D models simulating

the Earth-atmosphere radiation interaction from visible to thermal infrared wavelengths.

In this chapter, the physical bases of DART and its latest functionality for simulating imaging spec-

troscopy of natural and urban landscapes with atmosphere, including the perspective projection of air-

borne acquisitions and LIDAR waveform and photon counting signals, are generally introduced in Sec-

tion 1.1 with the article "Discrete anisotropic radiative transfer (DART 5) for modeling airborne and

satellite spectro-radiometer and LIDAR acquisitions of natural and urban landscapes". This article can

be considered as the summary of my dissertation. I am the second author of this article. Jean-Philippe

Gastellu-Etchegorry plays the leading role in this article for organizing materials, writing background,

developing theory, and analyzing simulations in this article. I contribute to DART 5 developments, im-

plementations, in different scientific domains presented in the paper. They include passive sensor image

simulation model, single-pulse and multi-pulse LIDAR model, imaging spectroscopy and LIDAR fusion

model, and Atmosphere-Earth coupling model. For the other authors’ contributions, please refer to the

Author Contributions section of the article.

The major points that are covered in this article are detailed in Chapters 2 to 5, with one or two papers

per chapter. The direction discretization (Section 2 of the paper in Chapter 1) is detailed in Chapter 2.

The multi-view sensor image simulation (Section 5 of the paper in Chapter 1) is detailed in Chapter 3.

The LIDAR simulation (Section 4 of the paper in Chapter 1) is detailed in Chapter 4. The in-flight fusion

simulation (Section 6 of the paper in Chapter 1) is detailed in Chapter 5.

1.1 Article: Discrete anisotropic radiative transfer (DART 5) for model-
ing airborne and satellite spectroradiometer and LIDAR acquisitions
of natural and urban landscapes
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policy makers, and managers for studying and managing forests, agriculture crops, and urban 

areas. Their data acquired with given instrumental specifications (spectral resolution, 

viewing direction, sensor field-of-view, etc.) and for a specific experimental configuration 

(surface and atmosphere conditions, sun direction, etc.) are commonly translated into 

qualitative and quantitative Earth surface parameters. However, atmosphere properties and 

Earth surface 3D architecture often confound their interpretation. Radiative transfer models 

capable of simulating the Earth and atmosphere complexity are, therefore, ideal tools for 

linking remotely sensed data to the surface parameters. Still, many existing models are 

oversimplifying the Earth-atmosphere system interactions and their parameterization of 

sensor specifications is often neglected or poorly considered. The Discrete Anisotropic 

Radiative Transfer (DART) model is one of the most comprehensive physically based 3D 

models simulating the Earth-atmosphere radiation interaction from visible to thermal 

infrared wavelengths. It has been developed since 1992. It models optical signals at the 

entrance of imaging radiometers and laser scanners on board of satellites and airplanes, as 

well as the 3D radiative budget, of urban and natural landscapes for any experimental 

configuration and instrumental specification. It is freely distributed for research and teaching 

activities. This paper presents DART physical bases and its latest functionality for simulating 

imaging spectroscopy of natural and urban landscapes with atmosphere, including the 

perspective projection of airborne acquisitions and LIght Detection And Ranging (LIDAR) 

waveform and photon counting signals. 

Keywords: radiative transfer; DART 5 model; imaging spectroscopy; spectroradiometer; 

LIDAR; camera projection 

 

1. Background 

Remote sensing (RS) observations facilitate global studies of the land surface and biophysical 

properties of vegetation (e.g., leaf biomass, soil moisture). In this study, we are addressing Imaging 

Spectroscopy (IS) and LIght Detection and Ranging (LIDAR) RS techniques that are mapping the Earth 

landscapes from the visible to the thermal infrared spectral domains (between 0.3 μm and 50 µm). 

Imaging spectroradiometers measure fluxes (radiance) as two-dimensional (2D) arrays (images). 

Radiance fluxes can be transformed into landscape reflectance  (ratio of reflected and incident 

radiation) of visible (VIS) and near infrared (NIR) wavelengths, and into landscape brightness 

temperature TB in the case of thermal infrared (TIR) acquisitions. Satellite IS sensors acquire Top Of 

Atmosphere (TOA) data, a combination of scattering and absorption from the Earth surface and 

atmosphere, whereas airborne RS observations are typically considered as Bottom Of Atmosphere 

(BOA) if acquired right above the Earth surface. LIDAR sensors use a laser beam as a photon source 

and measure the travel time between the laser pulse emission and its reflected return to calculate the 

range (distance) to the objects encountered by the emitted pulse. The combination of range 

measurements with knowledge of platform location and attitude provides a three-dimensional (3D) 

representation of the observed landscape.  
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Empirical relationships, such as the correlation of RS and field-measured data (e.g., Leaf Area 

Index—LAI), were one of the first methods used for RS data interpretation. A typical example is the 
estimation of LAI from the Normalized Difference Vegetation Index, defined as NDVI  [1]. 

Although simple, fast and straightforward, these methods are site and sensor specific, and thus 

insufficiently robust and universally inapplicable. Increasing demand for more universal satellite data 

products for landscape characteristics has spurred advances in theoretical understanding and modeling 

of IS and LIDAR signals of 3D landscapes for various experimental and instrumental configurations 

(radiometric accuracy, spatial/spectral/temporal resolutions, etc.). IS signals correspond essentially to 

the bi-directional reflectance factor (BRF) and brightness temperature function (BTF). Instrumental 

configuration is given by sensor technical specifications, including: field-of-view (FOV),  

full-width-at-half-maximum (FWHM), spectral sampling, and viewing geometry. Experimental 

configuration corresponds to:  

(1) The date of acquisition (sun angular position),  

(2) Landscape geometrical configuration and optical properties  

(3) Atmospheric parameters (gas and aerosol density profiles, scattering phase functions and single 

scattering albedo).  

It must be noted that improvement of recent RT models requires, in general, advancement in 

representation of landscapes, as their 3D complexity (i.e., topography, distribution of trees and  

buildings, etc.) greatly affects optical observations. Three most frequent types of BRF simulating models, 

ordered according to their increasing complexity, are: semi-empirical, geometrical optical and radiative  

transfer models.  

1.1. Semi-Empirical Models 

These models are widely used for their analytical nature and use of only a few input parameters. They 

do not attempt to describe the biophysical parameters and processes that shape BRF, but they provide a 

mathematical description of observed patterns in BRF datasets. They rely on simplified physical 

principles of geometrical optical (GO) models and RT theory. For example, linear kernel driven (LiK) 

models [2–4] calculate BRF as the sum of an isotropic term and anisotropic functions (kernels) that 

characterize volume and surface scattering. For example, MODIS, POLDER, MSG/SEVIRI, AVHRR, 

VEGETATION land surface BRF/albedo products are mainly generated using LiK models to invert the 

BRF parameters of multi-angular bidirectional reflectance in clear skies [5]. Another example is the 

Rahman-Pinty-Verstraete (RPV) model [6], and its latter inversion accelerating versions: the Modified 

RPV (MRPV) [7] and EMRPV [8] models. These models are widely used for their analytical nature and 

use of only few input parameters.  

1.2. Geometric Optical Reflectance Models  

Geometric optical (GO) models simulate the BRF of objects on the Earth surface as a function of their 

physical dimensions and structure. For instance, they consider forest stands as a combination of 

approximated geometrical shapes of tree crowns with corresponding shadows and background forest 

floor material [9], each of them with predefined surface optical properties that integrate implicitly the 

24



Remote Sens. 2015, 7 1670 
 
volume light scattering. Modeling is based on the computation of scene fractions of sunlit canopy, sunlit 

background, and shadows, which is a potential source of modeling inaccuracy. Therefore, GO models 

perform better in simulations of “open” landscapes (e.g., sparse forest stands). Li and Stralher [10] 

developed one of the first GO models. More recent 4-scale model [11] simulates tree crowns as discrete 

geometrical objects: cone and cylinder for conifers, and spheroid for deciduous trees. Individual leaves in 

deciduous canopies and shoots in conifer canopies, defined with a given angular distribution, populate 

branches with a single inclination angle. This model uses a geometrical multiple scattering scheme with view 

factors [12]. The 5-Scale model [13] is an extension of 4-Scale that includes the LIBERTY model [14], 

which simulates needle-leaf optical properties.  

1.3. Radiative Transfer Models  

Radiative transfer (RT) models, also called physical RT models, simulate the propagation of radiation 

through Earth systems and the RS acquisitions using physically described mechanisms. They rely on an 

RT equation, which relates the change in radiation along a ray path due to local absorption, scattering 

and thermal emission. Since these models work with realistic representations of Earth landscapes, they 

can be robust and accurate. Generally speaking, simulation of BOA and TOA BRF and BTF involves 

RT of four components:  

(1) Soil (e.g., Hapke model [15]) 

(2) Foliar element (e.g., PROSPECT model [16]) 

(3) Canopy (e.g., SAIL model [17])  

(4) Atmosphere (e.g., MODTRAN [18] or 6S [19] models).  

Some models, such as the Discrete Anisotropic Radiative Transfer (DART) model [20], directly 

simulate the Earth-atmosphere interactions using inputs from soil and leaf RT models. Multiple 

scattering and consequently energy conservation is the usual major source of inaccuracies of these 

models, because, conversely to first order scattering, it has no simple analytical form.  

The solutions of RT models are based on the following four mathematical methods: (i) N-flux,  

(ii) radiosity, (iii) Successive Orders of Scattering, and (iv) Monte Carlo. In case of N-flux method, the 

radiation is propagated along N number of discrete ordinates (directions), which correspond to N RT 

equations. For example, the SAIL model [17] uses four differential equations corresponding to four 

directional fluxes within a horizontally homogeneous landscape: one sun flux, two isotropic upward and 

downward fluxes and one flux along a sensor viewing direction. However, a more detailed consideration 

of the RT anisotropy can require a much larger number of fluxes (e.g., more than 100) [21]. Contrary to the 

N-flux method that computes the volumetric radiation balance in the 3D space, the radiosity method [22] is 

based on the radiation balance equation of a finite number N of discrete scatterers, which requires 

computation of the view factors between all N elements. It is, therefore, based on inversion of a NxN 

matrix, which is time consuming if N is too large, e.g., in case of complex landscape elements such as 

trees. The Successive Orders of Scattering (SOS) method is one of the oldest and conceptually simplest 

solutions of the multiple scattering. It uses an iterative calculation of successive orders of scattering, where 

the total radiance vector is expressed as a sum of contributions from photons scattered a number of times 

ranging from 0 to a pre-defined maximum number. An example is the SOSVRT model [23] that simulates 
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polarized RT in vertically inhomogeneous plane-parallel media. The Monte Carlo (MC) method involves 

simulation of the chain of scattering events incurred by a photon in its path from the source to the receiver 

or to its absorber. An advantage of this technique is explicit computation of only single scattering 

properties [24]. On the other hand, it requires long computational time, which is a strong technical 

limiting constraint. Well-known examples of MC models are Drat [25], FLIGHT [26] or Raytran [27].  

Finally, RT models work with landscapes that are simulated as homogeneous or heterogeneous 

scenes. Homogeneous scenes are represented as a superposition of horizontally homogeneous layers of 

turbid medium (i.e., random distribution of infinitely small planar elements). The very first RT models 

used this approach to model general trends such as the evolution of crop BRF/BTF in relation to 

phenological LAI changes. The approach of homogeneous turbid layers is, however, insufficient for 

description of complex landscape architectures. The heterogeneous landscapes are being simulated in 

two following ways (or their combination): (i) discretization of the spatial variable into a 3D set of spatial 

nodes called voxels [28,29] that contain turbid medium, and/or (ii) representation of each individual 

landscape element with triangular facets as geometrical primitives.  

The objective of this paper is to present the latest advances in DART (DART 5 version) modeling of 

airborne and satellite IS as well as LIDAR data of architecturally complex natural and urban landscapes. 

After introducing the physical theory, we present recent development in DART modeling of IS and LIDAR 

acquisitions. Finally, an ability to simulate airborne image acquisitions with the projective perspective and 

also a fusion of modeled IS with LIDAR data are demonstrated as new model functionalities. 

2. DART Theoretical Background and Functions 

DART is a three-dimensional (3D) model computing radiation propagation through the entire  

Earth-atmosphere system in the entire optical domain from visible to thermal infrared parts of the 

electromagnetic spectrum (EMS) [30,31]. As shown in Figure 1, it simulates 3D radiative budget and 

reflected radiation of urban and natural landscapes as acquired by imaging radiometers and LIDAR 

scanners aboard of space and airborne platforms. The DART model, developed in the CESBIO Laboratory 

since 1992, can work with any 3D experimental landscape configuration (atmosphere, terrain 

geomorphology, forest stands, agricultural crops, angular solar illumination of any day, Earth-atmosphere 

curvature, etc.) and instrument specifications (spatial and spectral resolutions, sensor viewing directions, 

platform altitude, etc.). DART forward simulations of vegetation reflectance were successfully verified by 

real measurements [32] and also cross-compared against a number of independently designed 3D reflectance 

models (e.g., FLIGHT [26], Sprint [33], Raytran [27]) in the context of the RAdiation transfer Model 

Intercomparison (RAMI) experiment [34–38]. To date, DART has been successfully employed in various 

scientific applications, including development of inversion techniques for airborne and satellite 

reflectance images [39,40], design of satellite sensors (e.g., NASA DESDynl, CNES Pleiades, CNES 

LIDAR mission project [41]), impact studies of canopy structure on satellite image texture [42] and 

reflectance [32], modeling of 3D distribution of photosynthesis and primary production rates in vegetation 

canopies [43], investigation of influence of Norway spruce forest structure and woody elements on 

canopy reflectance [44], design of a new chlorophyll estimating vegetation index for a conifer forest 

canopy [45], and studies of tropical forest texture [46–48], among others.  
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Figure 1. DART cell matrix of the Earth/Atmosphere system. The atmosphere has three 

vertical levels: upper (i.e., just layers), mid (i.e., cells of any size) and lower atmosphere (i.e., 

same cell size as the land surface). Land surface elements are simulated as the juxtaposition 

of facets and turbid cells. 

DART creates and manages 3D landscapes independently from the RT modeling (e.g., visible and 

thermal infrared IS, LIDAR, radiative budget). This multi-sensor functionality allows users to simulate 

several sensors with the sample landscape. Major scene elements are: trees, grass and crop canopies, 

urban features, and water bodies. A DART simulated tree is made of a trunk, optionally with branches 

created with solid facets, and crown foliage simulated as a set of turbid cells, with specific vertical and 

horizontal distributions of leaf volume density. Its crown shape is predefined as ellipsoidal, conical, 

trapezoidal, or others. Trees of several species with different geometric and optical properties can be 

exactly or randomly located within the simulated scene of any user-defined size. Grass and crops are 

simulated as turbid media that can be located anywhere in space. Urban objects (houses, roads, etc.) 

contain solid walls and a roof built from facets. Finally, water bodies (rivers, lakes, etc.) are simulated 

as facets of appropriate optical properties. Specific 3D transformations and optical properties can be 

assigned to each landscape object. Additionally, DART can use external libraries (Figure 2) to import, 

and to some extent edit (e.g., translation, homothetic and rotation transformations) landscape elements, 

digital elevation models (DEM) and digital surface models (DSM) produced by other software or 

measured in field. Importantly, the imported and DART-created landscape objects can be combined to 

simulate Earth scenes of varying complexity. The optical properties of each landscape element and the 

geometry and optical properties of the atmosphere are specified and stored in SQL databases. 
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a)  b)  c)  d)  e)  f)  

Figure 2. Examples of natural and artificial 3D objects imported by DART, simulated using 

triangular facets: (a) wheat plant, (b) corn plant, (c) rice canopy, (d) sunflower plant,  

(e) cherry tree and (f) airplane. 

DART landscapes, hereafter called “scenes”, are constructed with a dual approach as an array of 3D 

cells (voxels) where each scene element, with any geometry, is created as a set of cells that contains 

turbid media and/or facets (triangles and parallelograms). Turbid medium is a statistical representation 

of a matter, such as fluids (air, soot, water, etc.) and vegetation foliage or small-sized woody elements. 

A fluid turbid medium is a volume of homogeneously distributed particles that are defined by their 

density (particles/m3), cross section (m2/particle), single scattering albedo, and scattering phase function. 

Turbid vegetation medium is a volume of leaf elements that are simulated as infinitely small flat surfaces 

that are defined by their orientation, i.e., Leaf Angle Distribution (LAD; sr−1), volume density (m2/m3), 

and optical properties of Lambertian and/or specular nature. Finally, a facet is a surface element that is 

defined by its orientation in space, area and optical properties (Lambertian, Hapke, RPV and other 

reflectance functions with a specular component, and also isotropic and direct transmittance). It is used 

to build virtual houses, plant leaves, tree trunks or branches. Vegetation canopies can, therefore, be 

simulated as assemblies of turbid medium voxels or geometrical primitives built from facets or 

combination of both.  

Atmospheric cells were introduced into DART in order to simulate attenuation effects for satellite  

at-sensor radiance and also to model the influence of atmosphere on the radiative budget of Earth 

surfaces. The atmosphere can be treated as an interface above the simulated Earth scene or as  

a light-propagating medium above and within the simulated Earth scene, with cell sizes inversely 

proportional with the particle density. These cells are characterized by their gas and aerosols contents and 

spectral properties (i.e., phase functions, vertical profiles, extinction coefficients, spherical albedo, etc.). 

These quantities can be predefined manually or taken from an atmospheric database. DART contains a 

database that stores the properties of major atmospheric gases and aerosol parameters for wavelengths 

between 0.3 m and 50 m [18]. In addition, external databases can be imported, for instance from the 

AErosol RObotic NETwork (AERONET) or the European Centre for Medium-Range Weather Forecasts 

(ECMWF). Atmospheric RT modeling includes the Earth-atmosphere radiative coupling (i.e., radiation 

that is emitted and/or scattered by the Earth can be backscattered by the atmosphere towards the Earth). It 

can be simulated for any spectral band within the optical domain from the ultraviolet up to the thermal 

infrared part of electromagnetic spectrum. The Earth-atmosphere coupling was successfully  

cross-compared [49,50] with simulations of the MODTRAN atmosphere RT model [18].  

A basic DART simulation procedure is carried out with four processing modules: (i) Direction,  

(ii) Phase, (iii) Maket, and (iv) Dart (Figure 3). The Direction module computes discrete directions of 
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light propagation with radiation being propagated along N discrete directions n with an angular sector 

width n (sr). Any number of N discrete directions (n, n) can be specified with any n angular 

distribution and for any n solid angle range, as for example for oversampling angular regions with an 

anisotropic radiative behavior such as the hop spot configuration [51]. The discrete directions are 

calculated automatically or adapted to any user specified configuration. They include a set of U directions 

that sample the 4 space (∑  4) and V directions (v, v) that are called fictive directions 

because fluxes along these directions do not contribute to fluxes along any other direction where N = U + V. 

Importantly, in addition to these discrete directions, DART can also track radiation along any direction in 

the 4 space, for example for simulating airborne acquisitions and LIDAR signals. These so-called flexible 

directions are not pre-defined. Their number depends on the number of emitting and scattering elements 

towards the sensor. Depending on the scene dimensions, the number of flexible directions can exceed 106.  

Optical properties for all non-flexible discrete directions are pre-computed with the Phase module. It 

computes the scattering phase functions of all scene and atmosphere elements depending on their 

geometry and optical properties. For example, the phase functions of vegetation depend on the actual 

leaf reflectance and transmittance and the plant specific LAD. 

The Maket module builds the spatial arrangement of landscape elements within a simulated scene. 

Scene features are created and/or imported as 3D objects with specified optical properties. Importantly, 

scene cell dimensions (x, y, z) define the output spatial sampling, and cell dimensions in DART can 

be varied within the same scene in order to optimize the final resolution.  

Finally, the Dart module computes radiation propagation and interactions for any experimental and 

instrumental configuration using one of the two computational approaches: (i) Ray tracking and  

(ii) Ray-Carlo. Ray tracking simulates radiative budget and images of optical airborne and satellite 

radiometers. For that, it tracks iteratively radiation fluxes W(r, n) along N discrete directions (n), and 

one flexible flux, at any location r [20,21]. These fluxes are defined by three components: their total 

intensity, the radiation unrelated to leaf biochemistry and the polarization degree associated to first order 

scattering. The values of these components depend on thermal emission and/or scattering, which in turn 

depend on local temperature and optical properties of intercepted surfaces or volumetric scattering 

elements. A scattering event at iteration i gives rise to N fluxes, and the event is repeated in latter 

iterations. The fraction of W(r, i) that is scattered along a given j direction is defined by the local 

scattering phase function P(i j), with i being a non-fictive discrete direction, or a set of discrete 

directions, and j being a direction that can be discrete, fictive and flexible.  

The second modeling approach simulates terrestrial, airborne, and satellite LIDAR signals from 

waveforms and photon counting RS instruments. It combines two methods that are described in the 

LIDAR section. Using Monte Carlo and ray tracking techniques [52–54], the Ray-Carlo method tracks 

radiometric quantities corresponding to photons with specific weights, which are for simplicity reasons 

called just photons. During a scattering event, the so-called Box method determines the discrete direction 

of photon scattering using the same scattering functions as the Ray tracking approach. Simultaneously a 

photon with a very small weight is tracked to the LIDAR sensor. Ray tracking can additionally simulate 

solar noise that is present in a LIDAR signal.  
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Figure 3. Scheme illustrating DART model architecture: four processing modules (Direction, 

Phase, Maket, Dart) and input data (landscape, sensor, atmosphere) are controlled through a GUI 

or pre-programmed scripts. The Sequence module can launch multiple DART simulations 

simultaneously on multiple processor cores producing effectively several RT products.  

Apart from the four basic modules, the following supportive tools are integrated in DART distribution 

to facilitate quick and easy simulations and subsequent analysis of simulated results:  

- Calculation of foliar reflectance and transmittance properties with the PROSPECT leaf RT model [16], 

using leaf biochemical properties (i.e., total chlorophyll content, carotenoid content, equivalent 

water thickness and leaf mass per area) and leaf mesophyll structural parameter. 

- Computation of scene spectra and broadband image data (reflectance, temperature brightness, and 

radiance), using a sensor specific spectral response function for either a single DART simulation 

with N spectral bands, or for a sequence of N single spectral band simulations.  

- Importation of raster land cover maps for creating 3D landscapes that contain land cover units, 

possibly with 3D turbid media as vegetation or fluid (air pollution, low altitude cloud cover, etc.).  

- Importation or creation of Digital Elevation Models (DEM). DEMs can be created as a raster  

re-sampled to the DART spatial resolution or imported either from external raster image file or as 

a triangulated irregular network (TIN) object.  

- Automatic initiation of a sequence of Q simulations with the Sequence module. Any parameter 

(LAI, spectral band, date, etc.) A1, …, AM can take N1, …, NM values, respectively, with any variable 

grouping (Q ∏ N ). Outcomes are stored in a Look-Up Table (LUT) database for further 

display and analysis. It is worth noting that a single ray tracking simulation with N bands is much 

faster than the corresponding N mono-band simulations (e.g., 50 times faster if N > 103).  
- The simulated 3D radiative budget can be extracted and displayed over any modeled 3D object 

and also as images of vertical and horizontal layers of a given 3D scene.  

- The transformation from facets to turbid medium objects converts 3D plant objects (trees) 

composed of many facets (> 106) into a turbid vegetation medium that keeps the original 3D 

foliage density and LAD distribution. This method remediates constraints limiting RT simulations 
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with many vegetation objects (e.g., forest) that lead to too large computational times and computer 

memory requirements. 

- The creation of 3D objects by using volumes with pre-defined shapes that can be filled with various 

3D objects (triangles, discs, etc.). This functionality allows a quick test of simple hypotheses, as 

for instance the influence of vegetation leaf shape and size in turbid media simulations.  

- The transformation of LIDAR multi-pulse outputs into industrial Sorted Pulse Data (SPD) format 

[55]. Implementation of the SPDlib software allows users to create, display, and analyze their own 

LIDAR point clouds [56].  

- Display tools for visualization and quick analysis of spectral images and LIDAR waveform and 

photon counting outputs, etc.  

While the basic DART modules are programmed in C++ language (~400,000 lines of code), most 

external tools are written in Python language. In addition, a Graphic User Interface (GUI), programmed in 

Java language, allows users to manage model inputs (RT approach, scene geometry, view direction, etc.), 

to specify required output products (BRF, radiative budget, etc.), display results, and run the external 

scripts. A strong feature of DART is acceleration of RT modeling using multithreaded computation, 

allowing use of a specified number of processor cores simultaneously, which results in a near linear 

scaling of the processing time. 

3. Ray Tracking Approach for Modeling Spectroradiometer Acquisitions  

Ray tracking in heterogeneous 3D landscapes [20] and atmosphere [50] is based on exact kernel and 

discrete ordinate methods with an iterative and convergent approach. Radiation intercepted by scene 

elements at iteration i is scattered during the following iteration i + 1. The iterative process stops when 

the relative difference in scene exitance between two consecutive iterations is less than a specified 

threshold. In addition, any ray is discontinued if its angular power (W ⋅ sr ) is smaller than the scene 

mean angular power that is scattered at first iteration, multiplied by a user specified coefficient.  

The ray tracking approach has three simulation modes: reflectance (R), temperature (T), and 

combined (R + T). The R mode allows simulating the shortwave optical domain using the sun as the 

primary source of radiation and the atmosphere as the secondary source. Landscape and atmosphere 

thermal emissions are neglected. The opposite is true in the (T) mode, where the solar radiation is 

neglected. Finally, all radiation sources are combined in (R + T) mode, which is particularly useful for 

simulating RS signals in the spectral domain of 3–4 µm. Dependence of thermal emission on temperature 

and wavelength is modeled with Planck’s law, while the Boltzmann’s law can be used when simulating 

radiation budget over the whole electromagnetic spectrum.  

The finite DART simulation can be conducted over three landscape arrangements: an infinite 

repetitive landscape with repetitive topography, an infinite repetitive landscape with continuous 

topography, and a spatially isolated scene, each of them managing exiting rays differently. A ray  

{A - A1} that exits the flat infinite repetitive scene at point A1 re-enters the scene through the symmetric 

point B1 along the same direction (Figure 4). The path ray {A - A1 - B1 - A2 - B2 - …- C} is, therefore, 

equivalent to the path {A - C'}. In a similar fashion, a ray {A - A1} that exits the infinite repetitive scene 

with continuous topography at point A1 re-enters the scene under the same direction through the point B1, 

which is vertically shifted by the distance equal to the ground altitude offset between the exit and re-entry 
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sides of the scene. In case of an isolated scene, a ray that exits the scene is dismissed; i.e., it does not re-enter 

the scene.  

  

Figure 4. Simulation of a flat infinite repetitive landscape. 

The Earth-atmosphere RT is simulated in five consecutive stages (Figure 5) [50]:  

- Stage 1 is tracking the sun radiation and the atmosphere thermal emission through the atmosphere. 

It calculates radiance transfer functions per cell and per discrete direction from the mid/high 

atmosphere interlayer to the sensor, TOA and BOA levels. This stage gives the downward BOA 

radiance LBOA(), upward TOA radiance LTOA() and also upward Lsensor() and downward 

Lsensor() radiance at sensor altitude.  

- Stage 2 is tracking within the landscape the downward BOA radiance LBOA(), originating from the 

stage 1, and the landscape thermal emission. This stage provides the landscape radiation budget, 

albedo, and upward BOA radiance LBOA(), before the Earth-atmosphere radiative coupling. 

- Stage 3 is tracking the BOA upward radiance LBOA(), obtained during stage 2, through the 

atmosphere back to the landscape. Radiance transfer functions of stage 3 provide the downward BOA 

radiance LBOA(), which is extrapolated in order to consider the multiple successive  

Earth-atmosphere interactions.  

- Stage 4 is tracking downward BOA radiance LBOA(), resulting from stage 3, within the 

landscape. It uses a single iteration with an extrapolation for considering all scattering orders 

within the Earth scene. This stage results in landscape radiation budget and upward BOA  

radiance LBOA().  

- Stage 5 applies the stage 3 radiance transfer functions to the upward BOA radiance of stage 4. The 

resulting radiance is added to the atmosphere radiance, which is calculated within the first stage, to 

produce the radiance at sensor (Lsensor()) and TOA (LTOA()) levels.  

The entire RT procedure results in the following two types of products: 

(1) Images at three altitude levels: BOA, TOA and anywhere between BOA and TOA. They can be 

camera and/or scanner images with projective and/or orthographic projection, as well as ortho-

projected images that allow superimposing the landscape map and images simulated for various 

viewing directions.  
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(2) 3D radiative budget: distribution of radiation that is intercepted, absorbed, scattered and thermally 

emitted. It is useful for studying the energy budget and functioning of natural and urban surfaces.  
 

 

Figure 5. Five stages of the DART algorithm that models RT of the Earth-atmosphere system. 

Finally, scattering and emission of a DART cell corresponds to surface and volume interactions. It is 

modeled using a sub-division of each cell into D3 sub-cells, resulting in six D2 cell sub-faces. This 

approach improves greatly the spatial sampling, resulting in shorter computational time, and requires 

less computer memory than using cells with a dimension divided by D, which is very beneficial for 

simulating scenes with dense turbid cells and large scene elements.  

3.1. Surface Interactions with Facets  

A ray of light incident on a facet (Figure 6a) interacts with its front side but not with its rear side. 

Thus, depending on the type of object, any surface can be simulated using only top facets or using top 

and bottom facets with opposite normal vectors, and optionally with different optical properties. Any 

facet is characterized by a direct transmittance Tdir along its normal direction n, a Lambertian 

transmittance Tdiff, and a reflectance R with Tdiff + R 1. R can be isotropic (Lambertian) or anisotropic. Direct 

transmittance along s is equal to [Tdir]1/|s.n|. For an incident irradiance E along n, scattered exitance is 

equal to E ⋅ 1 T ⋅ R  and transmitted diffuse exitance is equal to E ⋅ 1 T ⋅ T .Surface 

reflectance anisotropy can be described by parametric functions (e.g., Hapke [15], RPV [6]), with a 

specular component, defined by a surface refraction index, an angular width and a multiplicative factor.  

The point Mint that represents light interception by a facet is modeled as a centroid of all interceptions 

on that facet. It is calculated per DART constructed sub-cell, among the D3 sub-cells, which is improving 

spatial sampling, particularly if facets have large dimensions compared to cell dimensions. Storing the 

intercepted radiation for every direction is computationally expensive, especially for large landscapes 

with many cells. Thus, a simplifying mechanism storing intercepted radiation per ray incident angular 

sector sect,k, where sect,k is a set of neighboring discrete directions that sample the 4 space of 

directions (k·sect,k = 4), was adopted [57,58]. Scattering at an iteration i is then computed from energy 
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locally intercepted within incident angular sectors sect,k at iteration i – 1. Although, one can define as 

many angular sectors as discrete directions, ten sectors are sufficient to obtain very accurate results, with 

relative errors smaller than 10−3 [30]. Facets belonging to the same cell can intercept rays scattered and 

emitted by other facets. Rays exiting the cell through the same cell sub-face are grouped per discrete 

direction (Figure 6b), reducing the number of rays to track and consequently decreasing total 

computational time.  

Facet thermal emission is simulated according to Planck’s or Boltzmann’s law, using the 

corresponding facet temperature and optical properties [59]. 

a)
 
b)

 

Figure 6. Facet scattering. (a) Single facet with an incident flux Winc(s). It produces 

reflection Wrefl(n) and direct Wtrans,dir(s) and diffuse Wtrans,dif(m) transmission.  

(b) Interaction of two facets in cell with 27 sub-cells (only nine are illustrated in 2D figure). 

Each facet has a single scattering point per sub-cell, with an intercepted radiation per incident 

angular sector.  

3.2. Volume Interactions within Turbid Vegetation and Fluid Cells 

When a ray crosses a turbid cell, two interception points Mint are computed along its path within the 

cell (Figure 7a). The first point is computed for upward scattering and the second one for downward 

scattering. As several rays cross each cell, possibly through the same sub-face, two simplifying steps are 

adopted. First, Mint is calculated per incident cell sub-face s, through which the rays entered the cell, in 

order to improve spatial sampling, particularly in presence of scenes with large cells. Second, similarly 

to facet interactions, the intercepted radiation is calculated per incident angular sector sect,k. The first 

order scattering is computed at each iteration using the intercepted radiation that corresponds to the 

incident ray that entered the cell through one or several sub-faces. Thus, intercepted vector sources 

Wint(s, sect,k) are stored per sub-face s and per incident angular sector sect,k. Then, we have:  

Wint(s, sect,k) = s·Wint(s, s), with s  sect,k. The first order scattering of the direct solar flux can be 

computed exactly, because the sun direction is considered as a sector. Within cell multiple scattering 

(Figure 7b) is analytically modeled [20]. Similarly to the case of facets, rays exiting the same cell sub-face 

in the same direction are grouped together in order to reduce computational time (Figure 7c).  

Cell thermal emission is simulated with Planck’s or Boltzmann’s law and a temperature-independent 

factor that depends on the cell optical properties and directional extinction coefficient. In order to reduce 

the RT computation time, this factor is pre-computed as a volume integral in a specified spatial sampling, 

per cell sub-face, discrete direction and type of turbid medium [59].  
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(a) (b) (c) 

Figure 7. Turbid cell volume scattering: (a) two 1st order interception points per incident ray 

with associated first order scattered rays, and their second order interception points (red), (b) 

analytically computed within-cell second order scattering, and (c) first order interception points, 

which are grouped per incident angular sector and per cell sub-face crossed by the incident rays. 

Rays exiting the cell are grouped per exiting cell sub-face and per discrete direction.  

The spatial resolution of DART images is equal to the cell size (x, y) divided by a user-defined 

factor  that sets a spatial oversampling. It is applied during the image creation procedure when upward 

fluxes are stored into an image array with (x/, y/) pixel sizes. These images can be  

re-sampled to the pixel-size of any RS sensor by a DART module or by any digital image processing 

software. Their radiometric accuracy is usually better than if being simulated with a cell size equal to 

the sensor pixel size. Figure 8 shows DART nadir and oblique images of the citrus orchard site simulated 

within the RAMI IV experiment [38]. The tree crowns were simulated as a juxtaposition of turbid cells 

that were transformed into turbid medium from original facet based trees. Cell size of 20 cm was small 

enough to keep a very good description of 3D tree crown architecture. Its combination with  = 2, allows 

observation of shadows casted by tree trunks and branches. The simulation with facet-based trees gave very 

similar reflectance values, however they needed longer computation times [58]. DART can also simulate 

images of urban scenes. As an example, an example of St. Sernin Basilica (Toulouse, France), with urban 

elements and trees modeled as combination of facets and turbid medium, is shown in Section 5.  

a)  b)  

Figure 8. DART simulated RGB composite of satellite image in natural colors for a virtual 

tree formation displayed in: (a) nadir, and (b) oblique view. 
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The possibility to simulate time series of images acquired by a geostationary satellite was recently 

introduced into DART in the frame of a Centre National d’Etudes Spatiales (CNES, France) project 

preparing a future high spatial resolution geostationary satellite. The aim was to design a tool that 

calculates the time interval, for any date and for any region on the Earth, during which the useful radiance 

Lu,TOA that originates from the Earth surface is reliable, while considering the expected sensor relative 

accuracy (~3%), sensor signal-to-noise ratio, atmosphere, local topography, etc. Lu,TOA is the difference 

between TOA radiance and radiance Latm due to the atmosphere only. Four typical African landscapes 

(grass savannah, tree savannah, tropical forest, desert), with varying parameters such as spatial 

resolution, signal-to-noise ratio and elevation were considered. Simulations used local atmosphere 

conditions from the AERONET network and ECMWF database. Three specific DART features were 

used: (i) RT modeling through a spherical atmosphere, (ii) automatic computation of satellite view 

direction for each Earth coordinates, and (iii) automatic calculation of sun direction for any date, satellite 

and scene coordinates, etc. Figure 9 illustrates the capacity of DART to simulate geostationary satellite 

radiance images above Africa at Latitude 0° N, Longitude 17° E and altitude of 36,000 km. In this 

example, the Earth surface was simulated as Lambertian, with a bare ground reflectance “brown to dark 

gravelly loam” obtained from the USDA Soil Conservation spectra library. At 443 nm, Latm variability 

is large, especially for regions at sunset and sunrise. This demonstrates that the accuracy of Lu,TOA 

depends on the location, season and atmosphere conditions, with sunrise and sunset being the worst 

conditions. A typical task during the preparation stage of a future satellite mission is to assess the optimal 

spatial resolution for studying a given type of landscape. This problem was investigated with the 

assumption that radiance spatial variability, as represented by radiance standard deviation, is the textural 

information of interest. Figure 10 shows the hourly variation of the standard deviation of Lu,toa at 665 nm 

for the desert sandy landscape (barchans dune), with spatial resolution ranging from 1 m up to 100 m, 

for 21 June 2012. As expected, the spatial variability of Lu,TOA decreases as image spatial resolution 

coarsens, which allows selection of the optimal spatial resolution.  

a)  

Figure 9. Cont. 
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b)  

c)  

Figure 9. DART simulated BOA (a), atmosphere (b) and TOA (c) radiance (W/m2/sr/µm) 

at 443 nm, for 6 h 44 m (left), 8 h 44 m (middle) and 10 h 44 m (right) UTC as measured 

by a geostationary satellite at Latitude 0° N, Longitude 17° E and 36,000 km altitude on  

21 June 2012. 

(a)  (b)  

Figure 10. Spatial variability of the useful radiance Lu,TOA of a sandy desert dune (25.5º N, 

30.4º E, altitude of 78 m), acquired by a future geostationary satellite (0º N, 17º E, altitude 

of 36,000 km) at 665 nm on 21 June 2012. (a) DART simulated radiance image of a barchan 

dune at solar noon. (b) Hourly standard deviation of Lu,TOA for spatial resolution from 1 m up 

to 100 m. Sand reflectance was obtained from the ASTER spectral library. 
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4. Modeling LIDAR Signal with Ray-Carlo and Box Methods  

New features related to LIDAR simulations, such as the simulation of airborne LIDAR full-waveform 

products of single and multiple pulses, as well as LIDAR photon counting and terrestrial LIDAR 

observations, were recently introduced in DART [53,54]. Figure 11 shows the typical geometry 

configuration of an airborne laser scanner (ALS). The sensor is defined by a circular footprint with a 

radius Rfootprint defined by the LIDAR illumination solid angle footprint(footprint), the ALS altitude HLIDAR 
and the footprint area S π ⋅ R . In case of an oblique central illumination direction with 

a zenith angle L, the 1st order illuminated surface has an elliptical shape with a major axis , a 

minor axis , and an area S . Photons launched within footprint can have any 

angular distribution (e.g., Gaussian) and pulse characteristics. A photon scattered in the atmosphere at 

(x,y,z) can illuminate Sillumin within the solid angle  (x,y,z). The LIDAR field of view (FOV) is 

defined either directly as SFOV or by the angle FOV. The viewed surface covers the area S . In 

Figure 11, the ground surface is assumed to be horizontal. However, in presence of terrain topography, 

the ground altitude is the minimum altitude of provided topography. A photon, which is scattered in 

atmosphere or landscape at the (x,y,z) position, can irradiate the LIDAR sensor in directions within the 

solid angle  (x,y,z), defined by the sensor aperture area ALIDAR.  

 

Figure 11. The LIDAR geometry configuration, with horizontal ground surface. 

The Monte Carlo (MC) photon tracing method is frequently used for simulating LIDAR signals [60,61]. 

It simulates multiple scattering of each photon as a succession of exactly simulated single scattering 

events, and produces very accurate results. MC can determine if and where photon interception takes 

place and if an intercepted photon is absorbed or scattered. However, a tiny FOV of LIDAR FOV with 

an even tinier solid angle  (x,y,z), within which the sensor is viewed by scattering events both imply 

that the probability for a photon to enter the sensor is extremely small. This case, therefore, requires a 

launch of a tremendous number of photons, which is usually computationally unmanageable. 

Introduction of anisotropic phase functions into scene elements further increases this number. 
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Consequently, most of the LIDAR simulating RT models use a reverse approach, i.e., they are tracing 

photons from the sensor instead of from their source [61]. DART, however, uses a different approach 

for forward simulations of LIDAR signal. Each photon launched from the LIDAR transmission source 

is tracked within the Earth-atmosphere scene until it is absorbed, measured by sensor or rejected out of 

the scene. Two modeling methods were devised in order to reduce the computational time constraint: 

the Ray-Carlo and the Box methods. 

4.1. Ray-Carlo: Photon Tracing Method 

Any DART volume and/or surface element is characterized by its scattering phase function P(n  m). 

For each photon intercepted by a scene element at (x,y,z) location, the classical MC random pulling uses 

the element’s single scattering albedo to determine if the photon is scattered, and subsequently what is 

the discrete direction m, m) of the scattered photon. For each scattering event, a particle, called 

photon for simplicity reasons, is sent to a randomly selected discrete direction (m, m) with a weight 

proportional to the solid angle m and the phase function P(n m), and another particle is sent 

directly towards the LIDAR sensor along the direction  (x,y,z) with a weight proportional to the solid 

angle  (x,y,z) and the phase function P(n  (x,y,z)). The photon along the direction (m, m) 

will contribute to multiple scattering events, conversely to the photon that is sent to the sensor. The latter 

one has an energy that is negligible compared to the photon scattered along (m, m), mostly because 

 (x,y,z) << m. The photon along  (x,y,z) is tracked towards the sensor with an energy (weight) 

that may decrease, or even become null, as being attenuated by existing landscape and/or atmosphere 

elements. The energy and the travelled distance are recorded when the photon reaches the sensor. The 

accumulation of these photons builds up the waveform output, which is used to produce the photon-counting 

signal via a statistical approach. In practice, scattering of photons sent to the LIDAR is neglected in our 

modeling approach, because their energy is negligibly small.  

Figure 12 illustrates graphically the DART Ray-Carlo method. A photon of weight win, propagated 

along the direction in, is intercepted in position (x1,y1,z1). If the MC random pulling provides a positive 

scattering decision, the photon (weight wDART,1) is scattered along the DART discrete direction (n1, 
n1) and the position (x1,y1,z1) is verified if the direction towards LIDAR (1) is within FOV. In case 

of positive answer, the photon (weight wLIDAR,1) is sent towards the LIDAR sensor along the direction 1 

within the solid angle  (x1,y1,z1). The following two equations must be satisfied during this process: 

, ,  (1)

And 

,

,

Ω → Ω, , Ω

Ω → Ω Ω
 (2)

For any scattering order i, the direction {i,  (xi,yi,zi)} is calculated and the condition within FOV 

is checked. It must be noted that i is a flexible direction, independent of the discrete directions. Millions 

of flexible directions can be simulated, each per a scattering event. For this reason, the phase functions 

P(n  ) of flexible directions cannot be pre-computed as in the case of discrete directions. Thus,  

P(n  i) is assumed to be equal to P(n  mi), where i lies within the solid angle mi of a pre-defined 
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discrete direction. It implies that ,

,

, ,

⋅
, where r is the distance from a scene 

element to the LIDAR sensor. The photon weight wLIDAR,i is, consequently, very small. The GLAS 

satellite LIDAR [62], with ALIDAR  0.8 m2 and r = 6×105
 m, has wLIDAR,i of around 10−13. To be able to 

simulate the acquisition of a single photon with this particular sensor, the use of actual photons without 

weights would require about 1013 scattering events.  

Since cells in DART simulated atmosphere are usually bigger than those used for simulating the 

landscape, a single interception event inside an atmospheric cell that gives rise to a scattering leads to a 

large uncertainty on the scattering event location defined by the MC random pulling. In order to reduce 

the associated MC noise without increasing the number of launched photons, K interception events are 

simulated per interception event along the photon travelling path towards LIDAR FOV. Thus, K photons 

are sent to the LIDAR, which partially fills the gap of distance recorded based on the random MC pulling 

with a single scattering event per interception. This approach mimics more closely real behavior of an 

actual flux of photons, which is continuously intercepted along its path.  

 

Figure 12. The Ray-Carlo approach for LIDAR simulation, depicted with all several 

scattering orders. 

RT models usually consider the atmosphere as a superimposition of atmospheric layers, each of them 

being characterized by specific gas and aerosol optical depths. Each layer is defined by constant gas and 

aerosol extinction coefficients, resulting in a discontinuity of the extinction coefficients at each layer 

interface. Unlike in case of passive radiometer images, this characterization of the atmosphere leads to 

inaccurate simulations of LIDAR signals, producing waveforms with discontinuities at the top and 

bottom of each atmosphere layer. This problem is solved in DART by simulating the atmosphere with 

vertically continuous gas and aerosol extinction coefficients.  

4.2. Box Method: Selection of Photon Scattering Directions 

Selection of the discrete direction that corresponds to scattering of a photon incident along a given 

discrete direction using MC approach is a complex task. Ideally, a function should relate any randomly 

selected number to a defined discrete direction, and needs to operate between two mathematical spaces: (1) 
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the positive real numbers within [0, 1] and (2) the N discrete directions, so that any number within [0, 1] 

corresponds to a unique direction. This means that a bijection map has to be built to link the set of N 

directions with the corresponding set of N intervals defining the [0, 1] interval.  

The probability to select the direction j is defined as:  

P(j) 
,

∑ , .
 (3)

with ∑ 	P(j) 1. 

A direct method to determine the direction j is to compare a randomly pulled number with each 

interval representing each direction. This requires performing a maximum of N comparisons per pulling, 

which is computationally expensive. This problem can be easily solved if the cumulative probability 
Pcum(n) = ∑ 	 .P(j) is invertible. Then, random pulling a  [0, 1] gives directly the direction index  

n = P −1(a), which indicates the selected direction. However, Pcum(n) is, in most cases, not invertible. 

Several inversion methods (e.g., bisection) were tested, but all of them led to large errors, at least for 

some directions. Therefore, we developed a Box method that can select the scattering direction rapidly 

with only two random numbers and without any computation of inverse function.  

The Box method keeps in memory an array of boxes, where each box represents a tiny interval of 
Pcum(n) that corresponds to a given direction index (i.e., scattering direction). Subsequently, reading of 

an array B with a randomly selected number within [0, 1] provides directly a direction index without 

any need for further computation. The total number of boxes in B is ruled by the user-defined size of 

computer memory used for its storage. A larger memory size implies that more boxes with smaller 

probability intervals per box can be stored, giving a better accuracy at each random pulling. The number 
of lines of B is equal to the N number of incident discrete directions i and the computer memory is 

distributed to store the boxes per line of B. A various number of boxes per possible scattering direction 

j,i is assigned to a single line i of B, which is proportional to the probability of occurrence pj,i = P(j|i) 

of scattering towards the direction j for an incident direction i. The value of each box associated to a 
given scattering direction j,i is the index j of that direction. For each line i of B, the least probable 

scattering direction with probability p1,i is represented by m1,i boxes, which defines the number Mj,i of 
boxes per scattering direction j,i, with total number of boxes Mi = ∑ 	Mj,i. Consequently, a random 

number m  [0, Mi] defines the scattering direction index. This approach may require quite a large 

amount of computer memory if the scattering directions have a wide range of occurrence probabilities. 

For instance, if 10 boxes are used for a scattering direction with a probability of 5×10−7, then 4×106 

boxes are needed for a scattering direction with a probability of 0.2. 

The requirement of large computer memory and computation time is solved as follows. Scattering 

directions j,i are sorted per incident direction i according to their occurrence probability. Then, sorted 

adjacent directions are grouped into classes in such a way that the ratio between maximum and minimum 

probability over all scattering directions j,i within the same class is smaller than a given threshold . 
Probability P  of a class k is the sum of occurrence probabilities P,  of all scattering directions Ω , , in 

class k, i.e., P ∑ P, . Each class k is represented by a number of boxes that depends directly on its 

probability of occurrence P  for any incident direction i, and a given number of boxes that is assigned 

to the class with the lower probability. Since two probability arrays are being used, two successive 

random pulling values are needed for any scattering event with incident direction i. The first pulling 
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derives the class index k from {P }, while the second one derives the direction index j from {P, }. 

Finally, the value of  is optimized such a way that probability arrays {P } and {P, } require a computer 

memory smaller than the user specified value. Indeed, if  is increased, the size of {P } decreases with 
the number of classes, whereas the size of {P, } increases with the number of directions per class.  

  

   

Figure 13. A virtual tree built out of geometrical facets (a) and the same turbid-cell tree derived 

by the facet-to-turbid conversion tool (b) with their 3D LIDAR point clouds for an oblique view 

( = 30°, = 135°) and the 1D waveform with its first scattering order contribution (c). The 

image of photons that reached the ground is showing the last LIDAR echo (d) and DART ray 

tracking provides a high spatial resolution (10 cm) nadir image at  = 1064 nm. 

DART simulations of LIDAR point clouds can be conducted using Ray-Carlo and Box methods for 

landscapes created with geometrical primitives (facets) and voxels filled with turbid medium. An 

example of airborne LIDAR sensor viewing a facet based tree created by the AMAP Research Centre 

under an oblique direction ( = 30°) at wavelength = 1064 nm is presented in Figure 13. High similarity 

of the two 3D points clouds (i.e., LIDAR echoes) for the two representations, i.e., tree built from facets 

and transformed into voxels with turbid medium (Figure 13a,b) proves the correct functionality of this 

timesaving “facet to turbid medium” conversion. 1D waveforms (Figure 13c) display distances measured as 

time differences between transmission and reception of LIDAR photons. The waveform curve corresponding 

to multiple scattering orders is significantly larger than the first scattering order curve, which demonstrates 

high importance of multiple scattering at  = 1064 nm. It also shows a strong contribution of the ground 

surface to the simulated signal. Figure 13d shows 2D distribution of photons that reached the ground (i.e., 

the last echo). As expected, the number of photons tends to be smaller under the tree, relative to the rest of 

the LIDAR footprint. Finally, Figure 13e presents image of the simulated facet tree as captured by a nadir 

imaging spectroradiometer at  = 1064 nm. The 10 cm spatial resolution provides enough details to detect 

single leaves. It must be mentioned that in addition to mono-pulse LIDAR, DART can also simulate  
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multi-pulse LIDAR acquisitions for any spectral wavelengths, using a multi-threading algorithm. Such a 

simulation of the St. Sernin Basilica (Toulouse, France) is shown in Section 5. 

Two other LIDAR techniques were implemented in DART, in addition to the airborne/satellite laser 

scanning: (i) terrestrial LIDAR (TLIDAR), and (ii) photon counting LIDAR. TLIDAR, such as  

ILRIS-LR can map objects on the ground, resulting in accuracy within millimeters or centimeters. It is 

increasingly used to assess tree architecture and to extract metrics of forest canopies [63]. TLIDAR 

simulation within DART is aiming at better understanding of actual data. The photon counting LIDAR 

is more efficient than conventional LIDAR because it requires only a single detected photon to perform 

a range measurement. That is why the next ICESat-2 mission [64] will carry a photon counting 

instrument called the Advanced Topographic Laser Altimeter System (ATLAS). DART simulates 

photon counting data using the statistical information derived from one or several simulated waveforms. 

Figure 14 shows an example using a simple bare ground with a vegetation plot and signal of a photon 

counting LIDAR acquired at  = 1064 nm along a horizontal sensor path, perpendicular to the vegetation 

plot. Because, the sun direction was set as oblique (s = 45°), part of the bare ground is in the shade of 

the vegetation cover. Figure 14b shows the radiance image demonstrating the sun illumination, which is 

used to compute the solar noise of LIDAR signals. Figure 14c illustrates the photon counting simulation 

along the sensor path (horizontal axis) and Figure 14d is a subset enlargement of Figure 14c. The 

continuous point cloud above and below the bare ground level corresponds to the solar noise caused by 

the sun radiation reflected from the bare ground and the vegetation plot. Solar noise is reaching its 

maxima at the location of the vegetation plot, because vegetation is more reflective than bare ground at 

1064 nm. Similarly, solar noise tends to be minimal in the shaded part of the bare ground, where the sun 

irradiance is diffuse, and consequently minimal. 

 
 

   

 

 

Figure 14. DART simulated photon counting LIDAR with solar noise. (a) Bare ground and 

vegetation plot with an oblique sun irradiation (s = 45°) and a horizontal LIDAR sensor 

path. (b) Radiance image of the scene (i.e., solar noise). (c) Simulated photon counting 

signal. (d) An enlarged subset of simulated scene (c).  

5. Modeling IS Data with the Perspective Projection  

RT simulations of BRF are usually based on the assumption that the whole landscape is observed 

along the same viewing direction. This assumption is acceptable when a relatively small landscape is 

observed from an altitude ensuring that the divergence of the FOV over the landscape can be neglected. 
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However, this disqualifies direct comparison of RT modeled images with actual observations that do not 

meet this assumption. DART was, therefore, improved to properly consider landscape dimensions 

together with sensor altitude and consequent sensor FOV [65]. This new functionality provides DART 

images simulated at large scales with realistic geometries, which allows their per-pixel comparability with 

actual RS acquisitions. Two types of sensor geometries are available: a pinhole camera and an imaging 

scanner. Pinhole camera acquisitions are modeled with the perspective projection, where the ray convergence 

point is unique, whereas imaging scanner acquisitions are modeled with the parallel-perspective projection, 

where the ray convergent point changes with the platform movement. 

The perspective projection is modeled for each sensor pixel (xs,ys) located within the sensor focal 

plane. The pixel value is driven by scattering and/or emission of a facet and/or turbid medium volume at 
location M(x,y,z) in the horizontal plane PzM. Its associated sensor pixel is viewed from M(x,y,z) along 

a flexible direction {(M),  (M)} under zenith angle v, which depends on the location of the 

scattering point M(x,y,z) and the geometry of sensor pixel S(xs,ys,zs). A scattering and/or emission event 

at M(x,y,z) gives rise to local fluxes Wn(M) per discrete direction (n, n) and to a flexible flux W() 

that heads towards its associated sensor pixel along the direction {(M), (M)}. In order to reduce 

computational time, the scattering phase function for any flexible direction {(M), (M)} is similar to 

the scattering phase function corresponding with the scattering discrete direction {n, n} that contains 

direction {(M), (M)}. Thus, one can write that:  

W Ω → ω W Ω → Ω . , (4)

with  

ω M ⊂ Ω , ΔΩ . 

The upward flux due to the facet scattering at M(x,y,z), which reaches the BOA plane, is computed as:  

W∗ M T → ω
W M
ΔΩ

.
S ⋅ Ω ⋅ ω M

S ⋅ Ω ⋅ ω M
Min

S ⋅ Ω ⋅ ω M

r ,
, ΔΩ  (5)

with  

r , x x y y z z
z z
cos θ

 

where sensor is the sensor pixel FOV and T → ω  is the path transmittance from the scatterer at 

location M up to the BOA level (top of the Earth scene).  

The condition Min ⋅ ⋅

,
, ΔΩ  ensures that the flux, which arrives to a sensor 

pixel, is not outside sensor. If (M) is within sensor, we have:  

W∗ M → ω .
W M
ΔΩ

.
S . Ω .ω M

r ,
 (6)

The term 1/r2 stresses that a scattered/emitted flux captured within the sensor pixel FOV decreases 

with the square of the distance from its scattering/emission point. Fluxes that leave an Earth scene are 
stored in the horizontal plane Pzmin at the scene minimum altitude zmin. To achieve this, scattering facets 

and volumes are projected along direction (M) into Pzmin, with M' being the projection of M along 

(M) into Pzmin, and SM,xy and SM',xy being the areas of projections along (M) of the scattering element 

M into PzM and Pzmin, respectively. Since the projection keeps the radiance constant, one can write:  
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W∗ M ⋅ r ,

S ⋅ cos θ ⋅ S ⋅ Ω ⋅ ω M

W∗ M′ ⋅ r ,

S ⋅ cos θ ⋅ S ⋅ Ω ⋅ ω M′
 (7)

It implies that: W∗ M′ W∗ M
, ⋅ ,

, ⋅ ,
, with zsensor,M = zs – zM and zsensor,M' = zs – zM'. 

Three sensor projections are considered in DART:  

(1) Orthographic projection with parallel rays to the sensor plane: SM',xy = SM,xy, resulting in  

W∗ M′ W∗ M ,

,
. 

(2) Perspective projection of a pin-hole camera: S , S ,
,

,
, resulting in  

W*(M') = W*(M). 

(3) Combined projection of a scanner: orthographic projection for the axis parallel to the sensor path, 

and perspective for the other axis. Thus, S , S ,
,

,
 resulting in 	

W∗ M′ W∗ M ,
	

,
. 

During the projection process, W*(M') and the associated projected surface SM are spread over DART 
pixels (x, y) of Pzmin. The proportion M'i,j of W*(M') in pixel (x, y) is used to compute the total flux 
from (x, y) to the sensor pixel (i,j): W,

∗ ∑ γ → , W∗ M′ , leading to pixel radiance  

L ,
∗

∑ → , ⋅
∗

⋅ ⋅ , , ⋅ ,
, where {i,j(v,i,j, v,i,j),i,j} is the direction under which the sensor is viewed from 

(i, j). Finally, the sensor image is created by projecting the atmosphere-transmitted radiance onto the sensor 

plane. Sensor orientation (precession, nutation, and intrinsic angle) is taken into account during  

this procedure.  

A DART modeled airborne camera image of the St. Sernin Basilica (Toulouse, France) is illustrated 

in Figure 15a. It differs geometrically from the satellite image simulated with an orthographic projection 

(Figure 15b). As one can see, two surfaces with the same area and orientation, but located at different 

places, are having, due to perspective projection, different dimensions in the airborne camera image, but 

equal dimensions in the orthographic projection of the satellite image. This explains why objects, as for 

instance the basilica tower and the tree next to it look much larger in the camera image.  

The fact that pixels in a scanner image correspond to different view directions can strongly affect 

their radiometric values. This is illustrated by DART simulated scanner images of the Jarvselja birch 

stand (Estonia) in summer (Figure 16). Jarvselja stand is one of the RAMI IV experiment test sites [38]. 

It is a 103 m × 103 m × 31 m large forest plot, which was simulated as an image with three spectral bands 

at 442, 551 and 661 nm, with SKYL (fraction of diffuse-to-direct scene irradiance) equal to 0.21, 0.15 

and 0.12, respectively. The scanner followed a horizontal path at three flying altitudes of 0.2 km, 2 km 

and 5 km. The solar zenith angle was 36.6° (in Figure 16, the solar direction goes from the bottom to the 

top of images), and the ground spatial resolution was equal to 0.5 m for all three acquisitions. For any 

altitude, the central view direction of the imaging scanner is the hotspot direction. In the hotspot 

configuration [66], the sun is exactly behind the sensor. As a result, no shadows occur in the sensor’s 

FOV, providing maximal reflectance values (Figure 16a) represented as a bright horizontal line running 

parallel to the scanner path of motion (Figure 16b). The hotspot effect (BRF local maximum) is observed 

in a relatively small angular sector centered in the exact hotspot direction. As expected, the perception 
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of shadows increases rapidly for viewing directions located far from the hotspot direction. At altitude of 

0.2 km, the range of the scanner viewing directions over the whole forest scene is relatively large, ranging 

from 12.3° to 55.4°, and the hotspot phenomenon is therefore visible only along a narrow line. The range 

of scanner view directions decreases with increasing altitude. It falls between 34.0° and 39.1° at 2 km 

altitude and between 36.595° and 36.605° at 5 km altitude, which explains why the hotspot line broadens 

in case of higher observing altitude of 2 km (Figure 16c), and why the whole forest stand is observed 

under the hotspot configuration at 5 km altitude (Figure 16d).  

    

Figure 15. DART simulated products of the St. Sernin Basilica (Toulouse, France).  

(a) Airborne camera image (RGB color composite in natural colors) with the projective 

projection. (b) Satellite image with the orthographic projection. (c) Airborne LIDAR scanner 

simulation, displayed with SPDlib software. 

a)  b)   

Figure 16. Cont. 

a) b) c)

Hot spot

Scanner path
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c)  d)  

Figure 16. The changing hotspot perception simulated for the Jarvselja birth forest stand 

(Estonia) in summer: (a) DART simulated BRF for three spectral bands (442 nm, 551 nm, 

661 nm), with SKYL equal to 0.21, 0.15 and 0.12, respectively, and DART simulated images 

for an airborne scanner flown at three altitudes: (b) 0.2 km, (c) 2 km and (d) 5 km, with 

ground resolution of 0.5 m. Dark zones in (c) and (d) correspond with occurrences of few 

pine trees in the birch stand.  

Air-/space-borne RS images are usually transformed into orthorectified products that can be 

superimposed with local maps. DART computes orthorectified RS images directly, without classical 

orthorectification methods, because the exact location of each scattering/emission event occurring during an 

image simulation is known [65]. Two types of orthorectified products are produced by DART (Figure 17): 

ideally orthorectified images and industry orthorectified images, which are similar to RS images derived 

by industrial orthorectification methods. In the ideal orthorectification, radiance of pixel (i,j) results from 

the sum of all the fluxes that originate from scattering events occurring within the voxels (i,j,k) from the 

bottom up to the top of the scene. Selection of two ideal projections is available in DART:  

- Orthographic projection (Figure 17a): radiance of pixel (i,j) is L , Ω
∑ ∗ , , ,	

⋅ ⋅ ⋅ ⋅
, with Ω  

the surface normal vector, (n, n) the sensor viewing direction (i.e., DART discrete direction) 

and k the index of cells above pixel (i,j), and  

- Perspective projection (Figure 17b): radiance of pixel (i, j) is L , ω , ∑ 	
∗ , , , , ,

⋅ ⋅ ⋅ , ⋅ , ,
, with 

(i,j,k, i,j,k) being the sensor viewing direction for cell (i,j,k) above pixel (i,j).  

The industry orthorectification (Figure 17c), which uses altitude of the Earth surface including any 

3D object (e.g., trees, man-made objects, etc.) from a digital surface model (DSM), is carried out in two 

successive steps. In the first step, nadir downward ray tracking samples the DSM with a spatial sampling 

equal to that of the created ortho-image. This step provides the altitude Hi,j for each pixel  

(i, j) of the ortho-image. In the second step, rays are tracked up to the sensor from each Hi,j. Any upward 

ray originating from Hi,j that is not intercepted within the Earth scene reaches the sensor plane at a point 

Msensor. In this case, the sensor radiance value at the point Msensor is assigned to the pixel (i, j) of the 

ortho-image. If an upward ray from Hi,j is at least partially intercepted within the Earth scene, then a 
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value of −1 is assigned to the pixel (i,j), which indicates that this pixel cannot be viewed by the sensor 

(Figure 17c).  

 
(a) (b) (c) 

Figure 17. Schematic representation of the DART procedure that simulates orthorectified RS 

images: an ideal orthorectification with orthographic (a) and perspective projection (b), 

respectively, and an industry orthorectification (c) with either perspective or  

orthographic projection.  

DART ideal orthorectification with orthographic projection, for a satellite optical sensor observing 

the Jarvselja birch stand with the central viewing zenith angle of 25° and the illumination direction along 

the horizontal axis, is illustrated in Figure 18a. The same simulation but for industry orthorectification 

using a DSM that represents the upper surface of the tree canopy is presented in Figure 18b. Bright color 

tones in Figure 18b indicate deep occlusion areas of the DSM, indicated in Figure 17c, that sensor cannot see 

due to the 3D nature of forest canopy. No-signal values are assigned to the corresponding pixels. Figure 18c 

shows scatterplot of reflectance values of both orthorectified images. Although reflectance images are 

strongly correlated, one can observe numerous outliers originating from different assumptions about the 

tree canopy surface. It is considered as a non-opaque medium in the ideal orthorectification, but an opaque 

surface for the industry orthorectification.  

a)  b)  c)  

Figure 18. DART simulated orthorectified satellite images of the Jarvselja birth forest stand 

(Estonia) in summer obtained with ideal (a) and industry (b) orthorectification (bright tones 

indicate zones invisible to the sensor, due to the DSM opacity), accompanied by a scatterplot (c) 

displaying linear regression between per-pixel reflectance values of both orthorectified images.  

  

Reflectance: industry orthorectification 
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6. Fusion of DART Simulated Imaging Spectroscopy and LIDAR Data  

New multi-sensor airborne RS systems, such as the Carnegie Airborne Observatory (CAO) [67,68] 

and the Goddard’s LiDAR, Hyperspectral & Thermal Imager (G-LiHT) [69], are carrying on-board 

LIDAR and imaging spectrometer instruments simultaneously. The FOV of the instruments are 

geometrically aligned and both data streams are spatially co-registered. This sensor synergy offers a 

possibility of an in-flight data fusion, where LIDAR provides structural and geometrical information and 

imaging spectrometer provides spectral information of observed Earth’s objects. This type of fusion can 

find its use in various RS applications such as land cover/use classifications, monitoring of natural and 

man-managed ecosystem services or mapping of vegetation bio-diversity and eco-physiological functions.  

  

  

Figure 19. DART fusion of LIDAR and spectral images of St Sernin Basilica (Toulouse, 

France). (a) Acquisition geometry. (b) Multi-pulse LIDAR image. (c) RGB composition of 

corresponding spectral image. (d) and (e) Products of LIDAR-spectral fusion for two 

opposite viewing directions.  

a) b)

c) 

d)

e)

meters
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Since DART can apply the ray tracking method to simulate IS and the Ray-Carlo method to simulate 

LIDAR multi-pulse waveforms of the same landscape in a single run, it can also directly facilitate the 

in-flight fusion of both simulated datasets. During the first step of this procedure, the position of the 

LIDAR FOV center at the minimum altitude is recorded per pulse together with corresponding pulse 

identification number (ID). Then, the imaging scanner image at the minimum altitude is simulated with 

the parallel-perspective projection. This image is automatically referenced in DART scene coordinate 

system, which allows the radiance value to be computed in accordance with the FOV center of each 

recorded LIDAR pulse through a cubic-spline interpolation of the scanner image. The LIDAR output is 

then converted into the SPD format and processed with the SPDlib software to produce the LIDAR point 

clouds. Each LIDAR pulse contains n returns, which create n discrete points in 3D space. These points 

are linked with radiance value via pulse ID, which results in structural information and spectral 

information of the simulated landscape objects being achieved through the same path of a given pulse.  

The DART in-flight data fusion for the St. Sernin Basilica (Toulouse, France) is illustrated in  

Figure 19. Figure 19a shows the geometrical configuration of the 250 m × 250 m scene with the x and y 

axes of the DART coordinate system. The aircraft equipped with a LIDAR sensor ( = 1064 nm) and an 

imaging spectrometer (three spectral bands at 450 nm: B, 550 m: G, 650 nm: R) was flown at altitude of 

2000 m along the y axis, with an off-nadir viewing angle of 30 degrees from the center of the scene to 

the left side of the flight path. This set up ensures that the walls of buildings in the scene, which are 

facing positive values of the x-axis are seen by both the LIDAR and spectrometer. Cell size of 50 cm 

with an average LIDAR pulse density of 4/m2 resulted in 250,000 LIDAR pulses, stored in a matrix of 

500 × 500 ID items. Figure 19b shows the simulated height image (500 × 500 pixels) of the first returns 

for each LIDAR pulse, and Figure 19c shows the RGB composition of simulated spectral image, both 

co-registered via a unique pulse ID. The DART 3D fusion product is then constructed by merging the 

LIDAR point clouds with spectral radiance image values per pulse ID. Figure 19d illustrates that the 

walls of the buildings that face the negative x-axis are present, whereas the walls that face the positive 

x-axis are missing (Figure 19e). This is caused by the off-nadir geometrical configuration allowing the 

LIDAR and IS sensor to observe only one side of the scene. 

7. Conclusions 

During more than 20 years of development, DART has reached the stage of a reference RT model in 

the field of optical RS. Free licenses are provided for research and teaching activities by the Paul Sabatier 

University (UPS) in Toulouse in cooperation with Centre National d’Etudes Spatiales (CNES, France). 

More than 100 research organizations and universities use it for designing future satellite sensors, for 

developing new RS applications for forestry, agriculture, and urbanism, and also for educational 

purposes, especially for lecturing the physical bases of RS and radiative budget.  

This paper demonstrates new DART modeling and functionalities for simulating data of satellite and 

airborne LIDAR waveform and photon counting sensors, as well as images produced by IS from visible 

to thermal infrared wavelengths, both for an identical scene containing any vegetation and urban objects. 

Recent improvements enhanced the capacity of DART to simulate any Earth landscape with any 

atmosphere conditions from common databases (e.g., AERONET network and ECMWF database). 

Natural and urban landscapes can be now simulated with geometrically explicit surfaces (facets) and 
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turbid vegetation/fluid volumes. It addition, DART can import and manage 3D objects (tree, house, etc.) 

in the conventional *.obj format. Moreover, it can transform part or all of these objects into 3D turbid 

voxels. Finally, three major improvements in radiation modeling were introduced.  

(1) Modeling of satellite and aircraft LIDAR waveform and photon counting signals using the 

specifically designed Box and Ray-Carlo methods.  

(2) Image simulation of spectroradiometers mounted on aircraft or unmanned aerial vehicles in the 

perspective projection. This simulation is useful to bridge the scaling gap between in situ 

radiometric measurements and satellite observations. The possibility to model LIDAR and 

spectral image data of the same landscape is highly appealing for RS data fusion techniques.  

(3) Simulation of data acquired by an IS aboard a geostationary satellite, for any Earth region, and 

at any date from sunrise to sunset.  

Apart from new scientific functionalities, many technical improvements took place in DART, such 

as parallelizing computations with the multithread approach or, management of DART outputs as SQL 

databases. Improvement of DART physics, optimization of its computational performance, and 

development of new functionalities still continue. The DART developing team is currently working on 

the following five improvements.  

(1) Orthorectification based on digital elevation model in addition to surface model.  

(2) Modeling spectral measurements of a sensor within the Earth landscape. Consequently, it will 

be possible to simulate camera acquisitions that are used to assess the LAI of trees and crops.  

(3) Simulation of airborne acquisition according to the actual platform trajectory. This is essential 

for a pixel-wise comparison with real airborne and satellite images.  

(4) Simulation of landscapes with cells of variable dimensions within the same scene for decreasing 

computational time and computer storage requirements. It will be possible to simulate larger scenes.  

(5) RT modeling of water bodies. This modeling relies on 3D distribution of the so-called fluid turbid 

cells. This new feature is expected to open DART to the scientific community of ocean and 

inland water remote sensing.  
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Chapter 2

Direction discretization and oversampling

During the recent years, the improvement of RTMs has been mostly focused on improving 3D land-

scapes simulation and RT mathematical modeling. The angular variable Ω discretization is a much less

addressed problem, although it can strongly influence the simulation of satellite signals. The influence

of the number, shape and distribution of the discrete directions on the simulation of satellite signals and

3D radiative budget must be addressed. Several methods have been designed to study the anisotropic

radiation in the field of heat and mass transfer (Modest, 2003). Among them, the discrete ordinate

method (DOM) and the finite volume method (FVM) are extensively used to solve heat transfer problem

in steady-state process.

DOM and FVM both have some strong and weak points according to their application in radiative

transfer. Several comparisons have been made during the recent years (Kim and Huh, 2000; Mishra

et al., 2006). The main disadvantage of DOM arises in anisotropic situations where the distribution of

discrete directions can lead to solid angles with unrealistic geometric shapes. In that case, the numerical

quadrature made over a surface does not conserve the radiant energy (Raithby, 1999). Instead of using a

simple quadrature, an analytical exact integration is proposed in FVM. However, the center (ordinates)

and the shape of the angular sector are still not well addressed in FVM, which results in relative large

error with small number of directions (Kim and Huh, 2000).

In initial DART versions, simulation of satellite signals was conducted with exact kernel and DOM

methods. The 4π space of radiation directions was discretized into N directions (Ωn, angular sector

∆Ωn). These directions were the only possible directions of incident, scattered and emitted radiant

fluxes (Kimes and Kirchner, 1982; Myneni et al., 1991). In this chapter, an iterative uniform squared

discretization (IUSD) method is presented. This is a new method that combines the advantages of

both DOM and FVM, with well defined shape and exact center of each direction. It uses the concept

of "squared” angular sector with an analytical expression that allows one to construct the direction

with flexible input parameters. With this approach, scattering calculation can combine both numerical

quadrature and analytical integration. Different cases are investigated: optimal shape of angular sectors

on the 4π sphere, oversampling of planes and angular zones, and use of directions that are not centered

on their associated sectors Ωn for more accurate RT modeling. The IUSD method is elaborated in
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Section 2.1

In addition to the uniform distribution of squared solid angles, an algorithm that calculates the

cosine-weighted distribution of the squared solid angles (http://sirkan.iit.bme.hu/~szirmay/

weight3.pdf) was designed and implemented. Cosine-weighted sampling approach is used in Monte

Carlo ray tracing as a weighted importance sampling in shooting algorithms. It is presented in Appendix

I.

Furthermore, in DART, any directional products (images, reflectance, temperature, etc...) are bi-

jected to their associated direction. The concept of virtual discrete direction is defined, in order to gener-

ate radiance / reflectance / brightness temperature along any set of pre-defined directions. A ray traveling

along a virtual direction (a virtual ray) does not contribute to any further scattering event. Optical prop-

erties (i.e., scattering transfer functions) associated to all these discrete directions are pre-defined. The

virtual direction is the prerequisite of the following chapters of this dissertation. The concept of virtual

direction is further extended to non pre-defined virtual discrete directions (also name automated steering

virtual direction) for simulating spectro-radiometer images with finite field of view (FOV) (Chapter 3)

and for simulating LIDAR waveform (Chapter 4). In both cases, the number of these directions can

be very large. For simulating spectro-radiometer images, it is, up to the number of possible scattering

points in the atmosphere and Earth scene.

The improvement of discretization of directions is presented in the paper "A new approach of direc-

tion discretization and oversampling for 3D anisotropic radiative transfer modeling". Information about

the generation of cosine-weighted direction set is given in Appendix I.

2.1 Article: A new approach of direction discretization and oversampling
for 3D anisotropic radiative transfer modeling
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In radiative transfer modeling, the angular variable Ω discretization can strongly influence the radiative
transfer simulation, especially with small numbers of discrete directions. Most radiative transfer models
use discrete ordinate method or finite volume method for solving the transport equation. Both of the
methods have their own algorithms to discretize the 4π space, under the constraint of satisfying geometric
symmetry and specific moments. This paper introduces a new direction discretization and oversampling
scheme, IUSD, and compares it with the other methods in simulating satellite signals. This method considers
the constraint of geometric shape of angular sector, and iteratively discretizes the 4π space under this
constraint. The result shows that IUSD is quite competitive in the accuracy of simulating remote sensing im-
ages. Furthermore, the new method provides a flexibility for adding any oversampling angular region, with
any number of additional directions, using an optimal approach in terms of the total number of directions.
Several case studies are presented. It turns out that the regional oversampling has significant influence for
strong anisotropic scattering. This method has been implemented in the latest code of DART 3D radiative
transfer model. DART is available for scientific purpose upon request.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

During the recent years, the improvement of radiative transfer (RT)
is usually focused on 3D landscape simulation and RT mathematical
modeling. In simulating satellite signals, the angular variable Ω
discretization is a much less addressed problem, although it can strong-
ly influence the simulation of satellite signals. Therefore, the influence
of the number, shape and distribution of the discrete directions on the
simulation of satellite signals and 3D radiative budget is interesting to
discuss. Several methods have beenmentioned to study the anisotropic
radiation in the field of heat and mass transfer (Modest, 2003). Among
them, the discrete ordinate method (DOM) and the finite volume
method (FVM) are extensively used to solve heat transfer problem in
steady-state process.

DOMwas firstly proposed for atmosphere radiation (Chandrasekhar,
1969) and applied in neutron transport problems (Lathrop, 1966). In
recent years, DOM has been applied and optimized for heat transfer
problems (Fiveland, 1984, 1987, 1988; Truelove, 1987, 1988). Its repre-
sentation of 4π space is defined by a number of discrete directions that
are centered on the solid angles that discretize the 4π space. The geomet-
ric shape of the solid angles is not defined. Each discrete direction is

defined by its central zenith and azimuth angles (θc, ϕc), and by a weight
that is specifically computed. Sn DOM approach is normally used as the
discrete ordinates. The even number n can be considered as the total
number of layers over the sphere (n/2 in upper hemisphere), where a
layer ismade of all angular sectors that have the same zenith coordinate.
The ordinates of Sn DOM approach and their respective parameters are
provided by Lathrop and Carlson (1965), which are taken as classical ref-
erences. Integration over angular sectors is approximated by a numerical
quadrature.

FVM (Chai et al., 1994; Chui & Raithby, 1993; Raithby & Chui,
1990) is a rather mature spatial discretization technique. Each
direction is defined by exact boundaries without overlap, so a full
integration over the whole sphere ensures the conservation of energy.
There are several available schemes. Raithby and Chui (1990) and Chai
et al. (1994) use Nϕ × Nϕ uniform angular discretization, where the ze-
nith (0, π) and azimuth angles (0, 2π) are divided by Nθ and Nϕ, respec-
tively. This leads to a heterogeneous sampling of the 4π space with
much smaller solid angles for small zenith angles. This problem is
decreased by the distribution scheme called FTn FVM (Kim & Huh,
2000): the number of discrete directions in 2 successive layers with
large zenith angle is multiplied by a factor 4. Here n has the same
definition as Sn DOM.

Both DOM and FVMhave some strong and weak points according to
application in radiative transfer. Several comparisons have been made
during the recent years (Kim & Huh, 2000; Mishra et al., 2006). The
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main disadvantage of DOM arises in anisotropic situations where the
distribution of discrete directions can lead to solid angles with unreal-
istic geometric shapes. In that case, the numerical quadrature made
over a surface does not conserve the radiant energy (Raithby, 1999).
Instead of using a simple quadrature, an analytical exact integration
is proposed in FVM. However, the center (ordinates) and the shape of
the angular sector are still not well addressed in FVM, which results
in relative large error with small number of directions (Kim & Huh,
2000).

In simulating satellite signals, exact kernel and DOM are common-
ly used in radiative transfer models. They discretize the angular
variable Ω into N directions (Ωn, angular sector ΔΩn) that are the
only possible directions of incident, scattered and emitted radiant
fluxes (Kimes & Kirchner, 1982; Myneni et al., 1991). Here, an iterative
uniform squared discretization (IUSD) method is presented. This is a
new method combining the advantages of both DOM and FVM, with
well defined shape and exact center of each direction. It uses the
concept of “squared” angular sector with an analytical expression
that allows one to construct the direction with flexible input parame-
ters. With this approach, scattering calculation can combine both
numerical quadrature and analytical integration. Different cases are
investigated: optimal shape of angular sectors on the 4π sphere,
oversampling of planes and angular zones, and use of directions that
are not centered on their associated sectors Ωn for more accurate RT
modeling. We test it with a 3D RT model that uses discrete directions:
DART (Discrete Anisotropic Radiative Transfer) (Gastellu-Etchegorry et
al., 1996, 2004, 2012). This model simulates vegetation and urban radi-
ative budget and remote sensing images of passive and Lidar systems,
for any atmosphere, wavelength and experimental configuration (spa-
tial resolution, etc.…).

2. Algorithm

2.1. Reviews of DOM and FVM

Several basic requirements must be satisfied by any direction
discretization method. First, the discretization set must be completely
symmetric: the distribution of directions must be invariant after any
rotation of 90° along vertical axis. This requirement is necessary for
heat transfer modeling along the axes of complicated grids. Moreover,
it ensures the exact calculation of boundaries conditions in RT
equation. Thus, the total numbers of directions by DOM and FVM are
multiples of 8 (4 in upper hemisphere and 4 in lower hemisphere).
Then, moments of order 0 and order 1 of both DOM and FVMmust ver-
ify some equalities. Hereafter, ŝ stands for the direction, w stands for
the associated quadrature weights, and the direction indices are sorted
according to zenith angle:

• Zeroth moment ensures that discretization is exact over the 4π
space:

∫4πdΩ ¼
XN
i¼1

wi ¼ 4π: ð1Þ

• First moment and upper hemisphere first moment ensure the con-
servation of radiant energy:

∫4π ŝ dΩ ¼
XN
i¼i

ŝ iwi ¼ 0∫2π ŝdΩ ¼
XN2
i

ŝ iwi ¼ π: ð2Þ

Fig. 1 shows several 3D illustrations of the available discretizations.
In the DOM, the weight w is calculated to satisfy both the zeroth and
the first moments. w corresponds to a solid angle ΔΩ, but the shape
of the estimated angular sector is not defined geometrically. Although

the value of w can be determined, one can obtain an inadequate
discretization of 4π space. For example, several solid angles may inter-
sect each other or may not be exactly juxtaposed.

Thus, the total integration may lead to problems concerning con-
servation of energy. In Sn DOM approximation of the DOM
(Fig. 1(a)), the sphere is quarterly divided along x and y axes. Starting
with 1 direction in the first layer in upper hemisphere, each layer of
the hemisphere has a number of directions which are equal to the
layer index. Thus, the total number of directions is n(n + 2).

In the FVM method, the 4π sphere is discretized explicitly. w is
directly taken as the solid angle of each direction. In order to satisfy
the first moment, ŝiwi is calculated by an integration over the angular
sector. Thus, the total integration ensures the conservation of energy.
In Nθ × Nϕ FVM method, the angular sectors are uniformly divided in
both zenith and azimuth axes. However, the zenith and azimuth axes
are not in the uniform frame. The vertex of the zenith angle is at the
center of the sphere, and that of the azimuth angle is at the center
of the circle of the horizontal cross section of the sphere. The zenith
angle ranges from 0 to π and the azimuth angle ranges from 0 to 2π.
Fig. 1(b) and (c) shows the result of Nθ × Nϕ FVM. It can be observed
that the generated angular sectors are not perfect by shape: too
narrow near the pole and too wide near the equator. This problem is
decreased with the FTn FVM (Kim & Huh, 2000). Same as Sn DOM, n
is the number of layers and the layer of index i contains 4i directions.
Its result is shown in Fig. 1(d).

2.2. Definition of a square direction

A question can be raised: what is the ideal geometric shape of a dis-
crete direction on the 4π sphere? One can think of common figures
such as: a circle, an equilateral triangle, a square, or a more complicated
image like a regular hexagon. By taking into account that the figure is
on the sphere surface, among all the possible shapes, the square is
the simplest shape for integration. Therefore, we keep “square” in our
mind throughout the whole discretization process and think about
how to generate a nearly square angular sector.

Let θ and ϕ be the zenith and azimuth angles in 4π space. Table 1
gives the attributes of any direction (Ω, ΔΩ). The direction center
(θc, ϕc) is the first attribute to consider. A rectangle is defined by
width (Δθ) and length (Δϕ) on a spherical surface. It differs from that
on a plane surface. For example, the shape of a direction near the top
of the upper hemisphere is more like a triangle, or a trapezoidal rather
than a rectangle. Thus, the coordinates that represent any direction
(Ω, ΔΩ) correspond to the centroid of (Ω, ΔΩ), with a mean azimuth
angle ϕc ¼ ϕ0þϕ1

2 , and with a zenith angle θc that differs from the
mean zenith angle θ0þθ1

2

� �
:

θc ¼ arccos cos θ0 þ cos θ1ð Þ=2ð Þ: ð3Þ

With this approach, the solid angles “above” and “below” (θc, ϕc)
within the solid angle (Ω, ΔΩ) are equal. In order to have a square
shape, the within solid angle vertical and horizontal arc lengths that
cross (θc, ϕc) must be equal. Therefore, the shape of Ω is nearly a
square if the following condition is verified:

Δθ ¼ sin θcΔϕ: ð4Þ

2.3. Calculation of the number of zenith layers

Unlike the symmetric requirement in heat transfer, the simulation
of satellite signal does not contain complex 3D grid. The complete
symmetry is replaced by point symmetry relative to the center of
the sphere. The directions (Ω, ΔΩ) that sample the 4π sphere are
symmetric relative to the center of the sphere, in such a way that a
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flux that is intercepted can be backscattered along the direction that is
opposite to the incident direction. Therefore, the initialized number of
directions (N) is even, and the number of directions of the upper hemi-
sphere (Nup) is half the total number of directions (Nup = N/2). Fur-
thermore, the nadir direction (θc = 0, ϕc = 0) is very important for
remote sensing, so the top and bottom directions are represented by
a circular shape. To facilitate the application of the generated direction
list (flux calculation, interpolation, subsampling, etc.…), the 4π sphere
is sampled under 4 conditions:

• Directions are created by zenith layer.
• All directions have the same ΔΩ. Hereafter, this is called ΔΩunit.
• The shape of Ω should be nearly a square.

• The distribution of directions on the sphere must be as homoge-
neous as possible. It implies that the azimuth angle of the directions
within different layers must not be coincident.

The algorithm starts with the determination of the directions in the
upper hemisphere. The distribution of the directions in the lower hemi-
sphere is the symmetric of the distribution of the directions in the upper
hemisphere.

The number of layers (nL) of the upper hemisphere strongly
affects the shape of the generated directions. It is computed with the
assumption that Δθ is small (i.e., a relative large N). The constraint of
equal solid angles implies that for each direction: ΔΩunit ¼ 2π

Nup
. Thus,

with Eq. (4) and ΔΩ expression (Table 1), for each direction Ω, we
must have:

cosθ0− cosθ1ð Þ Δθ
sinθc

¼ ΔΩunit :

Combining the cosine functions, we get:

2 sin
θ0 þ θ1

2

� �
sin

Δθ
2

� �
Δθ
sinθc

¼ ΔΩunit :

Since Δθ is small, we have: sin Δθ
2

� �
≈ Δθ

2 , and sin θ0þθ1
2

� �
≈ sinθc. It

leads to the approximated value: Δθapp≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔΩunit

p
.

The first layer consists of only a vertical direction with a circular
shape. With zenith angle width Δθ being about half of the other

a) S8 DOM b) 10x8 FVM

c) 4x20 FVM d) FT8 FVM

Fig. 1. DOM and FVM direction discretization schemes for N = 80.

Table 1
Attributes of discrete directions Ω.

Symbol Expression Representation

θ0, θ1 Upper and lower θ boundaries of Ω
ϕ0, ϕ1 Left and right ϕ boundaries of Ω
θc arccos((cosθ0 + cosθ1)/2) θ of the center of Ω
ϕc (ϕ0 + ϕ1)/2 ϕ of the center of Ω
Δθ θ1–θ0 Difference between the θ boundary values
Δϕ ϕ1, ϕ0 Difference between the ϕ boundary values
ΔΩ (cosθ0 − cosθ1) × Δϕ Solid angle of Ω
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layers, the total number of layers is the integer number that is the
truncated value of:

nL≈
π=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔΩunit

p þ 0:5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πNup

q
4

þ 0:5: ð5Þ

In a 1st step, the Δθ of each layer is set as:

Δθapp ¼ π=2ð Þ= nL−0:5ð Þ: ð6Þ

2.4. A new method to generate the discrete directions

Here, a new angular discretization method, called IUSD (Iterative
Uniform Square Discretization) is introduced. The directions are itera-
tively generated by taking into account the remainder of each attribute
of last iteration. The number of iterations is equal to the number of
layers. Let the superscript n be the layer (iteration) index. First, the
top layer with the single direction (Ω1, ΔΩ1) is initialized with:

θ10 ¼ 0 θ11 ¼ θ20 ¼ Δθ1 ¼ Δθapp
2

ΔΩ1 ¼ 2π 1− cosθ11
� �

:

Directions of the same layer have the same Δθ and Δϕ. For layer n,
they are called Δθn and Δϕn, with Δϕn ¼ 2π

Nn
l
and Nl

n the number of di-
rections in layer n. It is shown below that it is computed as a round
number. After setting the first direction, it remains Nrem

1 = Nup − 1
directions and nLrem

1 = nL − 1 layers. Remaining zenith angle is
θ1rem ¼ π

2−Δθ1. Remaining solid angle is ΔΩrem
1 = 2π − ΔΩ1. The

updated unit solid angle for the other layers is ΔΩ1
unit ¼ ΔΩ1

rem

N1
rem
. These

variables (Nrem
n , nLremn , θremn , ΔΩrem

n , ΔΩunit
n ) are updated at each itera-

tion n (Table 2) following the steps shown below:

• Step 1: Calculate the approximate Δθ for layer index n > 1 :
Δθappn = (θremn − 1)/nLremn − 1. Then, initialize the top θ of layer n with:
θ0n = θ1n − 1.

• Step 2: Calculate the approximate solid angle ΔΩapp
n of layer n

from Δθappn :

ΔΩn
app ¼ cos θn0

� �
− cos θn0 þ Δθnapp

� �� �
� 2π:

The actual number of directions Nl
n of the current layer n is calculated

as the round integer of ΔΩapp
n /ΔΩunit

n − 1.
• Step 3: Compute the actual ΔΩn and Δθn, by using the actual Nl

n:

ΔΩn ¼ Nn
l � ΔΩn−1

unit

θn1 ¼ arccos cosθn0−
ΔΩn

2π

� �
Δθn ¼ θn1−θn0 :

• Step 4: End the current iteration with the update of the remaining
parameters Nrem

n , nLremn , θremn , ΔΩrem
n , and ΔΩunit

n by using the expres-
sions in Table 2.

The iteration ends once the last layer (nLremn = 0) is defined and all
the remaining parameters (Nrem

n ,θremn ,Ωrem
n ) are 0. Then, a list of layers

is generated. After defining the ϕ0 of the first direction of layer (ϕ0
n),

all other directions can be generated. ϕ0
n is 0 only in the top layer.

To maximize the distance between all directions, the azimuth angles
ϕ0
n and ϕ0

n − 1 of 2 consecutive layers are shifted:

ϕn
0 ¼ ϕn−1

0 þ Δϕn−1

2
if cb3

ϕn
0 ¼ ϕn−1

0 þ Δϕn−1

2
� 1þ 1

cn−1

� �
f c >¼ 3

ð7Þ

where c is the number of adjacent layers with the same number of
directions. ϕ0

n is shifted by half of the Δϕn − 1 of last layer multiplied
by a constant that depends on c. This constant allows one to take into
account the case of multiple successive layers with the same number
of directions Nl

n. For instance, let us consider a list of directions of 8
successive layers with Nl

n represented by the set {1 3 3 4 5 6 6 6},
then the corresponding set for cn is {1 2 2 1 1 3 3 3}.

By applying Eq. (7) to each layer, all directions are generated. They
have the same ΔΩ except the vertical direction of the top layer, and
the shape of each direction is almost square. Then, directions of the
lower hemisphere are derived from the directions of the upper
hemisphere.

Fig. 2 shows 3 sets of directions with N = 100, 500 and 2000. All
directions have nearly square shapes on the sphere. Color tones indi-
cate the angular sectors that are used for storing the mean direction

Table 2
Remaining (rem) parameter expressions after each iteration n (i.e., the index of layer).

Symbol Layer 1 Layer n Representation

Nrem
n Nup − 1 Nrem

n − 1 − Nl
n The remaining number of directions

nLrem
n nL − 1 nLrem

n − 1 − 1 The remaining number of layers
θremn π

2−Δθ1 θremn − 1 − Δθn The remaining θ
ΔΩrem

n 2π − ΔΩ1 ΔΩrem
n − 1 − ΔΩn The remaining total ΔΩ

ΔΩunit
n ΔΩ1

rem

N1
rem

ΔΩn
rem

Nn
rem

The updated value for unit ΔΩ for all
remaining directions

a) 100 directions with region

oversampling

b) 500 directions c) 2000 directions

Fig. 2. The 3D spherical distribution of directions for 100, 500 and 2000 directions.
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of the incident fluxes that are scattered at scattering order larger than
1. They are made of individual DART directions. Their number is
smaller or equal to the defined number N of DART discrete directions.
Fig. 3 compares the solid angle of discrete direction of FVM method
and IUSD method for 3 cases: 24, 48, and 80 directions. The IUSD
method gives uniformly distributed directions of equal solid angle
with the only exceptions for the top and bottom directions.

2.5. Verification of the first moment

In the IUSD, same as the FVM, thew parameter of the first moment
is directly equal to ΔΩ. As discussed in Section 2.1, since IUSD
discretizes the 4π sphere with exact boundaries like the FVM, the
first quadrature by integration is automatically verified. In order to
verify the conservation of energy in the case of a Lambertian surface,

we must verify ∫
0

2π
cos θcdΩ = π. The definition of (θc,ϕc) implies

that for each DART direction, we have: ∫ ΔΩ cos θcdΩ = cos θc × ΔΩ.
Thus, the summation over all DART solid angles, in the case we have
nL layers, leads to:

∑
N

cosθc � ΔΩ ¼ 2π
XnL
i¼1

cosθic cosθi0− cosθi1
� �

¼ π
XnL
i¼1

cos2θi0− cos2θi1
� �

:

Substituting θ01 = 0, θnL1 ¼ π
2, and θ0i = θ1i − 1, we get ∑nL

i¼1
cos2θi0− cos2θi1

� �
¼ 1, then:

∑
N

cosθc � ΔΩ ¼ π:

Therefore, the computation of first moment with numerical quad-
rature gives the accurate value. This is another advantage of the IUSD
over the FVM by defining the direction center to be at the centroid of
the shape. In FVM, the direction center is at the mean zenith and
azimuth angles (Chui & Raithby, 1993). Therefore, even if it gives an
accurate estimation of the flux, FVM does not direct the flux to the
accurate direction.

It is very important to pay attention to the calculation of cos θcΔΩ
in IUSD. It can be calculated explicitly except for the nadir direction.

This direction is special because in the spherical coordinate system,
θ0 = θc = 0, so cos θcΔΩ = ΔΩ, which differs from the expected
value ∫ cos θdΩ. This problem is due to the spherical coordinate sys-
tem. It happens when the z axis intercepts the spherical surface area
of the angular sector. Thus, the expression to calculate ∫ cos θdΩ for
nadir direction must not use the vertical direction. It is equal to:

∫ cosθ1dΩ ¼ 1− cos2θ11
� �

� π:

3. Validation and results

The IUSD is validated with a simple simulation shown in Fig. 4. The
scene is a homogeneous vegetation cover. The leaf angle distribution
(LAD) of the vegetation is spherical, and the mean leaf diameter is
1 cm. The wavelength of simulation is 560 nm. The corresponding
leaf reflectance is 0.1017 and the transmittance is 0.0753. The sun
position relative to the scene is (θs = 45, ϕs = 225). DART simulations
are conducted in flux tracking mode with 3 different numbers of direc-
tions (24, 48, 80) and 3 leaf area indices (LAI = 0.5, 2, 4). The ground is
set to be purely absorbing surface with reflectance equal to 0.
Therefore, only the radiative interaction with leaves is simulated. Our
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Fig. 3. FVM and IUSD discretized solid angles for 3 cases: 24, 48 and 80 directions.

Fig. 4. Simulation of vegetation cover.

Table 3
Nadir reflectance relative error with different discretizations of the 4π space.

Discretization method Number of directions Nadir reflectance relative error
(θ = 0, ϕ = 0) (%)

LAI = 0.5 LAI = 2.0 LAI = 4.0

S4 DOM 24 3.0097 0.3481 3.6590
2 × 12 FVM 24 7.3978 7.3586 7.1021
FT4 FVM 24 2.6172 3.0530 3.2008
IUSD 24 0.5257 0.3481 0.3988
S6 DOM 48 0.9453 1.2026 1.1880
4 × 12 FVM 48 2.0920 1.5338 1.4939
6 × 8 FVM 48 1.2059 0.7893 0.7862
FT6 FVM 48 1.0579 1.4519 1.4958
IUSD 48 0.3624 0.1642 0.1929
S8 DOM 80 1.0913 1.2275 1.2286
4 × 20 FVM 80 2.0958 1.5427 1.5051
10 × 8 FVM 80 0.5218 0.3052 0.3073
FT8 FVM 80 0.4881 0.7847 0.8123
IUSD 80 0.2694 0.1630 0.1706

217T. Yin et al. / Remote Sensing of Environment 135 (2013) 213–223

63



objective is to estimate the accuracy of bidirectional reflectance factor
(BRF). The BRF is defined to be the measured reflectance of the scene
normalized by the reflectance of a purely white Lambertian surface.
In addition to the previously mentioned DART discrete directions, the
BRF is also simulated for directions that are in the sun perpendicular
plane with 5° step of the zenith angle θ, within the range [−80° 80°]:
ϕ = 135° and θ = {−80°, −75°, −70°,⋯−5°, 0°, 5°,⋯70°, 75°, 80°},
where the negative value of θ represents its reverse at ϕ = 315. It
must be noted that these additional directions do not impact the sim-
ulation accuracy. Indeed, they have no impact on radiative transfer.
This is explained in Section 4. Because accuracy increases with the
number of directions, we assume that simulations conducted with a
very large number of directions can be used as a reference for evaluat-
ing the accuracy of simulations that are conducted with a smaller

number of directions. Here, reference simulations are obtained with
2000 directions for IUSD, 2024 directions for FT44 FVM, and 2080 direc-
tions for 40 × 52 FVM. The relative differences between the 3 values
are less than 0.1%.

Table 3 shows the relative errors of the nadir reflectance. Fig. 5
shows the relative error in the sun perpendicular plane with 5°
step. The following points can be observed:

• Accuracies of all methods increase as the number of directions in-
creases, converging towards the reference value. When the number
of directions reaches 80, most methods have relative smaller error.
(1.23% for DOM, 2.10% for FVM and 0.27% for IUSD.)

• As LAI increases, the chance of multiple scattering increases, with
no obvious trend on BRF accuracy.
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Fig. 5. Reflectance over the perpendicular sun plane (Azimuth = 135°, Zenith step = 5°), for LAI = 0.5, 2, 4 and N = 24, 48, 80.

218 T. Yin et al. / Remote Sensing of Environment 135 (2013) 213–223

64



• The Sn DOM and FTn FVM are quite stable, with similar result (2.5–
3.5% at N = 24, 1–1.5% at N = 48, 0.5–1% at N = 80). The Nθ × Nϕ

is very unstable with a relatively larger error.

• The IUSD gives better results than all the other methods, with errors
less than 0.55% with 24 directions, less than 0.37% with 48 direc-
tions, and less than 0.27% with 80 directions.

4. Oversampling technique

It is often necessary to work with discrete directions in addition to
the predefined discrete directions that sample homogeneously the 4π
space. Such directions can be unique directions (e.g., view direction of
a satellite sensor) or a set of directions that sample a given portion of
the 4π space (e.g., angular neighborhood of the hot spot and specular
directions). Moreover, these additional directions can be defined in
such a way that the radiations along these directions do contribute
or not to radiative transfer modeling. If there is no contribution,
these directions are simply used for providing radiative transfer
results. They are not taken into account for computing the moments.
This type of additional direction is the view direction that is used in
SAIL model (Verhoef, 1984). On the other hand, if there is contribu-
tion, for example for improving the accuracy of radiative transfer
simulation in presence of anisotropic radiative behaviors, all or part
of the originally defined discrete directions must be modified in
order to verify the 2 moments. The different cases are presented
below.

4.1. Addition of a square direction

The IUSD method can introduce square directions with solid an-
gles that are defined either by their solid angle values ΔΩ or by
their zenith and azimuth angle ranges.

• Direction {θc,ϕc,ΔΩ}.

Assume δθ0 and δθ1 are the θ differences from the center to the
upper edge and lower edge respectively (θ0 = θc − δθ0, θ1 = θc +
δθ1). ΔΩ expression of Table 1 and Eq. (4) leads to:

cos θc−δθ0ð Þ− cosθcð Þ δθ0 þ δθ1
sin θcð Þ ¼ ΔΩ

2

cosθc− cos θc þ δθ1ð Þð Þ δθ0 þ δθ1
sin θcð Þ ¼ ΔΩ

2

:

8>><
>>:

There is no analytical solution for these equations. Thus a numer-
ical method is used for finding δθ0 and δθ1. This method works with
an equation where δθ0 is the only variable:

F δθ0ð Þ ¼ 2 cos θc−δθ0ð Þ− cosθcð Þð Þ
� δθ0−θc þ arccos 2 cosθc− cos θc−δθ0ð Þð Þð Þ−ΔΩ
� sin θcð Þ¼ 0: ð8Þ
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tion (a) or a set of directions (b) that contribute to radiative transfer. Case (b) corresponds
to an oversampling.

a) Without oversampling b) With oversampling

Fig. 7. Resultant BRF distribution of a specular surface.

219T. Yin et al. / Remote Sensing of Environment 135 (2013) 213–223

65



The bisection method is used to find the value δθ0 that gives
F(δθ0) = 0. Once δθ0 is calculated, the other parameters are simply
determined.

• Direction {θc,ϕc,(Δθ or Δϕ)}.

This can be solved analytically by using the fact that the solid
angle above (θc, ϕc) is equal to ΔΩ/2:

δθ0 ¼ acos cosθc= cos Δθ=2ð Þð Þ−Δθ=2: ð9Þ

Knowing δθ0, one can compute the other attributes.

4.2. IUSD-Windmill oversampling

As already mentioned, if the added directions contribute to radia-
tive transfer, all the original discrete directions that are intersected by
at least one added direction must be modified. This is done using the
so-called IUSD-Windmill model (Fig. 6(a)). Let Din be the angular
region that corresponds to Nin added directions. First, an automatic ap-
proach searches the initial direction list to find the super direction Dsup

where Din is included. The approximate unit solid angle of each added
direction in Din is:

ΔΩapp ¼ ΔΩin

Nin
:

We simply have ΔΩapp = ΔΩin if Nin = 1 (Fig. 6(a)). We have an
angular oversampling if Nin > 1 (Fig. 6(b)). Region Din can be defined
by one of the two methods presented in Section 4.1. The “100 direc-
tions” case in Fig. 2(a) illustrates the possibility to oversample any

angular region by using this technique. Indeed, the computation
time of RT simulations strongly increases with the number of total di-
rections. This technique avoids to create unnecessary directions. The
first moment is verified. This is shown as in Section 2.5.

4.3. IUSD-EO oversampling

The Windmill method increases the number of discrete directions
by more than 1 unit, each time one adds a discrete direction. This can
be a severe constraint in some cases. In order to decrease this
problem, we introduced another oversampling approach when adding
directions that contribute to radiative transfer. For that, we consider
that there are 3 types of directions that contribute to radiative transfer:
the original discrete direction (D), the embedded direction (E), and the
occupied direction (O). The directions allow one to verify all the mo-
ments and the conservation of energy.

At the beginning, there are only discrete directions (D). If we add
directions that contribute to radiative transfer, the direction (ΩD,
ΔΩD) that contains n added directions becomes an occupied direction
(O), and the n added directions are called “embedded” directions. (ΩE,
ΔΩE). The occupied direction (ΩO, ΔΩO) is defined by:

ΔΩO ¼ ΔΩD−
Xn
i¼1

ΔΩi
E SO ¼ SD−

Xn
i¼1

SiE ð10Þ

where S = cosθΔΩ. Thereafter, it does not matter how many “E”
directions are added to the list, the conservation condition is always
satisfied.

5. Oversampling validation

3 results are shown here in order to illustrate the interest of the
IUSD-Windmill samplingmethod: a surface with specular reflectance,
a vegetation landscape and an urban landscape.

5.1. Specular reflection

Specular reflection of a unidirectional flux on a plane surface gives
an unidirectional flux that is symmetric to the incident direction
relative to the normal of the surface. In order to take into account the
surface roughness, the DART model distributes the specular scattered
radiation Espec in a cone that is centered on the exact specular direction.
The cone has a half angle αspec that depends on surface roughness. Espec
is proportional (factor ηspec) to the classical Fresnel reflectance coeffi-
cient for unpolarized radiation. Here, we consider a surface that has a

Table 4
Vegetation simulation.

Parameter Value

Scene irradiance (W · m−2 · μm−1) 393.94
Leaf reflectance 0.554
Leaf transmittance 0.410
Number of vertical layers for multiple scattering 10
Leaf diameter (cm) 1
Leaf area index 4
Leaf angle distribution Spherical
Sun angle Ωs (θ, ϕ) (77.1, 58.5)
Oversampling solid angle (sr) 0.003
Number of oversampling directions 25

Fig. 8. Directional reflectance of a vegetation cover with hot spot configuration.
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Lambertian reflectance (0.2) and a roughness such that ηspec = 200
and αspec = 0.1 rad.

Sun position is (θs = 30, ϕs = 225). 100 directions are used to
discretize the 4π space. In addition, the angular region around the spec-
ular direction (θo = 30, θo = 45) is oversampled with 25 directions.
The solid angle of the region is 0.08. Fig. 7 shows the BRF distribution
result in polar coordinate system. As expected, specular reflection is
not displayed if directions around the specular direction are not simu-
lated (Fig. 7(a)). Use of 25 directions centered on the specular direction
allows one to simulate the angular decrease of specular reflectance
from the theoretical specular direction (Fig. 7(b)). Here, specular

reflection does not influence the reflectance for other directions, be-
cause the scattering scene is a 2D surface without any multiple scatter-
ing mechanism.

5.2. Vegetation

We illustrate the impact of the 4π space discretization in the
presence of multiple scattering. For that, we consider a scene that is a
homogeneous vegetation cover. Table 4 summarizes its characteristics.
Here, vegetation is simply simulated as the superposition of homoge-
neous turbid layers.

Usually, the reflectance of vegetation is maximal for the scattering
direction that corresponds to sun direction. This is the so-called hot
spot configuration (Fig. 8). It corresponds to a strong local anisotropy
of scene reflectance. Account of hot spot configuration is important for
simulating reflectance values around the hot spot angular region, Here-
after, an overestimation or underestimation of radiation in the hot spot
angular region has an impact on radiation along other directions.

a) canyon simulation b) 50 directions c) 170 directions

d) 50+120 directions e) reference intercepted irradiance on the

wall (3000 directions)
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Fig. 9. Simulation of urban canyon.

Table 5
Simulated exitance and nadir reflectance (Vegetation).

Nadir reflectance Exitance (W · m−2 · μm−1)

No HS (50 directions) 0.484 60.233
HS (50 + 25 directions) 0.491 59.673
HS (2000 + 25 directions) 0.490 59.130
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A question is: how to sample the hot spot angular region for sim-
ulating landscape exitance and reflectance (e.g., at nadir) with a given
accuracy? The way to answer this question is illustrated here with 3
simulations (Table 5): a simulation with 50 directions with 1 direc-
tion centered on the hot spot, a similar simulation for which the hot
spot angular region is oversampled with 25 discrete directions, and
a simulation with 2000 directions, that is used here as a reference
simulation. It appears that oversampling the hot spot angular region
improves the relative accuracy of nadir reflectance from 1.23% to
0.20% and exitance from 1.87% to 0.92%.

5.3. Urban landscapes

Actual earth scenes can have BRF values with several peaks. In that
case it is important to oversample several angular regions. Here, we
illustrate such a configuration with the case of an urban landscape.

We consider an urban street that is simulated with a simple can-
yon shape: a street between 2 vertical walls and 2 horizontal roofs
(Fig. 9(a)). Parameters are shown in Table 6. Sun is at nadir. Thus,
the walls of buildings only receive the radiation reflected by the street
(which is illuminated by the sun directly) and multiple scattering
from the opposite wall. With 50 initial directions (Fig. 9(b)), the
solid angle of the nadir direction has a lower boundary located at
θ11 = 12.86. The top of the walls is seen from the center of the street
with a zenith angle equal to atan(1/12) = 4.76 b b θ11 from the cen-
ter of the street. Therefore, the energy reflected along the nadir direc-
tion and all directions in the plane is over-estimated, and the energy
received and reflected by the walls is under-estimated.

The same simulation was conducted with an oversampling of an-
gular regions (Fig. 9(d)) with additional 120 directions that sample
the angular region that corresponds to the solid angle according to
which one sees the sky and the top of the walls from the street center.
For comparison, the case with 170 directions is also simulated (Fig. 3).
Major differences occur for directions that reach the top of the walls
from the street center. It results that it impacts the radiative budget
of the walls. The accuracy is decreased as the height of the wall in-
creases, since more pixels are covered by a single large solid angle,
and the irradiance distributed to each pixel is hard to be differentiat-
ed. This is the reason for the importance of regional oversampling.
The reference value considered to be accurate is set to be the simula-
tion with 3000 directions (intercepted irradiance of wall in Fig. 9(e)).
Fig. 9(f) and (g) shows the relative and percentage errors of the sim-
ulations with and without oversampling. The percentage error of the
upper part of the wall is reduced dramatically by the oversampling.

6. Conclusion

A new direction discretization method IUSD for radiative transfer
modeling is presented. It defines discrete directions with optimal cen-
tral directions and solid angle shape that fulfill the condition of
squared angular sector. The resultant distribution of directions is

quite uniform and satisfies both the zeroth and the first moments.
Formulations in the radiative transfer equation are similar to tradi-
tional discretization methods (DOM, FVM, etc.). The algorithm has
several interesting advantages comparing to other methods. Firstly,
any even number of directions can be defined. Also, the number, the
shape and solid angle of discrete directions within each zenith layer
are adjustable. For example, solid angles can be weighted by the
squared cosine of the zenith angle. Furthermore, numerical quadra-
tures are easily applied because the boundaries of each direction are
exactly defined, and zenith can be sampled according to its cosine
of value to reduce the non-linearity.

Results in this paper show that the IUSD method is more accurate
than the Sn DOM, the Nθ × Nϕ FVM and the FTn FVM methods in the
case of multiple scattering within turbid medium simulation. 2
oversampling methods based on IUSD are presented: IUSD-Windmill
and IUSD-EO, which allow one to add any direction or set of directions
on the 4π sphere, and oversample any number of angular regions. The
IUSD-Windmill is used to simulate strong anisotropic configurations
(specular reflection, hot spot, etc.). For scenes that have a strongly
anisotropic radiation region, the method proved to be very useful in
order to improve the simulation of scene reflectance and radiative
budget. Especially for hot spot configuration, the shape of the hot
spot can be extracted from direction oversampling. Another major
advantage of this approach is to improve results without a large
increase of the number of directions. This is very interesting in terms
of computation time. Indeed, computation time increases with the
number of discrete directions that contribute to radiative transfer.
This method is implemented in the current DART model (http://
www.cesbio.ups-tlse.fr/us/dart.html). We believe that heat and mass
transfer applications can also benefit from this method.
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Chapter 3

Simulation of passive sensor images
through finite FOV

Comparison of actual and simulated remotely sensed images is difficult since in many cases, simulated

images are not realistic enough in terms of both radiometry and geometry. This chapter presents a mod-

eling approach that aims to provide realistic sensor image simulation. For that, it combines the DART

3D radiative transfer model (RTM) with 3D perspective projection to simulate the image of the Earth

scene as acquired by a camera or a cross-track sensor (e.g., scanner, pushbroom). Nowadays, many

different types of data acquisition are possible with sensors on board satellites and remote sensing data

are available with the fast evolution of sensors on board satellites, planes and unmanned aerial vehicles

(UAV). RTM is commonly considered as a classical tool to simulate and validate remote sensing mea-

surement. Most present works on RTMs are focused on mathematical modeling based on 3D landscape

simulation, for better simulating the angular distribution of the Earth landscape radiance. This approach

is based on the assumption that all parts of the simulated landscape are viewed along the same direction,

which is inconsistent with actual measurement where multi-directional acquisition is used within the

sensor FOV. Indeed, traditional RTMs cannot account camera model and its image projection geometry,

such as classical perspective projection for camera and parallel-perspective projection for cross-track

imagers (e.g., linear pushbroom camera, whiskbroom scanner, scanning radiometer, etc.). This situation

is particularly problematic for airborne acquisitions with relatively low sensor altitude and wide field of

view.

A new modeling approach, the so-called Convergent Tracking and Perspective Projection (CTPP),

is designed and implemented in order to solve this problem. The pre-defined virtual direction concept

presented in Chapter 2 is extended to the automated steering virtual direction (ASVD). The ASVDs

correspond to the already mentioned "non predefined virtual discrete directions". These directions and

their associated scattering transfer functions are not pre-computed. They change their directional vectors

during ray tracking. Therefore, the virtual fluxes which enter the input aperture of an imaging sensor

can come from various directional vectors going through an ASVD. For that, acquisition is simulated

for the exact view direction associated with each participating Earth surface element during tracking,
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according to the instant positions of both the sensor and the scattering point in the 3D architecture of the

Earth landscape.

This new approach improves the usefulness and flexibility of RTMs for simulating actual observa-

tions. Both cross-track imager and camera geometries are modeled for most classical configurations.

With this implementation, DART provides novel results for many research areas, including:

1. Passive sensor imaging, in presence of finite FOV.

2. Video captured by unmanned aerial vehicle (UAV).

3. Local hot spot (HS) effect in a RS image.

4. Pixel-wise comparison between actual and simulated orthorectified perspective-projection images.

5. Study of radiance variation between images acquired by airborne and spaceborne systems. This

is important for inter-calibration purpose and for up-scaling / down-scaling approaches.

These 5 points are illustrated here. Another important application of this method is accurate pixel-

wise comparison between simulated and acquired RS data, for any configuration. This potential is

illustrated by a few examples in Section 3.1, with the paper "Simulation of multi-view sensor images of

the Earth scene by linking 3D radiative transfer modeling with perspective projection".

In Appendix II, DART simulated images are compared with Airborne Prism Experiment (APEX)

hyperspectral data. Comparison results show an improvement compared to a previous work (Schneider

et al., 2014) that was conducted with DART images that were simulated with the orthographic projection

along the average view direction of a swath. This improvement is detailed in the second section of

this Chapter, with the Conference proceeding "At-Sensor Radiance Simulation for Airborne Imaging

Spectroscopy"

It is interesting to note that the CTPP method is used for simulating LIDAR waveforms and their

solar noise (Chapter 4), and also multi-view sensor image fusion (Chapter 5).

3.1 Article: "Simulating images of passive sensors with finite field of view
by coupling 3-D radiative transfer model and sensor perspective pro-
jection
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Comparison of actual and simulated remotely sensed data is difficult if simulated data are not realistic in terms of
both radiometry and geometry. This paper presents a modeling approach that considers the multi-directional
acquisition within sensor field of view (FOV) in order to simulate realistic images of Earth surfaces, as acquired
by passive sensor with a finite FOV. In this approach, the DART (Discrete Anisotropic Radiative Transfer) 3-D ra-
diative transfer model (RTM) is coupled with 3-D perspective projection. Current RTMs assume that all parts of
the studied landscape are viewed along the same direction, although all passive imagers acquire energy in a FOV
with a nonzero solid angle. In addition, they cannot account camera model and its image projection geometry
(e.g., perspective projection for camera and parallel-perspective projection for cross-track imager). This situation
is particularly problematic for airborne acquisition with low sensor altitude and wide FOV. Our new modeling
approach solves this problem: rays that enter a sensor can come from various directions. For that, during ray
tracking, each passive sensor acquisition is simulated for the exact view direction, which is the instant vector
from the scattering point to the sensor position. Camera and cross-track imager are both modeled for most
classical configurations. With this implementation, DART provides original simulations and assessments for
various research domains, including: 1. Passive sensor imaging; 2. Video captured by unmanned aerial vehicle
(UAV); 3. Local hot spot (HS) effect in a RS image; 4. Pixel-wise comparison between simulated orthorectified
perspective-projection images; and 5. Radiance variation among images acquired by airborne and spaceborne
systems with different sensor altitudes. These 5 points are illustrated here. Accurate pixel-wise comparison
between simulated and acquired RS data, for any configuration is another important application of this approach.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Presently, improvements of measurement accuracy and data
transfer techniques drive the increasing number of new active and
passive sensors mounted on satellites and airplanes to study the
Earth's surfaces. Especially, emerging sensors on aircrafts and UAVs
are quite favored for their relatively low cost, high spatial/temporal
resolution and flexibility. The existing passive sensors used in RS
measurements receive signals within their wide FOVs in order to
broaden the observing region. Most imaging sensors mounted on
satellites and aircrafts are usually cross-track imagers (e.g. linear
pushbroom camera, whiskbroom scanner, and scanning radiome-
ter), while those mounted on UAVs are usually frame cameras. A
cross-track imager acquires data in parallel cross-track planes,
which are usually perpendicular to its platform trajectory and uni-
formly separated. Within a cross-track plane, the radiance values
from a row of across track pixels along different viewing angles are

retrieved. For example, NASA's Cloud Absorption Radiometer (CAR)
(Gatebe, Dubovik, King, & Sinyuk, 2010; Gatebe et al., 2003; King,
Strange, Leone, & Blaine, 1986) has a wide angular FOV up to 190°.
Recent developments of the airborne and spaceborne cross-track
imager systems tend to use hyperspectral imaging spectroscopy
(e.g. the Airborne Prism EXperiment (APEX) of ESA Jehle et al.,
2010; Schaepman et al., 2015), and the combination with scanning
LIDAR (e.g. Carnegie Airborne Observatory (CAO) Asner et al., 2007
and Goddard's LiDAR, Hyperspectral and Thermal Imager (G-LiHT)
Cook et al., 2013). Compared with aircrafts, UAVs are used for obser-
vations of relatively smaller areas. Frame cameras are mostly on
board UAV and airplanes. They are capable of providing real-time in-
formation of the Earth's surfaces and generate images and videos
with high resolution (Berni, Zarco-Tejada, Suárez, & Fereres, 2009).

Radiative transfer models (RTM) are extensively applied to simulate
the radiation interaction of the Earth's environment in spectral domain
from the visible to the thermal. Many works have been devoted for
improving RTMs and accurate simulations of the 3-D Earth's surfaces
constructed by explicit physical features and elements with associated
optical properties. Intercomparison amongRTMs is gradually developed
with the increasing requirement of modeling accuracy. The RAMI
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(Radiative TransferModel Intercomparison) experiment of the Joint Re-
search Center of European Commission is a typical example (Pinty et al.,
2001, 2004; Widlowski et al., 2007; Widlowski, Pinty, Clerici, et al.,
2011; Widlowski, Pinty, Lopatka, et al., 2011). This intercomparison
has been continuously improved during the past 15 yearswith 4 phases.
It provides reference reflectance values of simple and complex 3-D
Earth scenes. One of themain challenges faced by RAMI is the lack of ab-
solute reference standards from actual measurements. Any comparison
of RTMs with actual data is quite complicated due to numerous factors,
such as errors of geometric construction of 3-D scenes, incomplete ob-
ject parameterization and sensor noise associated to themeasurements.
The RAMI defined references are based on the convergent results
throughout years of experiments using several “credible” RT models
(Widlowski et al., 2008). Another challenge of the intercomparison is
the limitation of comparable results provided by RTMs.Most of the com-
parisons were only done for the scene bidirectional reflectance factor
(BRF), albedo (terminology following Schaepman-Strub, Schaepman,
Painter, Dangel, and Martonchik (2006)), and to a lesser extent, LIDAR
waveform of a single pulse.

There are 3 major constraints for comparing RTM with sensor data:

1. Errors of measurement and data processing: Sensor have systematic
errors, and their raw data must go through several processing steps
before being suitable for applications. These steps include: radiomet-
ric correction, geocoding, orthorectification, atmosphere correction,
resampling and interpolation. All steps potentially give rise to errors
compared to the physical signal (i.e., ideal RTM) at sensor entrance.

2. Inaccurate account of atmosphere in RTMs: Most RTMs work with
partial or no account of the atmosphere radiative coupling with the
Earth's surfaces, which lead to inaccurate simulation of neighbor-
hood effects at pixel level.

3. Neglect of sensor geometric configuration in RTM: Mapping 3-D
objects onto a 2-D image plane (IP) (a mesh grid with pre-defined
size), needs an adaptation method of projection. Usually, classical
perspective projection (Sonka, Hlavac, & Boyle, 2008) is applied for
cameras, and parallel-perspective projection (Chai & Shum, 2000;
Gupta & Hartley, 1997; Zhu, Hanson, & Riseman, 2004) is applied
for cross-track imagers. They are crucial in obtaining exact radiance
values and their spatial distribution in the IPs. Numerous RTMs
utilize a combined method of exact kernel and discrete ordinate
method (DOM) to solve the transfer function in steady-state process
(Fiveland, 1988; Modest, 2013). In DOM, the 4π space is discretized
into a finite number of directions and rays propagate only along
these directions. RTMs that use DOM, simulate scene radiance values
along a specific direction and the radiance values are orthographical-
ly projected onto the IP. This method performs well in calculating
scene or pixel reflectance for a given view direction. However,
DOM is not appropriate for simulating actual sensor images, since
multi-directional acquisitions within sensor FOV and perspective
projection are not considered. It results in direction offset for each
pixel in simulated image, which makes it extremely difficult to
conduct pixel-wise comparisons with actual sensor image. This
inconsistency ismuch amplifiedwith 3-D Earth landscapes, especial-
ly if the simulated sensor is at low altitude with a wide FOV.

Discrete anisotropic radiative transfer (DART) (Gastellu-Etchegorry,
Demarez, Pinel, & Zagolski, 1996; Gastellu-Etchegorry, Grau, & Lauret,
2012; Gastellu-Etchegorry, Martin, & Gascon, 2004; Gastellu-Etchegorry
et al., 2015) can overcome most of the difficulties of the 2nd constraint.
In the past 20 years, DART has proved to be one of the most accurate
3-D RT models (Widlowski et al., 2007) to simulate RS data and radia-
tive budget of the Earth's surfaces. DARTwas the first model to simulate
images of orthographic projection for 3-D scenes (Gastellu-Etchegorry
et al., 1996) with flexible configurations including spatial resolution,
number of bands, and view direction. Its major advantage is to work
with any type of 3-D urban and vegetation landscape with topography,
for simulating their 3-D radiative budget, active LIDAR signals and

radiometric images, from the visible to the thermal infrared spectral
domain. Furthermore, the Earth-atmosphere radiative coupling of
heterogeneous scenes is implemented (Gastellu-Etchegorry et al.,
2004; Grau & Gastellu-Etchegorry, 2013), and validated by compari-
sons with MODTRAN model (Berk, Bernstein, & Robertson, 1987;
Berk et al., 1999). Schneider et al. (2014) carried out a pixel-wise
comparison between APEX airborne images and orthographic-
projection images (OPImage) simulated by DART over the Laegern
forest site (Switzerland). In this study, a high-fidelity test scene
(300 m × 300 m) was created from a 3-D forest reconstruction
parameterized using airborne, in-situ and laboratory approaches
(including airborne and terrestrial LIDAR) (Morsdorf, Kötz, Meier,
Itten, & Allgöwer, 2006; Morsdorf, Nichol, Malthus, & Woodhouse,
2009; Morsdorf et al., 2004). The sensor altitude was 4526 m above
sea level with the view zenith angle between 3.8° and 9.7° over the
scene. The DART simulated image used for comparison was the
orthorectified OPImage at the direction of the scene center (view
zenith angle = 6.75°). Coefficients of determination for pixel-wise
comparisons were 0.55, 0.56, 0.39, and 0.48 for the spectral bands
at 533 nm, 570 nm, 680 nm, and 780 nm, respectively. These results
are quite encouraging. However, one may wonder if better compari-
son could be obtained with radiance values that correspond to the
precise directions of “object-to-sensor” geometries for each pixel of
the image.

Indeed, the OPImage simulated by DART can be considered as a sen-
sor image with the assumption that the sensor is infinitely far away
from the Earth and the study area is relatively small, i.e. the FOV is
very narrow, which explains that all parts of the study area are approx-
imated to be observed along the same direction. If the solid angle of the
FOV cannot be neglected, multi-directional geometry must be consid-
ered (e.g. airborne acquisitions), and tracking algorithms adapted to
perspective projection must be implemented to simulate images. In a
DART simulation, a direction-image bijection map is created. The direc-
tion mapped to the perspective-projection image (PPImage) must be
adapted to each element in the 3-D landscape that scatters a ray to-
wards the sensor. It leads to the appearance of spatial enlargement
and offset of objects in the PPImage compared with the OPImage that
corresponds to the view direction at the center of the scene. Further-
more, for each scattering event, the scattering phase function also has
to be updated according to the direction towards the sensor during
ray tracking. It induces that the radiance value of a defined scattering
element on the sensor raw image differs from that on the OPImage.
These are the crucial difficulties to overcome the 3rd constraint men-
tioned above.

In this paper, we present a modeling approach that links DART to
3-D perspective projection to simulate actual sensor acquisitions:
the so-called convergent tracking and perspective projection (CTPP).
Basically, based on our previous work related to the direction
discretization and oversampling method in DART (Yin, Gastellu-
Etchegorry, Lauret, Grau, & Rubio, 2013), a concept called automated
steering virtual direction (ASVD) is introduced to represent the direc-
tion whose vector can be updated during ray tracking according to the
point-sensor geometry. Thus, it can account themulti-directional acqui-
sition within the finite FOV of a sensor. CTPP is implemented in the
DART release (VersionN5.4.7) for both cameramode and cross-track im-
ager mode, and it is applied for evaluations and assessments of several
research domains in this paper. By using CTPP, images and videos are ef-
ficiently simulated (through multi-thread processing) with various
platform altitudes (from 10s of meters for a UAV to 100ks of meter for
a satellite), sensor orientations and FOVs. Both raw and orthorectified
sensor images can be generated directly by DART.

In addition, local hot spot (HS) effect on a RS image is simulatedwith
CTPP. The HS effect is an optical phenomenon of vegetation that affects
RS acquisitions,whichdepends on the geometry of solar and viewdirec-
tion (Hapke, DiMucci, Nelson, & Smythe, 1996). If the view direction
and the solar direction are exactly aligned, any solar ray that is
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intercepted and backscattered towards the solar direction reaches the
sensor without any further interception. For this particular direction,
scatterers fully mask their own shadows, and around this direction,
their shadows are partially masked. Therefore, the radiance value for
this direction is usually much larger than for other view directions
where shadows of leaves can be seen. Around this direction, the en-
hancement effect gradually dissipates, which induces an angular sector
that is influenced by the HS. In traditional RTMs that simulate OPImage,
the HS effect is simulated at a fixed view direction, so all parts of the ra-
diance image are equally enhanced by the HS. However, by considering
a finite sensor FOV,which is usuallymuchwider than the angular sector
influenced by the HS, the radiance enhancement appears only on part
of an image. Accurate simulation of this effect can help to better under-
stand the HS apparent greening region on an image, and to filter the HS
effect from an image with given solar and sensor geometry (Morton
et al., 2014).

Furthermore, CTPP is used to study the variation of radiances ac-
quired by airborne and spaceborne platforms. It is generally accepted
that reflectance values of the same Earth's surface are equal for airborne
and spaceborne acquisitions if the view directions are the same and if
atmospheric effects are negligible or perfectly corrected. Actually, a
given Earth's surface with the same overall view direction from a satel-
lite and from an aircraft is not observed with exactly the same FOV con-
figurations: the airborne sensor has a much broader FOV. This can lead
to crucial differences since the Earth's surface has an anisotropic direc-
tional reflectance. Here, the variation of radiance/reflectance measured
by sensors with the same central direction of FOV but different sensor
altitude is studied by the CTPP approach. This variation explains the
difficulties and the constraints to validate spaceborne productswith air-
borne products, and more generally, to compute sensor measurements
acquired under different FOV configurations. For example, it explains
the variation of the bidirectional reflectance distribution function
(BRDF) product derived fromCARand theModerate Resolution Imaging
Spectroradiometer (MODIS) (Román et al., 2011, 2013).

Nomenclature
ASVD automated steering virtual direction
BOA bottom of atmosphere
BRDF bidirectional reflectance distribution function
BRF bidirectional reflectance factor
CTPP converging tracking and perspective projection
DOM discrete ordinate method
FOV field of view
HS hot spot
IP Image Plane
hIP horizontal Image Plane
pIP projection Image Plane
oIP orthorectification Image Plane
IUSD iterative uniform squared discretization
LAD leaf angle distribution
LAI leaf area index
OPImage Orthographic-Projection Image
PPImage Perspective-Projection Image
PTOP parallel tracking and orthographic projection
RPC rational polynomial coefficient
RS remote sensing
RTM radiative transfer model
UAV unmanned aerial vehicles

2. Background

The theoretical parts of DART that are used for the present work
are discussed below. For other aspects, one is advised to refer to
Gastellu-Etchegorry et al. (2004, 2012, 2015). DART simulates
heterogeneous scenes with 3-D voxels of uniform size (Δx, Δy, Δz).
The voxels are the storage units where radiative interaction occurs.

They can contain 2-D facets and combinations of different types of
turbid medium (i.e., vegetation, atmosphere or fluids), which are
the 2 ways that are used by DART for simulating urban and natural
landscapes. Fig. 1 shows the 3-D voxels that are used to construct a
DART scene with dimension (Xs, Ys, Zs). Turbid medium gives rise to
volume interaction. It is used for simulating the atmosphere, vegeta-
tion, and any type of fluid, with specific properties (leaf area index
(LAI), leaf angle distribution (LAD), aerosol/molecule density, etc.).
Facets give rise to surface interaction. They are used for simulating
roofs and walls of houses, trunks and branches of trees, foliar
elements or part of them, as well as topography, etc. Facets can
have any dimension. They are usually small for simulating landscapes
with complex architecture. Facet optical properties (specular/isotropic/
anisotropic reflectance, direct/isotropic/anisotropic transmittance,
absorption, etc.) can be directly specified or indirectly derived through
biochemical properties, using the PROSPECT model (Feret et al., 2008).
A similar approach is adopted for defining optical properties of turbid
media. Vegetation (grass, tree crown, etc.) can be simulated either as
turbid medium or as cluster of facets of leaves. Here, we consider the
simulation of vegetation as the juxtaposition of 3-D vegetation turbid
cells with specified volume properties per cell (LAI, LAD, etc.). It is the
optimal approach in terms of computation speed andmemory if vegeta-
tion is simulatedwith a very large set of facets. Turbidmediumuniform-
ly fills the whole volume of a single voxel. Facets can be embedded
inside turbid cells (e.g. branches within tree crown). Radiance attenua-
tion within turbid cells follows Beer's law. For a radiation with radiant
intensity I(r, Ωn) (unit: W/sr) that propagates in participating media
along direction Ωn at position r, the steady-state discrete 3-D radiative
transfer equation is expressed as:

ξ
d
dx

þ η
d
dy

þ μ
d
dz

� �
I r;Ωnð Þ

¼ −α r;Ωnð ÞI r;Ωnð Þ þ Je r;Ωnð Þ þ
XN
m¼1

αd r;Ωmð Þ P r;Ωm→Ωnð Þ
4π

I r;Ωmð ÞΔΩm

ð1Þ

where the terms on the left side of the equation are the divergence of
radiant intensity; (ξ, η, μ) are the dot products of unit vector along Ωn

with unit vector of x, y, z axes respectively; Je(r, Ωn) is the emitted radi-
ant flux at position r; α is the total extinction coefficient (α= αa + αd);
αa and αd are coefficients of absorption and scattering, respectively; the
summation term represents the numerical integration of the scattering
from all the incoming radiation with radiant intensity I(r, Ωm) over the
4π space, where each direction Ωm among the N discrete directions

sub-divides the 4π space; P r;Ωm→Ωnð Þ
4π is the scattering phase function at

position r from Ωm to Ωn. All terms of Eq. (1) vary with r in heteroge-
neous landscapes. The details of the approach used to solve Eq. (1) for
volume (i.e., turbid medium) and surface elements are described by
Gastellu-Etchegorry et al. (1996).

In the illumination stage of the Earth scene, DART considers both the
direct and diffuse radiations that reach the bottom of atmosphere
(BOA). The associated directional distribution of radiance is either spec-

ified (e.g., SKYL factor:diffuse isotropic irradiance
total irradiance ), or calculated from ray track-

ing in the discretized atmosphere cells above the Earth scene. For
atmosphere tracking, the properties of the atmosphere cells (aerosol
and molecule vertical distribution, phase function, etc.) are either spec-
ified or retrieved from SQL database. The Earth scene is illuminated by
rays that originate from the centers of sub-divisions (so-called sub-
centers) of the top faces of cells on the top of the scene. The number
of sub-centers per cell face can be specified, in order to get a more or
less dense illumination pattern. In the Earth scene, the direct sun and
atmosphere rays are tracked until they are fully intercepted or their
energies become lower than a defined threshold.

The scattering process is simulated with an iterative approach until
convergence is reached. Starting from the intercepted energy within
each cell of previous iteration (illumination stage for the 1st iteration),
rays are scattered and tracked from a finite number of points that are
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pre-defined grids that sub-divide the cell. Scattering occurs with rays
towards all the possible directions over the 4π space. The scattered
rays experience surface and volume interactions with facets and turbid
cells, respectively. Methods are implemented in order to limit the num-
ber of interception points to store, and consequently the number of scat-
tering events to compute. This number depends on the number of sub-
faces of each cell face and the number of sub-cells of each cell according-
ly. For example, with a defined numberm of sub-divisions in a cell along
one dimension, each cell face is divided intom2 sub-faces, which results
inm3 sub-cells. For volume interaction, interception points are grouped
per incident cell sub-face and per incident angular sector. An angular
sector is a set of neighboring discrete directions. Actually, 2 centroids
are computed for both upward and downward rays per sub-cell to
achieve better accuracy. For surface interaction, the interception points
associated to a given facet are grouped per sub-cell and per incident an-
gular sector. The centroids of all interception points per sub-cell are cal-
culated and stored. In each DART iteration, rays are scattered from each
centroid within each cell. After being scattered or emitted (thermal
mode), rays that cross the face of their original cell are merged per cell
sub-face and per discrete direction. Rays that reach the BOA level are
projected onto a horizontal IP (hIP). The spatial extent of each ray on

the hIP depends on the area of the scattering element that gives rise
to the ray. The spatial distribution of ray intensities on the mesh
grid of the hIP constitutes an image for the considered upward direc-
tion per iteration. The DART iterative process stops if the relative dif-
ference of BOA exitance between 2 consecutive iterations is smaller
than a defined threshold. Similarly, an individual ray is stopped if
its energy becomes too small. Any DART product (i.e., images or 3-
D radiative budget) is an exponential extrapolation of the last 3
iterations.

DART pre-calculates the bi-directional phase functions (P r;Ωm→Ωnð Þ
4π )

of all materials that constitute the Earth scene. They are calculated
for all the directions over the 4π space. Recently, a novel direction
discretization scheme called iterative uniform squared discretization
(IUSD) (Yin, Gastellu-Etchegorry, Lauret, et al., 2013) is implemented in
DART. As illustrated in Fig. 2, the IUSD method is able to generate any
number of directions (N) of uniform or cosine-weighted distribution
of solid angles over the 4π space. The resultant directions satisfy both
0th and 1st moments of classical discretization methods (the SnDOM
(Chandrasekhar, 1969), the finite volume method (FVM) Chai, Lee, &
Patankar, 1994). The advantage of the IUSD method over the other
discretization methods is that the shape and centroid of a direction

Fig. 1. DART simulated scene system.
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(Ω, ΔΩ) are well defined. The centroid (zenith angle θc and azimuth
angle ϕc) of each direction is calculated such that either the zenith or
the azimuth axis passing through it partitions the solid angle ΔΩ into
2 equal solid angles (ΔΩ2 ). The boundaries of each direction ensure that
the lengths of the arcs which pass through (θc, ϕc) and are bounded
by zenith and azimuth angular range (Δθ, Δϕ), are equal (Δθ =
sin θcΔϕ). The IUSD method provides more accurate BRF than other
methods with the same number of directions. Furthermore, the IUSD
method provides two ways of adding additional directions over the
pre-defined sampling of the 4π space (Fig. 2(b)) (Section 4 in Yin,
Gastellu-Etchegorry, Lauret, et al. (2013)). Both methods are used in
the modeling approach that is presented in this work:

1. Adding virtual directions: A ray along a virtual direction (virtual ray)
undergoes the same interception as a ray along any discrete direc-
tion, except that it does not contribute to scattering after intercep-
tion. Therefore, without breaking the conservation of energy, these
directions are called “virtual”. The virtual rays that reach the BOA
level contribute to the radiance images which are bijected to the
directions they propagate along.
An advantage of a virtual direction is that it costs much less compu-
tation time than a discrete direction. Arbitrary number of virtual
directions can be added to a DART simulation to generate arbitrary
number of images.

2. Oversampling angular regions: The pre-defined set of discrete direc-
tions can be oversampled in one or multiple user-specified angular
regions of interest (e.g. around the HS). If the added oversampled
region is within a discrete direction, it implies the replacement of
that direction with the considered oversampling region and 4 new
discrete directions. If the oversampling region overlaps more
than one discrete direction, the overlapped sub-region of each oc-
cupied discrete direction is divided separately. Any region can be
oversampled by any number of additional directions. The set of all
the original and added discrete directions makes up the 4π space,
and contributes to the RTM. This technique (IUSD-Windmill) has
proved to be quite efficient in modeling the directional distribu-
tion of specular and HS radiance, as well as radiative budget.

DART pre-computes scattering transfer functions for all these
directions. It can simulate images for all discrete and virtual upward di-
rections in each iteration. For that, it uses amethod called parallel track-
ing and orthographic projection (PTOP) (Fig. 3). In order to simulate an

image along a certain direction Ω, an associated hIP is created at the
minimum altitude of the scene (e.g., the ground z = 0), to store the
radiations that reach BOA. The reason for using z = 0 instead of the
BOA altitude (z = Zs) is to keep the scene origin (x = 0, y = 0, z = 0)
consistent with the image origin (top-left corner). The hIP acts as a
bridge between the ray tracking process and the image projection.
Each attenuated ray that reaches the BOA is projected onto the hIP
along the opposite direction of that ray. As illustrated in Fig. 3(a), ac-
cording to the shape of the scattering element, the energy carried by a
ray is uniformly distributed over the projected area of the element
onto the hIP. This projected area on the hIP is determined by point pro-
jections of the element's vertices. For turbid cells, the sub-face through
which the ray exits the cell is projected. Since the direction is fixed,
the projection onto the hIP is parallel. Fig. 3(b) provides a test simulated
scene of a single tree, with solar illumination direction (θs = 30∘, ϕs =
225∘) and view direction (θv = 45∘, ϕv = 90∘). Fig. 3(c) shows the
image generated on the hIP, which uses the coordinate system of the
simulated scene. The output OPImage is computed by orthographic pro-
jection from the image on the hIP to another IP perpendicular to the
view direction, the so-called the projection IP (pIP) (Fig. 3(d)).
Fig. 3(e) shows the output OPImage, which uses the local coordinate
system of the view direction. Pixels outside the boundaries of the
projected area for the whole scene onto the pIP, are set to (− 1) to be
distinguished from the pixels within the boundaries.

3. Theory of converging tracking and perspective projection (CTPP)

The sensor is similar to the human eye, whose reception area is
much smaller than its observed region at the far field. Radiation that
enters a sensor has a converging geometry instead of a parallel geome-
try for orthographic projection. Perspective projection is generally
applied inmachine vision and computer graphics. It projects 3-D objects
onto the IP along converging lines to the center of projection. The ortho-
graphic projection of identical objects onto the IP gives equal areas,
regardless of their distance to the IP. However, for perspective projec-
tion, a near object has larger projection area onto the sensor IP than
an identical distant object. For a RS sensor with a very narrow FOV,
the dispersion of the rays that enter the sensor is usually neglected.
This corresponds to PTOP in traditional RTMs. However, if the FOV of a
sensor cannot be neglected, rays that enter the sensormust be converg-
ing instead of being parallel. Here, we present a novel approach which
considers perspective projection in RTM, the so-called converging

Fig. 2. Examples of IUSDmethod for direction discretization and oversampling. (a) 216 directions of cosine-weighted distribution of solid angles. (b) 150 directions of uniform distribution
of solid angles with an oversampling region (θ = 35∘, ϕ = 10∘, ΔΩ= 0.02sr) and an additional virtual direction (θ = 50∘, ϕ = 80∘, ΔΩ= 0.002sr).
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tracking and perspective projection (CTPP). It must be noted that some
models such as DIRSIG (http://dirsig.org/) have the capability to simu-
late airborne sensors. However, these models are not easily accessible
to the scientific community.

3.1. Pinhole camera projection model

For a pinhole camera with a long distance from the observed region,
the vanishing point of its FOV is assumed to be located at the position of
the camera. Any measured ray follows a direction that starts from the
location where it was scattered or emitted, to the camera position,
possibly with attenuation. Fig. 4 illustrates CTPP for a pinhole camera
in the DART simulation. The expanded region of anymeasured ray is ac-
curately computed as the perspective projection of facets and turbid
cells where the ray comes from onto the hIP (Fig. 4(a)). Compared
with orthographic projection, the projected region of a scene element
is stretched to the positions of the projected vertices. This is illustrated
by the same scene shown in Fig. 3(b). In this theoretical case, a camera
is assumed located at an altitude that is twice the tree height. It is not a
very realistic configuration, but it is a good example for demonstration
of perspective projection The image recorded on the hIP is shown in
Fig. 4(b). It differs a lot from the result from PTOP (Fig. 3(c)). Indeed,
the tree crown appearing on the image is axially extended twice as

much. It explains that on the hIP, the tree crown dimension is much
larger than the tree shadow, which has the same size as through ortho-
graphic projection. The trunk of the tree does not appear on the hIP,
since it is behind the crown from the point of view of the camera.
Similarly, part of the shadow is masked by the crown. These differences
explain that OPImage can differ from the PPImage, when the sensor FOV
is not negligible. The pIP is set to be perpendicular to the camera
orientation. This orientation is specified in DART by the precession,
nutation, and intrinsic rotation angles from nadir view of the carrier
platform. In the example of Fig. 4, the camera is looking at the center
of the scene and the intrinsic rotation is set to 0°. The image generated
on the pIP uses the classical perspective projection of the image on the
hIP (Fig. 4(c)).

3.2. Cross-track imager projection model

The swath of a cross-track imager is parallel with the platform
trajectory, whereas its cross-track direction is usually perpendicular to
the trajectory, but not necessarily. In a classical operating mode, the
cross-track plane is vertical, usually with a viewing angle range
from the left side to the right side of the nadir direction. Different
from a camera, the image acquisition by a cross-track imager uses
the parallel-perspective projection, where parallel projection and

Fig. 3. Parallel tracking and orthographic projection (PTOP) in DART simulation. (a) Orthographic projections of facets and turbid cells onto the hIP. (b) Simulated scene of a tree and
ground. (c) Generated radiance image on the hIP through PTOP. (d) Radiance projection onto the hIP, and orthographic projection from the image on the hIP to the pIP. (e) Final OPImage
generated on the pIP.
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perspective projection are applied along track and across track, respec-
tively. Fig. 5 illustrates CTPP for a cross-track imager in the DART simu-
lation. When the sensor is moving forward along a straight horizontal
flight path, all points of a line lying along track are viewed from the
same direction. Therefore, this line is projected onto the hIP with paral-
lel projection. Conversely, for a line lying across track, all points of the
line are viewed from different directions. They share the same platform
position as the vanishing point. Therefore, this line is projected onto the

hIP with perspective projection. The parallel-perspective projection is
illustrated by along-track and across-track line cross sections of a facet
and a turbid cell in Fig. 5(a). It results that the objects projected onto
the hIP are stretched across track (perspective projection), and remain
constant along track (parallel projection). An example of projected
image onto the hIP is illustrated in Fig. 5(b), using the same DART sim-
ulated scene in Fig. 3(b). The platformmoving path is a straight horizon-
tal line passing through the same position as the camera shown in

Fig. 4. Converging tracking and perspective projection (CTPP) for a pinhole camera. (a) Perspective projection of facets and turbid cells onto the hIP. (b) Generated radiance image on the
hIP throughCTPP using the same scene as Fig. 3(b). (c) Radiance expansion by perspective projection onto the hIP and perspective projection from the image on the hIP to the pIP. (d) Final
PPImage generated on the pIP.
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Fig. 5. Converging tracking and perspective projection (CTPP) for a cross-track imager. (a) Parallel-perspective projection of facets and turbid cells onto the hIP. (b) Image generated by
DART on the hIP by CTPP using the same scene as Fig. 3(b); parallel-projection is applied along track and perspective-projection is applied across track.
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Fig. 4(c). In Fig. 5(b), the tree crown size is stretched across track like
that in Fig. 4(b), and remains constant along track like that in Fig. 3(c).
The pIP and the hIP are actually identical for cross-track imager, so the
generated PPImage on the hIP is directly considered as the sensor raw
image. The raw image of a cross-track imager usually has to be
orthorectified for RS applications.

3.3. Automated steering virtual direction

In DART, a direction-image bijectionmap is created to store the sim-
ulated images. Before the introduction of CTPP, anupward directionwas
compulsory for an OPImage in DART. The introduction of CTPP relies on
a new type of direction: the so-called automated steering virtual direc-
tion (ASVD), which is bijected to a PPImage. The property of a ASVD is
virtual, so basically it has all the characteristics of a virtual direction
mentioned above.More specifically, the vector representingASVD is up-
dated during ray tracking, according to the position of each scattering/
emitting point of the simulated 3-D scene and the corresponding sensor
position. A scattering event in DART is illustrated in Fig. 6. The scattering
element is located at position M(x, y, z), with a single-side area AM.
ΩV(x, y, z) is an ASVD with solid angle ΔΩV(x, y, z) to the sensor at
position PS(xS, yS, zS). DART computes the ray W(x, y, z, ΩD) from M for
each discrete direction (ΩD, ΔΩD) over the 4π space. In addition,
it calculates the instantaneous virtual ray through the ASVD
(ΩV(x, y, z), ΔΩV(x, y, z)). One should notice that the vector of the
ASVD is updated for each particular scattering event. The updated
unit vector of the ASVD from M is:

ΩV
�! ¼ norm PS

�!−M
!� �

ð2Þ

The distance RM,S from M to the sensor, and the solid angle ΔΩV are
also updated:

RM;S ¼ j PS
�!−M

!j ð3Þ

ΔΩV ¼ AS � ΩV
�! � ΩS

�!
R2
M;S

ð4Þ

where AS is the area of the sensor aperture, and ΩS
�!

represents the
sensor orientation unit vector (θS, ϕS).

For a pinhole camera, PS is a constant, while for a cross-track imager,
PS(xS, yS, zS) depends onM(x, y, z). In order to define a horizontal linear
trajectory of a cross-track imager, a point on the trajectory Psc(xsc, ysc, zS)
and the along-track direction (expressed by platform azimuth angle ϕp)
must be defined. The horizontal trajectory is expressed as:

−sin ϕp � xS−xscð Þ þ cos ϕp � yS−yscð Þ ¼ 0 ð5Þ

If the cross-track plane is not perfectly perpendicular to the along-
track direction, an offset azimuth angle (ϕo) can be taken into consider-
ation. The equation of the horizontal line that represents the cross-track
direction passing through (xS, yS) is:

cos ϕp þ ϕo

� �
xS−xð Þ þ sin ϕp þ ϕo

� �
yS−yð Þ ¼ 0 ð6Þ

By combining Eqs. (5) and (6), the cross-track imager horizontal
coordinate xS and yS is given by the intersection of the two lines:

xS ¼
sinϕp � x−cos ϕp þ ϕo

� �
� yÞsin ϕp þ ϕo

� �
− cos ϕp � xsc þ sin ϕp þ ϕo

� �
� ysc

� �
� cosðϕp þ ϕo

� �
sin ϕp � sin ϕp þ ϕo

� �
þ cos ϕp � cos ϕp þ ϕo

� �
yS ¼

cos ϕp þ ϕo

� �
� y−sin ϕp � x

� �
cos ϕp þ cos ϕp � xsc þ sin ϕp þ ϕo

� �
� ysc

� �
sin ϕp

sinϕp � sin ϕp þ ϕo

� �
þ cos ϕp � cos ϕp þ ϕo

� �
ð7Þ

then, Eqs. (2), (3) and (4) are applied to update the virtual cross-track
imager direction.

3.4. Convergent ray tracking

The discrete directions that partition the 4π space possibly with a
number of additional ordinary virtual directions, as well as their associ-
ated scattering functions for each type ofmaterials are pre-computed by
DART. However, this is not the case for ASVDs. Indeed, the vector of
an ASVD is changing during the tracking and the pre-calculations for
the ASVD are over-numerous, since the order of magnitude of pre-
calculations depends on the total number of potential scattering events
in the 3-D scene. Similarly, DART does not pre-calculate the scattering
functions for the ASVDs. For an incident ray from direction ΩI, irregular
grid interpolation method (e.g. radial basis function (RBF) interpola-
tion) could be applied on the pre-calculated scattering functions each
time to calculate the exact scattered energy towards the AVSD. Howev-
er, such interpolation is quite a burden for computation speed if it is
called for all scattering events (Press, 2007). In order to accelerate the
computational speed, the virtual ray through the ASVD (Fig. 6) is
expressed as:

W �
ΩI→ΩV

¼ W ΩI→ΩDð Þ � ΔΩV

ΔΩD
ð8Þ

where ΩD represents the discrete direction which has ΩV within its
boundaries. The ray along ΩV is calculated as the scattering energy
along ΩD multiplied by the fraction of the solid angles.

Fig. 6. Diagram of ray projection in a scattering event through CTPP. An incident ray
through direction ΩI arrives at a scattering element located at M with area AM,z. The
scattered rays through a set of discrete ordinates ΩD that sample the 4π space are repre-
sentedbyW(ΩI→ΩD). A virtual rayWM→ S

⁎ is sent towards the sensor through anupdated
ASVDΩV. It is projected backward onto the hIP (projected area AM0 ;0), with equivalent ray
W�

M0→S sent towards the sensor to generate the same radiance value as WM → S
⁎ does.

During DART orthorectification,WM → S
⁎ is orthographically projected onto the oIP.
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By substituting Eq. (4) into Eq. (8), we get the attenuated ray that
reaches the sensor:

W�
M→S ¼ τM→S �

W ΩI→ΩDð Þ
ΔΩD

� AS � ΩV
�! � ΩS

�!
R2
M;S

ð9Þ

by using the transmittance τM → S from M to the sensor.

3.5. Energy projection on the hIP

The energy of a ray which enters the sensor is firstly projected onto
the hIP and then onto the pIP. Both projections are calculated in such a
way that the radiance value remains constant from the scattering point
to the hIP and from the hIP to the pIP.

The projection for the scattering element at M onto the hIP is a
2-D surface. This surface is considered to “emit” a ray which gives
rise to a radiance value at sensor level that is equal to the radiance
value provided by the ray with power WM → S⁎ from the element M.
The radiance value added to the sensor image by WM → S

⁎ as shown
in Fig. 6 is:

L�M→S ¼
W�

M→S

AM;z � cos θV � ΔΩV
ð10Þ

where AM,z is the projected area of the object onto a horizontal
layer at altitude z, and θV is the zenith angle of the view direction
ΩV.

Let M′ be the projected region of the object on the hIP with po-
sition (x′, y′, 0) and areaAM0 ;0.W

�
M0→S represents the virtual ray from

M′(x′, y′, 0) to the sensor. The equivalence of radiance implies:

W�
M→S � R2

M;S

AM;z � cos θV � AS � ΩV
�! � ΩS

�! ¼ W�
M0→S � R2

M0 ;S

AM0 ;0 � cos θV � AS � ΩV
�! � ΩS

�! ð11Þ

where RM0 ;S is the distance from M′ to sensor.
Eq. (11) leads to:

W�
M0→S ¼

W�
M→S � Δ z2M;S � AM0 ;0

z2 � AM;z
ð12Þ

where ΔzM,S and z are the altitude differences from the sensor toM and
M′, respectively.

For a pinhole camera (Fig. 4), the projected area of the object onto
hIP is extended towards both axes. We have

AM0 ;0;camera ¼ z=Δ zM;S

� �2 � AM;z ð13Þ

Substitution of Eq. (13) into Eq. (12) implies that the fluxes fromM
and M′ to the camera are actually equal:

W�
M0→S;camera ¼ W�

M→S;camera ð14Þ

On the other hand, for a cross-track imager (Fig. 5), the projected
area is extended along the cross-track plane, and keeps the same
along the moving direction. We have:

AM0 ;0;scanner ¼ Δ zM0 ;S=Δ zM;S

� �
� AM;z ð15Þ

Substitution of Eq. (15) into Eq. (12) leads to:

W�
M0→S;scanner ¼

Δ zM;S

Δ zM0 ;S
�W�

M→S;scanner ð16Þ

3.6. Generation of PPImages and orthorectification

The projection ofW�
M0→S is distributed according to themesh (pixel)

size of the hIP (Δx, Δy). The projected area of each object may occupy
several pixels on the hIP. Let γi,j be the fraction of projected area AM0 ;0

within pixel (i, j) on hIP. Let {M} be the set of the scattering objects
whose projection onto the hIP is at least partly within pixel (i, j), then
the total power Wtotal,i,j from pixel (i, j) is the summation: Wtotal;i; j ¼
∑
Mf g
γi; j �W�

M0→S. The radiance value of pixel (i, j) is:

L i; j;ΩV ;i; j

� �
¼

X
Mf g

γi; j �W�
M0→S

Δx � Δy � cos θV ;i; j � ΔΩV ;i; j
ð17Þ

where (ΩV,i,j, ΔΩV,i,j) is the updated ASVD from the center location of
pixel (i,j) to the sensor, and θV,i, j is the corresponding zenith angle.

The final step of projection from the hIP to the pIP is a classical per-
spective projection according to the defined sensor orientation (preces-
sion, nutation, and intrinsic angles). The precession angle and nutation
angle have the same geometric definition as the sensor zenith and azi-
muth angles (θS,ϕS), respectively. The intrinsic angle r is the self rotation
of the sensor, which is restricted by the center of the pIP. One needs to
note that usually for a cross-track imager, the pIP is horizontal (θS =
0, ϕS = 0, and r = ϕp). Detail of the projection algorithm can be found
in Sonka et al. (2008) and Gupta and Hartley (1997).

Orthorectification is a classical technique which creates an image
of nadir orthographic view from a sensor image that is acquired with
various directions within its FOV. The orthorectification of images
acquired by one or several sensors with different geometries pro-
duces images that are superimposed and registered, which facili-
tates their combined analysis. During orthorectification, the 3-D
object is vertically orthoprojected to a fictive horizontal IP, the so-
called orthorectified IP (oIP). The orthorectified image preserves
the radiance value for each pixel associated to its original view direc-
tion. The classical orthorectification method is a post processing step
after acquisition. It requires a rational polynomial coefficient (RPC)
model built from the platform trajectory and direction of each acquisition
and a reference surface model (e.g. digital elevation model or digital sur-
face model), in order to map the raw image pixels to the geo-coordinate
system. In DART, a rather straightforward approach is implemented.
Indeed, the exact location of each scattering event that enters the sensor
is known. Therefore, the ray is vertical-orthographically projected onto
the oIP during tracking (Fig. 6). Let (i′, j′) be a pixel on oIPwith dimension
(Δ x′ ⋅Δy′), andγ0

i0 ; j0 be the area fraction ofAM0 ;0 over the pixel (i′, j′). The

radiance value of pixel (i′, j′) derived from Eq. (10) is:

Lortho i0; j0
� � ¼

X
Mf g

γi0 ; j0 �W�
M→S

�cos θV � ΔΩV

Δx0 � Δy0 ð18Þ

where the summation is over {M} which represents the set of all the
scattering elements that have their projection part lying within pixel
(i′, j′). Pixels of oIP which are not seen by the sensor are set to a specific
value (− 1). This DARTorthorectified image is too theoretical compared
to actual orthorectified image. Thus it is correct but cannot be achieved
from real RS data.

3.7. Adaptation to actual sensors

The ideal pinhole camera and cross-track imager (moving along a
straight line) have theoretical configurations in DART compared to the
actual measurement configuration. For example, the trajectory of a
cross-track imager is usually not a straight line because of aircraft fluc-
tuation and steering. In the previously presented method, the direction
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from any location in the scene to the sensormust be known to calculate
the radiance and projection of an object. Therefore, a general method is
designed for determining iteratively the sensor direction for each posi-
tionM in 3-D scene. This method requires a distributionmap consisting
of the view directions for all points of the ground surface. Hence, the
question becomes how to determine the direction vector on a 3-D
point M(x, y, z) in the scene with known 2-D distribution (θi,j, ϕi,j) of
sensor view directions on the ground. The process is divided into 5
steps:

1. From positionM(x, y, z), the coordinate of vertical projection ofM on
the ground (M′(x, y)) is calculated.

2. With interpolation of M′ on the direction distribution map, the

direction vector at M′ is determined ( r0M
�!

).

3. The projected position from M′ along r0M
�!

to the horizontal plane
of altitude z is computed (Mn(x′, y′, z)).

4. The displacement vector fromMn toM is calculated (D(x′− x, y′− y))
and subtracted by position M′ on the ground (M′ = (x − λDx, y −
λDy)), where λ b = 1 is a coefficient which slows down the conver-
gence to avoid local minimums.

5. Go back to step 2, and start another iteration until D(x′− x, y′− y) is
smaller than a defined threshold.

With this approach, a direction vector can be determined for each
scattering event in the 3-D scene. The vertices of scattering objects can
be determined for the projection on IPs. In addition to the 2-D distribu-
tion of view directions, the sensor altitude needs to be known for each
pixel. Furthermore, in actual acquisitions, the area of the projection of
an object onto hIP does not follow Eq. (13) or Eq. (15). Consequently,
the simplified Eqs. (14) and (16) cannot be used. Indeed, the imple-
mented method uses Eq. (12) to calculate the ray from hIP.

4. Evaluations, assessments and tests

4.1. Image and video from a camera

DART simulates radiative transfer in a 3-D scene that is usually larger
than the region for which one intends to simulate the acquisition by a
digital camera or a cross-track imager. In order to simulate a camera
FOV extent in the 3-D scene, 4 additional parameters need to be
known to define this region: the location of the vanishing point of the
camera (PS), the camera orientation (ΩS(θS, ϕS, r)), the shape of the sen-
sor detector array and the distance from the plane of detector array to
the convergence point. For a detector array with a rectangular shape,
the FOV extent on a horizontal plane at any altitude is a quadrilateral
with irregular shape for oblique views. This quadrilateral is composed
of 4 straight lines that are intersections of the horizontal plane with
the 3-D FOV volume (tetrahedron shape). For a scattering event,
M(x, y, z) is checked with the 4 lines at altitude z to determine whether
M is inside the quadrilateral. If the answer is yes, a virtual ray is calculat-
ed and delivered along the updated ASVD towards the camera.

Fig. 7 shows an example of the Saint-Sernin Basilica of Toulouse,
France. The scene is a sub-region of the urban database from
the CAPITOUL experiment (Masson et al., 2008). Fig. 7(a) illustrates
the 3-D scene. The scene dimension is 300 m × 300 m × 80 m with
voxel size of 1 m × 1 m × 1 m. The basilica (80 m high) is located at the
center of the scene. An oversampling is applied on the hIP and pIP with
a mesh grid size (pixel resolution) of 0.5 m × 0.5 m. The image captured
in the FOVof a video camera has 400×300pixels. The 4 lines of the quad-
rilateral projected onto the ground are displayed in Fig. 7(b) with the
camera orientation: θS =50∘, ϕS =0∘, r=0∘. The red circle is the projec-
tion of the center of the image, according to the camera orientation. The
camera altitude is zS=140m. Fig. 7(c) shows the DART simulated reflec-
tance images as RGB band combination (650 nm, 550 nm, 450 nm

a b

c

x

y

Fig. 7.DART simulated OPImages and camera images of Saint-Sernin Basilica (Toulouse, France). (a) Simulated 3-D scene. (b) FOV extent on the ground for a camera (θ=50∘, ϕ=0∘, r=
0∘, zS =140m). (c) Simulated camera images with sensor altitude zS = 140m (top row) and OPImages (bottom row), for 4 different camera orientations (θS =50∘ and ϕS = 0∘, 90∘, 180∘,
270∘). The solar direction has θs = 30∘ and ϕs = 225∘.
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with bandwidth of 20nm),withfixed solar direction (θs=30∘,ϕs=225∘)
over the scene. The subfigure at the top-left corner is the simulated
PPImage through CTPP with a defined camera orientation (θS = 50∘,
ϕS=0∘, r=0∘). The bottom-left subfigure is the corresponding simulated
OPImage of the same region through PTOP. The OPImage can be consid-
ered as the measurement of a camera with an altitude that is infinitely
high.

From left to right, Fig. 7(c) shows the simulated camera images and
the OPImages with various ϕS (0∘, 90∘, 180∘, 270∘). The top images corre-
spond to the acquisition by an UAV camera with a circular trajectory
around the basilica. The effect of perspective projection can be observed
by comparing between the top and the bottom images. For example for
ϕS = 0∘ and 90∘, the basilica tower (near field) is closer to the camera
than the other side of the basilica (far field). By comparison between
the camera image and the OPImage, the tower appears larger in the
camera image than in the OPImage, whereas the other side of the basil-
ica has the same size. This effect is reversed forϕS=180∘ and 270∘, since
the near field and the far field are reversed.

Another example is taken from one of the actual canopy simulations
of the RAMI-4 experiment: the Jarvselja Pine Stand (Summer) experi-
ment. The detailed scene parameters are presented on the dedicated
web page of RAMI-4 (http://rami-benchmark.jrc.ec.europa.eu/HTML/
RAMI-IV/RAMI-IV.php). The scene has 1120 trees with optical proper-
ties in 19 bands provided for each tree species. The scene dimension is
103.2m × 103.2m × 18.8m with voxel size of 0.4m × 0, 4m × 0.4m
(Fig. 8(a)). Facets representing the tree leaves are converted into turbid
media. The distribution of the tree positions is shown in Fig. 8(b). Here,
we show the simulation results for 3 bands (B01 = 442.5nm, B02 =
551.5nm, B03 = 661.3nm). The RGB combination (R = B03, G = B02,
B = B01) creates the color images. Fig. 8(c) is the orthographic image
created at nadir view with solar direction (θs = 36.6∘, ϕs = 299.06∘).
Different from the original setting of the experiment, the isotropic dif-
fuse component is removed from illumination (SKYL=0), so only direct
sun illumination is used in the simulation. PPImages with similar
camera configurations as above are generated, with zS = 140m, θS =
36.6∘, r = 0∘, and 4 different sensor azimuth angles to define camera
orientations (Fig. 8(e)). As expected, the aspects of the simulated
PPImages depend on the camera orientation. For example, pixel values

(i.e., reflectance) are much lower for ϕS = 90∘ than for ϕS = 0∘ and
270∘. Indeed, for these 2 cases, the acquisitions are generally with
the backscattering configuration, which is closer to the HS configu-
ration (Hapke et al., 1996). Each pixel value of the camera image de-
pends on its location. For example, the left side of the camera image
for ϕS = 270∘ is much brighter than the right side. It corresponds to
the fact that the left side is closer to the HS configuration.

Unlimited number of ASVDs can be added in a DART simulation, so
the same number of bijected PPImages can be simulated at the same
time in a DART simulation. With many ASVDs, processing speed is the
most crucial concern. For that, multi-thread processing with Boost
C++ library is implemented in DART. With 4 threads, the processing
speed is accelerated by approximately 3 times (some thread-specific at-
tributes slow down the processing). The possibility to simulate large se-
quences of sensor PPImages is illustrated herewith the Saint-Sernin and
the Jarvselja scenes. We simulated 360 camera images with ϕS ranging
from 0∘ to 359∘. Both simulations took less than 60 min on a server
with 24 parallel threads. The resultant images were converted into
video frames, and joined together into a video of 24 s, with 15 frames
per second. They can be downloaded from the DART website (http://
www.cesbio.ups-tlse.fr/dart/license/en/dartResults.php).

4.2. Hot spot regional enhancement in passive sensor images

With turbid media, DART simulates the HS using the approach
of Kuusk (1991). In this approach, the extinction coefficient α e

for 1st order scattering along the view direction Ωv depends on
the solar direction (Ωs), the apparent leaf dimension sf(Ωv), and
the path δsi(Ωv) along direction Ωv from the scattering event posi-
tion Ms:

αe ¼ uf � G Ωvð Þ

� 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G Ωsð Þ � μ v

G Ωvð Þ�jμsj

s
� exp −Δ Ωs;Ωvð Þ

s f Ωvð Þ � δsi Ωvð Þ � μ v

 ! !
ð19Þ

a b c d

e

Fig. 8. DART camera images simulation over the Jarvselja pine stand forest site in summer (Estonia). (a) Simulated 3-D scene. (b) Distribution of the trees over the scene. (c) Simulated
nadir OPImage by DART. (d) Direction discretization (317 directions) to simulate camera images with θS = 50∘, zS = 140m, and ϕS ∈ [0 360]. (e) Simulated camera images with sensor
altitude zS = 140m for 4 different camera orientations (θS = 50∘ and ϕS = 0∘, 90∘, 180∘, 270∘). The solar direction has θs = 36.6∘ and ϕs = 299.06∘.
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where uf is the leaf volume density of the cell; G(Ω) is the mean
projection of a unit leaf along direction Ω; μs = cosθs; μv = cosθv;
and:

Δ Ωs;Ωvð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
μ 2
v
þ 1
μ 2
s
− 2cosg

μsjjμv



 


s

where cosg ¼ Ωs
�! � Ωv

�!
. For random distribution of circular leaves

according to normalized leaf angle distribution
g f Ω fð Þ

2π :

s f Ωvð Þ ¼ π � df � G Ωvð Þ
4μ v

Z
2π

Z
π
2

g f Ω f

� �
2π �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2θ f sin

2ϕ f

q dθ f dϕ f

where df is the leaf diameter, Ωf is the leaf orientation, and
g f Ω fð Þ

2π is
the normalized leaf angle distribution function.

Fig. 9 illustrates the calculated BRF plot of the Jarvselja forest site in
the principal plane (ϕv = 299.06) with and without HS effect. It corre-
sponds to reflectance values that would be measured by a satellite at
an infinite altitude (i.e. orthographic projection). The range of view ze-
nith angle on the principal plane θvp is from− 80∘ to 80∘, with negative
values associated to backscattering. The subscript p highlights that it
corresponds to the ordinary direction if θvp N 0 and to the direction
with opposite azimuth angle (|θvp|, ϕv + π) if θvp b 0. By setting df to
1 cm, a peak in the BRF appears near θvp = −36.6∘. The shape of the
peak depends on df. The dashed plot in Fig. 9 allows us to show the
angular range of BRF that is influenced by the HS. If df increases, the
HS peak becomes smoother. The BRF distribution without HS effect is
shown by the dotted plots in Fig. 9. For the absence of the HS, the BRF
is much less dependent on the solar-view configuration which is more
adapted for image inversion in terms of the Earth's surface parameters
such as LAI.

In RS images, the HS configuration provides the appearance of re-
gionally enhanced reflectance. For example, the Amazon forest green
up in the dry season derived from MODIS observation (Huete et al.,
2006) was recently found to be a “green illusion” caused by the effect
of sun-sensor geometry (Morton et al., 2014). Most RTMs can simulate
the HS effect on BRF by orthographic projection. The orthographic pro-
jection is usually assumed to be accurate enough for dealing with satel-
lite images. However, onemay question its accuracy when dealing with
strongly anisotropic features such as the HS. This is investigated here
with the Jarvselja forest site. Indeed, by using CTPP, DART can simulate
actual satellite images influenced by HS with regionally enhanced
reflectance.

Since each pixel of a sensor image is associated to a specific view
angle, the Earth's surface that is impacted by the HS has a circular/
elliptical shape in camera image, and a straight-belt shape in a cross-
track imager image. The location and size of the HS in the image reflect
the BRF distribution shown in Fig. 9. Below, we illustrate the HS effect
with 2 classical acquisition configurations (camera and cross-track
imager) at various sensor/platform altitudes. Fig. 10 presents the
geometric configurations. For each configuration, the scene boundaries

Fig. 9. Calculated BRF distribution of the Jarvselja forest site in the sun principal plane
(ϕv =299.06∘) with (df=0.1cm, dashed lines) and without (dotted lines) HS effect. Neg-
ative θvp represents backscattering (with the HS located at θvp = −36.6 = − θs).

a b

Fig. 10. Configuration of HS regional enhancement simulations on the Jarvselja forest site. (a) For a camera. (b) For a cross-track imager.
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and sensor observed region (image of sensor frame) boundaries on the
ground are represented by 2 quadrilaterals. Thewhole scene is enclosed
in the image of sensor frame, with the locations of the 4 indexed corners
marked according to Fig. 8(b). For cameras (Fig. 10(a)), the view direc-
tion at the center of the scene and the camera orientation are manually
chosen to be aligned with the solar direction (θvc= θS = θs, ϕvc= ϕS =
ϕs). Camera intrinsic rotation is set to 0∘. For cross-track imagers
(Fig. 10(b)), the direction of the platform path is perpendicular to the
solar azimuth angle (ϕp = 119.06∘). The direction of acquisitions on
the cross-track plane is associated with the sun principal plane (Fig. 9).

Fig. 11(a) presents the PPImages of a camera with HS configuration
at different altitudes without orthorectification (θs = 36.6∘, ϕs =
299.06∘). The geometric correspondences of the 4 indexed corners of
the scene are marked in the image corners according to Fig. 8(b). As
the altitude of the camera increases (from top-left to bottom-right
0.1 km, 0.5 km, 1 km, 5 km, 50 km, and 500 km respectively), the HS
influenced region also expands gradually from the central point of the
scene and finally covers the whole image at the higher altitudes.
Fig. 11(b) shows the PPImages of a cross-track imager that are simulat-
ed for the same altitude configurations, without orthorectification.

Fig. 11. Simulated sensor imageswithHS of the Jarvselja forest site, for a sensor/platformat different altitudes (0.1km, 0.5km, 1km, 5km, 50km, 500km). Color components of DART images
in blue, green, and red bands. (a) For a camera. (b) For a cross-track imager (θvp range is shown on top of each image). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Instead of a circular spot, the influenced region has a shape of straight
belt, since along the moving trajectory, a HS influenced region is persis-
tently observed at the same θvp range for each cross-track acquisition

line (e.g. http://earthobservatory.nasa.gov/IOTD/view.php?id=83048).
As the sensor altitude increases, the θvp range of the cross-track plane
decreases and converges to approach the solar direction itself (θs =
36.6∘) as shown in Fig. 11(b). Therefore, theHS belt width also increases
with sensor altitude until the peak reflectance covers the whole image
at zS = 500km. This belt is actually discontinuous, since the HS effect
only appears on the vegetation part of the heterogeneous scene. For
the groundwhich is simulatedwith a Lambertian surface, there is noob-
vious differencewhether the region is influenced by theHS or not. How-
ever, in reality, the ground surface is usually far away from Lambertian.
With appropriate anisotropic parameterization (e.g. the RPV model
Rahman, Pinty, & Verstraete, 1993), a reasonably strongHS effect should
also be observed. The BRF variation in the sun principal plane, as shown
in Fig. 9, corresponds to the reflectance variation from the corner 2 to
the corner 4 on the images in Fig. 11(b).

4.3. Pixel-wise comparison and study of variation between simulated air-
craft and satellite images

PPImages of a cross-track imager are simulated at different altitudes
with different view zenith angle ranges in the sun principal plane.
Fig. 12 illustrates the geometry that is used to simulate images for a
given altitude. For each altitude, images are simulated with 27 trajecto-
ries perpendicular to the solar azimuth angle. These parallel trajectory
directions are associated with the similar configuration in Fig. 10(b) of
Section 4.2. Let θvpc represent the θvp on the principal plane at the
scene center, where negative value represents backscattering and posi-
tive value represents forwardscattering. It is usually considered in actual
data as the representative θvp of the whole swath. For each sensor alti-
tude, the step of θvpc is 10∘ from− 80 to 80∘, and 1∘ around the HS region
(θvpc ∈ [−39∘ to − 31∘]). Together with the exact HS configuration

Fig. 12. Simulation to study the reflectance variability of the Jarvselja scene measured by
scanner for different altitudes. This figure illustrates the geometry of the simulation for a
given altitude zS.

Fig. 13. Parameters of IUSD and pixel-wise comparison of the simulated images of the Jarvselja scene. (a) The IUSD discretization for simulating scanner images ofmultiple pathswith θvpc
range in the sun principal plane. (b) Orthorectified orthographic-projection images (reflectance) for θvpc =−20∘. (c) Orthorectified scanner image (reflectance) at zS =0.2km. (e) Linear
regression analysis of the pixel values in (b) and (c). (d) The pixel-wise reflectance difference of the orthorectified perspective-projection Image and orthorectified orthographic-
projection image at θvp = −20∘ (PPImage − OPImage).
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(θvpc = − θs), 27 images are created for each altitude from airborne to
spaceborne acquisitions: 0.1 km, 0.2 km, 0.5 km, 1 km, 10 km and
100 km.

Fig. 13(a) illustrates the IUSD oversampling along the principal
plane. This oversampling reduces the error when a scattering function
is assigned to the nearest neighbor direction for a ASVD. All images
are orthorectified in order tomakepixel-wise intercomparison between
each other. For example, Fig. 13(b) and (c) illustrates for θvpc = −20∘,
the B02 orthorectified OPImage and PPImage at zS=0.2km, respective-
ly. The linear regression of pixel values between them (Fig. 13(d)) gives
R2 = 0.8433, which proves that they are highly correlated. The pixel-
wise difference between the orthorectified images (PPImage −
OPImage) is shown in Fig. 13(e). It can be observed that along a straight
line (ϕv = 29.06∘, θvp =−20∘) that crosses the center of the image, the

differences between pixels are almost 0. This is due to the fact that along
this line, the difference of view angles between the two images is
small, so is the reflectance difference. At the top-right part of the
image where θvp b −20∘, the reflectance tends to be larger for
PPImage than for OPImage. Conversely, for the other side of the
image where θvp N −20∘, the reflectance tends to be smaller for
PPImage than for OPImage. This is coherent with the BRF distribution
around θvp = −20∘ in Fig. 9. As mentioned above, differences occur
only on vegetation, because the ground is simulated as a Lambertian
surface.

Totally 807 orthorectified images were simulated, for the same 3
bands (RGB). Fig. 14 plots the average of all the pixels for each
orthorectified reflectance image (R(θvpc, zS)) simulated per band, and
the corresponding percentage differences to the calculated BRF of θvpc

Fig. 14. Plot of average reflectance of the simulated orthorectified PPImages of the Jarvselja scene (3figures on the left) and the differencewith the scene BRF of θvpc (3figures on the right).
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in Fig. 9 (R−BRF
BRF ). Maximum difference occurs at the HS configuration. By

comparing the results of the same band with different altitudes, it can
be observed that as the platform altitude increases, the differences
converge to 0. Indeed, because the scene has a fixed dimension, as the
distance from the sensor to the scene increases, the upper and lower
boundaries of θvp range over the whole scene converge to θvpc (same
tendency as θvp ranges shown in Fig. 11(b)), and the scene reflectance
tends to be the exact BRF value. The distribution of the differences
over the θvp axis can be divided into 3 segments depending on the
sensor altitude. For example with zS = 0.1km, the 3 segments are:

• HS influenced segment (e.g. θvpc∈ (−45∘,− 27∘)): The BRF inside the
region is influenced by the HS. At low altitude, the θvp range covered
by sensor is relatively wide. The HS influenced region corresponds
to a belt in the image similar to Fig. 11(b). The major part of the
image is outside the HS influenced region. Therefore, in this segment,
the average scene reflectance is smaller than the BRF value.

• Near HS segment (e.g. θvpc∈ (−70∘,− 45∘)∪ (−27∘, 10∘)): The BRF at
θvpc inside this region is away from the HS peak, so it is not influenced
by the HS effect. However, the HS influenced region is present in the
sensor image. Therefore, the resultant average reflectance is larger
than the BRF value.

• Far segment (e.g. θvpc ∈ (−90∘,− 70∘) ∪ (10∘, 90∘)): The BRF region is
far away from theHSon the plot. The average reflectance of the sensor
image can be larger or smaller than the BRF value but the difference is
small since the BRF distribution is relatively smooth inside this region.
The sign of the difference depends on the 2nd derivative of the BRF
distribution inside the angle range.

A similar study using actual data is the variability of the BRDF prod-
uct investigated by Román et al. (2011) through comparing the CAR
measurement with the MODIS measurement. The authors mentioned
that one possible reason that causes the differences is the shadow of
foliage and canopy components at a spatial resolution N90 m (caused
by the HS and the sensor-object geometry). The above “3 segments”
explanation can be used to reproduce and analyze this kind of data.

5. Conclusions and prospects

In order to build a bridge between simulated and actual RSmeasure-
ments, an approach combining image perspective projection with 3-D
RTM, the so-called converging tracking and perspective projection
(CTPP) is implemented in DART. It uses ASVD and the IUSD method to
assign a specific direction vector and phase function for each scatter-
ing/emission event. The simulated sensor image stores radiance values
that depend on the pixel-sensor geometry. Evaluations and tests of
the approach are presented and discussed: simulation of images of cam-
era and cross-track sensors for various altitude and configuration, video
generation, HS regional enhancement on sensor images, pixel-wise
comparison of orthorectified images, and variation of reflectance be-
tween airborne and spaceborne measurements. The approach needs
further improvement to better consider the actualmeasurement config-
urations. For example, we started studying how to import intoDART the
actual platform trajectory and direction distribution of image pixels.
Work is also conducted on improving the accuracy of simulations for
the image boundaries where the iterative method (Section 3.7) may
fail. Furthermore, the DART atmosphere tracking algorithm (Grau &
Gastellu-Etchegorry, 2013) has been improved to adapt the CTPP
approach. The distance from each pixel location on the image to the
sensor through the atmosphere varying according to the pixel-sensor
geometry, the atmosphere direct transmittance needs to be calculated
for each pixel. We interpolate the DART computed transfer functions,
from the top Earth scene up to sensor altitude, for each direction inci-
dent onto the sensor. However, accuracy and processing speed require
further optimizations.

CTPP applicationwith actual remote sensing data continueswith the
comparison between APEX and DART orthorectified images of the
Laegern site. Previous results obtainedwith the orthographic projection
method (Schneider et al., 2014) are much improved with CTPP
(Schneider, Yin, Gastellu-Etchegorry, Morsdorf, & Schaepman, in
press). With the help of multi-threading, we are now considering
simulations and comparisons with larger scenes (1km × 1km) in-
cluding atmosphere. Solar noise simulation in airborne laser scan
(ALS) data is another ongoing CTPP application. ALS is an active
multi-pulse technique with a similar geometric configuration as pas-
sive cross-track imager. Using the so-called Ray-Carlo method, DART
simulates LIDAR data, with atmosphere (Gastellu-Etchegorry, Yin,
Grau, Lauret, & Rubio, 2013; Gastellu-Etchegorry, Yin, & Lauret, in
preparation; Yin, Gastellu-Etchegorry, Grau, Lauret, & Rubio, 2013;
Yin, Gastellu-Etchegorry, & Lauret, in preparation). By segmenting
the sun induced radiance image of a cross-track imager according
to each LIDAR FOV pulse, solar noise can be estimated simultaneous-
ly for millions of LIDAR pulses, for each LIDAR pulse. Solar noise is a
major concern for LIDAR photon counting. Its simulation is imple-
mented in present DART release. Other applications can benefit
from DART and its CTPP approach, including algorithm validation
of 3-D vision from airborne measurements. For example, the
parallel-perspective airborne stereo mosaic (Zhu et al., 2004) from
multiple simulated sensor images. Since DART simulates both
LIDAR and airborne images, algorithms of sensor fusion can be tested
using DART simulations. Comments and suggestions by DART users
are welcome for further improvement and application. Free DART li-
cense is provided by Paul Sabatier University for scientific works
(http://www.cesbio.ups-tlse.fr/dart/license/en/index.php).
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Chapter 4

Simulation of LiDAR data

The term LiDAR indicates an active remote sensing technology that measures distance by illuminating

a target with a laser and analyzing the reflected light. LiDAR works on the same principle as RADAR,

while it uses much shorter wavelengths than RADAR. Therefore, it allows the detection and analysis

of much smaller objects, such as aerosols and cloud particles. LiDAR technology originated in the

1930s with the launch of light pulses into the atmosphere to calculate the altitude of clouds through

measurement of the light pulse round-trip time. This was the first application of atmospheric LiDAR. In

1950, a French physicist Alfred Kastler (Nobel Prize for Physics 1966) proposed the method of optical

pumping, which led to the completion of the theory of lasers. Today LiDAR most commonly refers to

the use of laser radiation detection.

LiDAR can be either ground-based or onboard RS platforms (planes, satellites, helicopters, air bal-

loons, as well as UAVs). It was only with the deployment of differential Global Positioning Systems

(GPS) in the 1980s, allowing the precise positioning of aircraft, that LiDAR made airborne surveying

of Earth surfaces possible. The GPS and inertial measurement unit (IMU) data recorded on a flying

platform are combined with the laser pulse range measurements to produce point data with horizontal

locations and vertical elevation (ASPRS, 2006). The IMU helps control and record the roll, pitch, and

yaw of the aircraft while the LiDAR system is scanning (Campbell et al., 2007). LiDAR has many mil-

itary and civil applications, for example to make high-resolution maps, with applications in geomatics,

atmospheric physics, forestry, archeology, geography, geomorphology, etc. (Vierling et al., 2008). The

use of LiDAR continues to increase as LiDAR datasets are made available to the public and the price

of new data acquisitions decreases. Despite the various applications and availability of data, LiDAR

processing remains a significant challenge (Chen, 2007). Height filtering, the process of classifying the

data into ground and non-ground returns, is an essential but difficult step in most analyses (Liu, 2008).

A LiDAR pulse is usually in the near-infrared and visible spectral domains, typically with wave-

length of ND-YAG laser λ = 1064nm where vegetation reflectance is high, and at its double frequency

λ = 532nm for shallow penetration into water and retrival of atmosphere constituents. Some LiDAR

devices also operate in the ultraviolet or SWIR spectral domain (Govaerts, 1996). For example, the

ILRIS-LR terrestrial LiDAR demonstrated in Figure 5 of Section 4.2 utilizes 1535nm wavelength for
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better distinguished branches and leaves through the apparent reflectance. Basically, a LiDAR device

launches very narrow band pulses to a target and records the delayed time interval of energy return to

the source to measure the distance to the target (the so-called time of flight). The time interval multi-

plied by the speed of light gives the distance between the sensor and the target. When observing Earth

surfaces, it can measure both the horizontal distribution and vertical height of vegetation communities

(Lefsky et al., 2002). The diameter of circular region at ground level, that is illuminated by a LiDAR

pulse at nadir is called footprint size. It is usually smaller than the circular region at ground level that is

observed. The diameter of this region is called the LiDAR FOV size. Small footprint airborne LiDAR

typically has a pulse diameter of 0.2m-1m.

LiDAR systems can be classified into discrete-return, waveform system, and photon counting sys-

tem.

• Discrete-return systems (usually with small footprint size) can receive either single or multiple

return pulses, which leads to a high resolution, three-dimensional point-cloud of raw elevation data

that depicts the Earth’s surface with centimeter to decimeter absolute vertical accuracy (Campbell,

2007) (Harding et al., 2008). Sampling density on the ground (e.g., 1− 20 points /m2) depends

on the detector sensitivity, response time, and detection threshold, the system pulse rate and scan

angle, and the platform speed and height of the aircraft. Discrete-return LiDAR data can be

interpolated to create surface elevation models and bare-earth digital elevation models or used to

estimate a variety of vegetation metrics such as biomass, height, crown size, LAI, and vertical

canopy structure (Bater and Coops, 2009). The estimations of these various vegetation metrics are

typically based on their height above a LiDAR-derived digital elevation model.

• There are more complicated LiDAR systems that record the time varying backscattered intensity

in temporal bins (i.e., multiple echoes per pulse) (Lefsky et al., 2002). The output that stores

this information is called a waveform and the associated sensors are called the waveform LiDARs

(wLiDAR). Footprint can be 5 m or larger (Campbell, 2007). WLiDAR systems can transmit

thousands of pulses per second that are directed by a rotating or scanning mirror across a specified

swath width below the aircraft, generally <±20◦ off-nadir (Ackermann, 1999) (Campbell, 2007).

• Photon-counting LiDAR (pcLiDAR) is an emerging technology that fires low energy photons

with high frequency. It offers the potential for low energy expenditure and potential high altitude

operation allowing extended laser lifetime and large area coverage (Rosette et al., 2011). Low laser

energy output ensures eye safety of these instruments despite operating at a visible wavelength.

A high pulse repetition rate and photon detection probability produces a high point density even

whilst flying at greater altitudes whilst a narrow pulse duration (< 1ns) allows photons to be

located with greater vertical precision. One significant factor resulting from the green wavelength

is that photons returned from the emitted pulse cannot be obviously distinguished from detected

photons resulting from ambient noise. A small detector field of view and narrow optical band-pass

filter are two important elements to reducing the background noise as much as possible. Much of
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the remaining background can be eliminated by coincidence filtering. Acquiring data at dusk or

night would further reduce the background noise.

Among all these devices, wLIDAR records the most detailed signals for each LiDAR pulse. It can be

converted into discrete-return data by decomposition, and into pcLiDAR data by simulating the physics

of photon counting detector (Yin et al., 2015a).

A general-purpose simulation tool of wLiDAR can help to evaluate the influences of instrumental

and experimental configurations on retrieved waveform, and further help to develop inversion algorithms

for specific system. Several models have been developed to simulate LiDAR waveform from medium

to large footprints. Semi-empirical models (Blair and Hofton, 1999; Chauve et al., 2007) considered

waveform as a sum of Gaussian or Lognormal profiles. These profiles are calculated through convolu-

tion with reflection of hit objects of the simulation and spatial distribution (2D Gaussian profile) of pulse

energy. The simulated scenes were composed of facets with limited reflectance model, and complicated

interactions of ray transfer between the scene elements are not simulated. Sun and Ranson (2000) devel-

oped a analytical model to simulate waveform of heterogeneous vegetation landscape consists of turbid

medium. Ni-Meister et al. (2001) used the geometric optical and radiative transfer (GORT) model to es-

timate waveform in one-way hot spot configuration. These analytical models provide fast and somehow

accurate estimation of waveform. However, in these models, only first-order scattering returns are con-

sidered. The multiple scattering events within LiDAR FOV which induce a slow decay after vegetation

canopy signal in waveform, is neglected. Furthermore, geometric optical description of simulated scene

is based on simplifying hypotheses for representing interaction phenomena. For example, computation

of scene fractions of sunlit canopy, sunlit background, and shadows, is potential source of modeling

inaccuracy.

3D RTMs which rely on radiative transfer equation, model the changes of radiations (rays) along its

path according to local absorptions, scatterings and thermal emissions. The simulated scene is repre-

sented with realistic and detailed description of every element which constituents the Earth’s landscape.

Monte Carlo ray tracing (MCRT) approach is used in some 3D RTMs to solve the radiative transfer equa-

tion. It is a powerful tool because they allow multiple scattering processes to be simulated as a succession

of exactly modeled single scattering processes (Disney et al., 2000). In the field of LiDAR waveform

simulation, North, et al, 2010, implemented a waveform simulation tool based on a well known MCRT

radiative transfer model, the FLIGHT model (North, 1996). The simulated waveforms were validated

with the reflectance calculated by FLIGHT and the waveforms from GLAS measurements. Other mod-

els like n-Dimensional Estimation of Lidar Signals (DELiS) (Ristorcelli, 2013; Ristorcelli et al., 2014),

also uses the MCRT approach. Since MCRT simulate rays in terms of multiple simulated photons,

trade-off exists between the simulated accuracy and the number of launched simulated photons. Com-

putational time is the major constraint with Monte Carlo methods, especially if the phase functions of

scene elements are anisotropic and complex. FLIGHT achieves processing time around 1s for single

pulse waveform simulation. In reality, a wLiDAR system has a pulse repetition frequency up to hun-

dreds hertz. Point cloud generated over an observation area consists of up to millions point. Further
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acceleration is called due to the application and evolution of multi-pulse simulation. The fast develop-

ment of LiDAR technologies requires efficient and accurate simulation tool for both single pulse and

multiple pulses to validate existing measurements and to prepare future devices.

In Section 4.1, we present a general-purpose LiDAR waveform simulation tool from the DART 3D

radiative transfer model. Some of its theories and applications have already been introduced in previous

works (Gastellu-Etchegorry et al., 2013; Grau, 2012; Yin et al., 2013a). A quasi Monte Carlo Ray Trac-

ing approach to simulate photon propagation is introduced in DART. Based on that, 2 new approaches,

the so-called Box method and Ray Carlo method, are implemented to provide robust simulation of

LiDAR waveform with any geometrical configuration, any footprint size, as well as any simulated land-

scape and atmosphere distribution. The box method optimizes and enormously accelerates the selection

of scattering direction of a photon during interaction with materials of anisotropic properties. The Ray

Carlo method utilize the virtual ray and the ASVD concepts presented in Chapter 2 and Chapter 3. It

brings DART traditional ray tracking into Monte Carlo simulation, which increases significant signals

received by LiDAR with reduced number of initially launched simulated photons. Combination of these

2 methods devotes to provide fast and accurate simulation of LiDAR pulse waveform, so that it is applied

to multi-pulse simulation and integrated analysis of received data. Simulated results are validated with

reflectance value generated by traditional DART ray tracking.

Most existing models are incapable or inconvenient for efficient and accurate simulation of multi-

ples pulses. In Section 4.2, we present the second part of LiDAR data simulation of DART model. We

develop a systematic multi-pulse model of airborne and terrestrial laser scan acquisitions from extension

of the previous work of the single-pulse model. With the advantage of inherited efficiency and accuracy

from single-pulse model, the design of this multi-pulse model is also optimized in both efficiency and

practicability. The implementation of the model avoids repetitive loading of simulated scene, which is

a common source factor of slow speed when single-pulse model is called iteratively for each simulated

pulse. The parameterization of device and platform supports both abstract configurations such as plat-

form path, zenith angle ranges, and angular/distance separation between pulses, etc..., as well as the

importation of instantaneous LiDAR position and orientation per pulse to facilitate actual data compar-

ison. Therefore, platform and sensor based simulation can be created for existing or future systems to

produce and validate their data. Each pulse is independently simulated with its own sensor geometries,

so algorithmic multi-threading processing is implemented to enormously improve the processing speed.

The output data is converted into an industrial LiDAR format, the sorted pulse data (SPD) (Bunting

et al., 2013b) format through python binding, and hence processed into point cloud by the associated

open-source data processing software, the SPDlib (Bunting et al., 2013a).

In addition, an approach is developed to simulate pcLiDAR data through conversion from wave-

forms. PcLiDAR exploit single-photon detector for signal acquisition. The acquisition of single-photon

detector is simulated with defined sensor parameters like quantum efficiency, dark count rate, and detec-

tor dead time, etc... The number of photons in each bin of waveform data is converted into probability

of detection and driven by random number generations to find out whether a photon is detected. Case
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studies are carried out under various simulated Earth’s scene with atmosphere database, and conditions

of solar illumination. Furthermore, based on the at-sensor radiance image simulations for cameras and

pushbroom imagers which are elaborated in Section 3, a new method for simulation of solar noise in

LiDAR waveform is initially developed. Solar noise is a minor problem for data processing of the exist-

ing wLiDARs, since the high pulse energy reduces its weight in the return signal, but pcLiDAR is much

more sensitive to solar noise than wLiDAR because of its low pulse energy. In addition, solar noise

does play an important role in LiDAR sensor design in order to optimize the signals measurements at

daytime. Instead of 1 source and 1 sensor system in traditional RTMs, 2 sources and 1 sensor system is

developed. In this system, 2 simulations are created for both wLiDAR and passive sensor. The passive

sensor radiance image is converted into FOV-localized number of photons per bin and combined with

the simulated waveform.

Examples are demonstrated with LiDAR configurations for various existing and future platforms,

including CAO (Asner et al., 2012, 2007), ILRIS terrestrial LiDAR, MABEL (McGill et al., 2013), and

the ATLAS (Anthony et al., 2010).

4.1 Article: Simulation of satellite, airborne and terrestrial LiDAR with
DART (I): waveform simulation with quasi-Monte Carlo ray tracing
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Abstract: LIght Detection And Ranging (LiDAR) provides unique data on the 3-D structure of 
atmosphere constituents and the Earth’s surface. Simulating LiDAR returns for different laser 
technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in 
LiDAR data. Different types of models are capable to simulate LiDAR waveforms of Earth 
surfaces. Semi-empirical and geometric models are not very accurate because they rely on very 
simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, 
Monte Carlo Ray Tracing (MCRT) models are potentially very accurate, but require very long 
computational time. Here, we present a new LiDAR waveform simulation tool that is based on the 
introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative 
Transfer (DART) model. Two new approaches, the so-called “box method” and “Ray Carlo 
method”, are implemented to provide robust and accurate simulations of LiDAR waveforms for any 
landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse 
characteristics, etc.). The box method accelerates the selection of scattering direction of a photon in 
presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional 
ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field 
of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse 
acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, 
and simulated LiDAR signals compare favorably with their associated reflectance images and Laser 
Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated in DART, 
enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., 
atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or 
satellite LiDAR sensors.  
 
Keywords: LiDAR, DART, radiative transfer model, multiple scattering, LVIS, Monte Carlo ray 
tracing, Ray Carlo, box method  
 

1. INTRODUCTION 

Sampling the Earth's atmosphere and surface features with LiDAR sensors provides detailed data on 
topography, vegetation architecture, aboveground biomass, and novel approaches for change 
detection in vegetated and urban areas (Vosselman and Maas, 2010). Waveform LiDAR sensors 
(wLiDAR) provide ranging information based on the return energy in the backscattered signal 
which is discretized into  short sampling intervals. In addition to the distance from the vegetation 
canopy and ground surface, wLiDAR data captures energy returned from the diffuse media (e.g., 
the atmospheric column and vegetation profile). Thus, the inversion of waveform signal can be used 
to infer the distribution of sub-canopy elements,  and distribution of atmospheric constituents. 
wLiDAR sensors are usually categorized according to platform, beam divergence and footprint, 
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sampling method, laser wavelength and pulse width, and method of detection and digitization. 
Airborne wLiDAR systems typically utilize a small footprint (<1 m diameter) infrared or green 
laser beam, and a scanning or multi-faceted mirror for distributing laser pulses in the cross-track 
direction (Asner et al., 2007, 2012). Space-based wLiDAR devices usually have been profiling 
systems with large footprints: the Geoscience Laser Altimeter System (GLAS) LiDAR had a 50-60 
m diameter footprint (Zwally et al., 2002) and a 25 m diameter footprint is planned for the Global 
Ecosystem Dynamics Investigation (GEDI) waveform LiDAR (Krainak et al., 2012, Dubayah et al., 
2014).  
 
A general-purpose simulation tool of wLiDAR can help to evaluate the influences of instrument 
characteristics and environmental conditions on LiDAR waveforms, including the development of 
inversion algorithms for specific systems. Several models have been developed to simulate 
wLiDAR from medium to large footprints. Semi-empirical models (Blair and Hofton, 1999, Chauve 
et al., 2007) consider waveform as a sum of Gaussian or Lognormal profiles computed by 
convolving the target objects’ reflectance and pulse energy spatial distribution (2-D Gaussian 
profile). The analytical model of Sun and Ranson (2000) simulates waveforms of heterogeneous 
vegetation landscapes made of turbid medium. Ni-Meister et al. (2001) used a geometric optical and 
radiative transfer (GORT) model to estimate waveform in the hot spot configuration (Kuusk, 1991). 
These analytical models provide computationally efficient estimations of waveforms. However, the 
modeling approaches provide less accurate waveform data because they consider only first-order 
scattering returns. Simulation of multiple scattering mechanisms that occur in the LiDAR FOV is 
particularly important for near infrared (NIR) LiDAR systems over vegetation, given the high 
reflectance and transmittance of foliage in typical LiDAR wavelengths (1064 nm). Furthermore, 
previous models also work with very simplified simulations of Earth surfaces.  
 
Three-dimensional (3-D) radiative transfer models (RTM) rely on radiative transfer equations to 
simulate local absorption, scattering and thermal emission. Many RTMs can work with detailed 
scenes with realistic geometry and optical properties. Some 3-D RTMs use a MCRT approach to 
solve the radiative transfer equation. MCRT models are powerful tools because they simulate 
multiple scattering processes as a succession of exactly modeled single scattering processes (Disney 
et al., 2000). In the field of wLiDAR simulation, (North et al., 2010) implemented a waveform 
simulation tool based on the well-known MCRT FLIGHT model (North, 1996). They validated it 
with the reflectance calculated by FLIGHT and waveforms from GLAS measurements. Since 
MCRTs simulate rays in terms of multiple simulated photons, an inherent trade-off exists between 
the simulation accuracy and the number of simulated photons. Computational time is the major 
constraint with MCRTs, especially if the scene element phase functions cannot be inverted, a 
typical case because common scattering elements have anisotropic and complex phase functions. A 
1s processing time for a single pulse waveform is very limiting, as many actual wLiDAR systems 
have a pulse repetition frequency up to hundreds of kHz.  
 
In this paper, we present a new quasi-MCRT model that simulates wLiDAR in an accurate and 
computationally efficient manner. It is implemented in the Discrete Anisotropic Radiative Transfer 
(DART) model (Gastellu-Etchegorry et al., 1996, 2004, 2012, 2015). It is a general-purpose model 
for any LiDAR configuration (footprint size, pulse energy, spatial and temporal pulse distribution, 
view direction, etc.), for any urban or vegetation landscape, including topography. MCRT within 
atmosphere is also implemented and coupled, which does not exist in most Earth surface RTMs. 
Section 2 of this paper reminds DART background. Section 3 presents a new approach, called box 
method, for fast selection of photon scattering direction for any scattering event, which is the 
fundamental method for the quasi-MCRT model in DART. Section 4 explains the implementation 
of the quasi-MCRT model in LiDAR simulation, with the introduction of a new approach called 
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Ray Carlo method. For each scattering event, this method tracks a fraction of the radiation returned in 
the direction of the sensor to reduce the total number of simulated photons, greatly improving 
simulation accuracy and processing speed. Section 4 also presents sensitivity studies for different 
landscape and atmosphere conditions, including a comparison with Laser Vegetation Imaging 
Sensor (LVIS) waveforms for a temperate forest. Section 5 highlights atmosphere tracking, with 
specific accelerating techniques that reduce MCRT noise. A companion paper presents DART-
LiDAR applications for simulating multiple pulse acquisitions, terrestrial LiDAR, and photon 
counting LiDAR systems. Nomenclature of this paper is shown in Appendix A. 
 
 

2. THE BACKGROUND OF DART MODEL THEORY 

DART is a 3-D RTM that is developed since 1992. It simulates 3-D radiative budget and airborne 
and satellite images of urban and natural landscapes from visible to thermal infrared domains 
(Gastellu-Etchegorry et al., 1996, 2004, 2008, 2015). It simulates any 3-D experimental landscape 
configuration (forest stand, agricultural crop, atmosphere, topography, sun direction or date) and 
instrument specification (e.g., spatial and spectral resolutions, sensor viewing direction, platform 
altitude).  
 
A 3-D scene (Figure 1) is the superposition of three rectangular volumes: the high atmosphere (HA), 
the mid atmosphere (MA), and the Earth scene, with topography. Scene simulation is independent 
from the RT modelling, which allows one to simulate several sensors with the same landscape. Major 
DART simulated scene elements are: trees, grass and crop canopies, urban features, and water bodies. 
Additionally, DART can import scene elements from external libraries to simulate Earth scenes of 
varying complexity. Atmosphere cells are defined by their gas and aerosols contents and spectral 
properties (i.e., scattering phase functions, vertical profiles, extinction coefficients, spherical 
albedos, etc.) that are user defined, or imported from internal or external databases such as 
AERONET (http://aeronet.gsfc.nasa.gov/). Atmospheric RT modelling includes the Earth-
atmosphere radiative coupling.  

 

 
Figure 1. DART simulated Earth / atmosphere scene (Gastellu-Etchegorry et al., 2015). 
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An Earth scene is an array of 3-D cells (x, y, z) where any scene element is created with a dual 
approach as a set of cells that contain turbid media or a set of geometric primitives (triangles) called 
"facets". Turbid medium is a statistical representation of matters that are used to simulate fluids (air, 
soot, water, etc.) and vegetation foliage. A fluid turbid medium is a volume of homogeneously 
distributed particles defined by their density (particles / m3), cross section (m2  / particle), single 
scattering albedo, and scattering phase function. Turbid vegetation medium is a volume of leaf 
elements simulated as infinitely small flat surfaces defined by their orientation, i.e. leaf angle 

distribution 
g(Ωf)

2π
 (LAD; sr-1), volume density uf  ( m2/m3 ), and isotropic transmittance and 

reflectance, with a specular component.  
 
A facet is a surface element defined by its orientation Ωn in space, area and optical properties: direct 
transmittance tdir , diffuse transmittance tdiff  and reflectance ρ, with tdiff + ρ ≤ 1. A ray of light 
incident on a facet interacts with the front side, which is defined by a normal vector, but it does not 
interact with the facet’s backside. Thus, depending on the type of object, any surface can be 
simulated using only 1 facet or 2 facets with opposite normal vectors, and optionally different optical 

properties. For an energy flux W  along Ωs , the direct transmittance along Ωs  is tdir
1/|Ωs⋅Ωn| ; the 

scattered flux is W ⋅ (1 − tdir) ⋅ ρ ; and the transmitted diffuse flux is W ⋅ (1 − tdir
1/|Ωs⋅Ωn|) ⋅ tdiff . 

Reflectance ρ can be Lambertian, Hapke (Hapke, 1981), RPV (Rahman et al., 1993), etc., with a 
specular component that is defined by the facet refraction index, an angular width and a 
multiplicative factor. Facets are used to build virtual houses, plant leaves, tree trunks and branches, 
etc. Vegetation canopies are therefore simulated as assemblies of turbid medium voxels or facets or 
combination of both.  
 
Rays W(r, Ω) are tracked with the so-called ray-tracking method: they propagate in space r along 
discrete directions, with each one being characterized by its vector Ω and solid angle ΔΩ (sr). They 
are iteratively tracked until convergence is achieved: rays intercepted in the previous iteration are 
scattered and tracked towards all relevant Ndir discrete directions in the current iteration, which 
corresponds to multiple scattering. Three types of discrete directions are used:  

- Ndir,nv pre-defined directions. They cover the 4𝜋  space: ∑ ∆Ωi
Ndir,nv
i=1 = 4𝜋 . They can oversample 

angular sectors such as the hot spot (Kuusk, 1991) and penumbra (Dare, 2005) configurations. They 
are used for simulating the radiative budget and sensor images with orthographic projection (Yin et 
al., 2013b).  

- Ndir,vd pre-defined virtual directions. Their properties are set to "virtual" because rays along these 
directions cannot be scattered along other directions. They are used for simulating remote sensing 
images with orthographic projection (Yin et al., 2013b).  

- Ndir,vnd non pre-defined virtual directions. They are used for simulating LiDAR signal and passive 
sensor images (camera, cross-track imager), with multi-angle acquisition within the sensor FOV, 
through perspective projection. Their vectors vary to scatter-to-sensor direction per scattering event. 
Their number (e.g., 106) is more or less equal to the number of emitting and scattering elements in the 
scene (Yin et al., 2015). 
 
Facets and turbid volume cells give rise to 2-D and 3-D ray interactions (i.e., scattering and 
absorption), respectively. A ray Wint(Ωi), incident along direction Ωi that is intercepted by a facet or 
a turbid medium of type k gives rise to scattered rays along pre-defined and not pre-defined discrete 
directions (Ωi, ΔΩi):  

Wscat(Ωj) = T(k, Ωi, Ωj) ⋅ Wint(Ωi)  (1) 
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where T(k, Ωi, Ωj) is the scattering transfer matrix. It is pre-computed for each type of volume and 
surface scene element, for pre-defined directions Ωi only. For a volume of turbid vegetation of type 
k, we have:  

T(k, Ωi, Ωj) =
1

G(k, Ωi)
. ∫ ∫

gf(k, Ωf)

2π
. |Ωi. Ωf|. F(k, Ωf, Ωi → Ωj). dΩf

 

2π

. dΩj

 

∆Ωj  

 (2) 

with  

G(k, Ωi) =
1

2π
∫gf(k, Ωf). |Ωi. Ωf|. dΩf

 

2π

 (3) 

where G(k, Ωi) is the mean projection of a unit foliage area of type k on a surface unit perpendicular 
to direction Ωi (Ross, 1981). F(k, Ωf, Ωi → Ωj) is the probability that a ray, intercepted along Ωi by a 
foliar element with orientation Ωf , is scattered towards Ωj . It corresponds to Lambertian 
transmittance and reflectance, possibly with a specular component that depends on foliar refraction 
index and roughness. 
 
For a ray intercepted along Ωi, the probability of scattering along a non virtual direction Ωj is: 

pij,k =
T(k, Ωi, Ωj)

∑ T(k, Ωi, Ωj)
Ndir,nv
j=1

,   with j ∈ [1  Ndir,nv] and  ∑ pij,k
Ndir,nv

j=1
= 1 (4) 

 
Facet scattering matrices T(Ωi, Ωj) are defined by the facet transmittance tdiff and reflectance . 
During radiation tracking, scattering matrices are handled differently for facets and turbid 
vegetation, where leaf distribution is statistically known. Indeed, any facet has a specific orientation 
Ωn that must be considered when computing its radiation interaction. This is done in 3 steps. 1) 
Coordinates of the incident photon are transformed from the scene reference system to the facet 
reference system. 2) Application of T(Ωi, Ωj)  in the facet reference system for computing the 
direction of the scattered photon. 3) Coordinates of the scattered photon are transformed from the 
facet reference system to the scene reference system.  
 
Gas and aerosol scattering matrices T(Ωi, Ωj) are computed with their respective single scattering 

albedo  and normalized scattering phase functions: Rayleigh function 
Pgas(Ωi ,Ωj)

4π
 for gasses and 

double Henyey-Greenstein function 
Paerosol(Ωi ,Ωj)

4π
 for aerosols. The strong anisotropy of aerosol 

scattering explains that T(Ωi, Ωj) is computed as integral over the solid angles of the incident and 
scattered direction, using the Newton-Cotes numerical integration: 

 
 T(Ωi, Ωj) =

1

∆Ωi
. ω. ∫ ∫

P(Ωi , Ωj)

4π
. dΩi

 

∆Ωj

. dΩj

 

∆Ωi  

 

 
Pgas(Ωi , Ωj)

4π
≈
1

4π
. [0.7552 + 0.7345 cos2Ψi,j] 

 
Paerosol(Ωi , Ωj)

4π
=

a. (1 − g1
2)

[1 + g1
2 − 2g1 cosΨi,j]

1.5 +
(1 − a). (1 − g2

2)

[1 + g2
2 + 2g2 cosΨi,j]

1.5 

(5) 
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Ψi,j is the angle between directions Ωi and Ωj and (a, g1, g2) are parameters of the double Henyey-
Greenstein function. They depend on aerosol size and wavelength. 
 
 
DART forward simulation of vegetation reflectance was successfully verified by real measurements 
(Gastellu-Etchegorry et al., 1999) and cross-comparisons against independently designed 3-D 
reflectance models (e.g., FLIGHT (North, 1996), Sprint (Thompson and Goel, 1998), Raytran 
(Govaerts and Verstraete, 1998) in the RAdiation transfer Model Intercomparison (RAMI) 
experiment (Pinty et al., 2001, Widlowski et al., 2007, 2008, 2013). To date, DART has been 
successfully employed in many scientific applications: design of inversion methods for airborne and 
satellite reflectance images (Gascon et al., 2004, Banskota et al., 2013), design of satellite sensors 
(e.g., NASA DESDynl, CNES Pleiades), impact studies of canopy structure on satellite image 
texture (Bruniquel-Pinel and Gastellu-Etchegorry, 1998, Barbier et al., 2010, 2012, Proisy et al., 
2011) and reflectance (Gastellu-Etchegorry et al., 1999, Malenovský et al., 2008) , modelling of 3-D 
photosynthesis distribution and primary production rate in vegetation canopy (Guillevic and Gastellu-
Etchegorry, 1999), design of new chlorophyll vegetation index (Malenovský et al., 2013 ), among 
others.  

 
Two novel modelling approaches are introduced into DART for simulating terrestrial, airborne and 
satellite LiDAR signals (i.e., waveform, photon counting). They combine Monte Carlo (MC) and ray-
tracking methods (UEBERSCHLAG, 2010, Gastellu-Etchegorry et al., 2013, Yin et al., 2013a). They 
are presented in Section 3 and 4.  
 
 

3. PROPAGATION AND INTERACTION OF PHOTONS 

MC methods are used to assess an expected result as an integration of a large number N of random 
samples. These unbiased methods converge to the exact solution with an error proportional to 1/√N. 
This low convergence rate explains the frequent use of variance reduction techniques such as 
stratified sampling, Russian roulette integration and quasi-MC methods (Suykens, 2002). In DART, 
illumination energy is simulated as discretized tiny samples referred to as simulated photons (SP). 
Three parameters (Wsp, rsp⃗⃗ ⃗⃗  ⃗, Ωsp⃗⃗ ⃗⃗ ⃗⃗  ) define the state of each SP. Wsp is a weight factor which defines 

the energy quantity (unit: Joule) that a SP carries. rsp⃗⃗ ⃗⃗  ⃗ is the SP position and Ωsp⃗⃗ ⃗⃗ ⃗⃗   is the unit direction 
vector. The paths of individual SPs are tracked through successive interactions, starting from the 
illumination source (e.g., sun, sky, laser beam, etc.). An individual SP can undergo many 
interactions with various elements in a simulated system. At each interaction, it is transmitted, 
absorbed or scattered. This is simulated by considering the probability PX(0 < PX < 1) of any event 

X , with PX(t) = FX(t) − FX(a) , where FX(t) = ∫ fX(t)
t

a
 is the cumulative distribution function 

(CDF) of event X, fX(t) is the probability distribution function (PDF) and t is a variable (e.g., SP 
path before interception, selected scattering direction, etc.) bounded by its limits a and b. We have 
∑ PX(b) = 1x . The comparison of a randomly generated number p (0 < p < 1) with the transmission, 
absorption and scattering CDFs is used to select an event. Then, the inverse function of the selected 
CDF is applied on p, to retrieve the value of the variable t (i.e., t = FX

−1(p)) that is used to update 
the SP state. Functions FX and fX(t) depend on the interacting elements. 
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3.1 Interception 

If a SP enters a cell along Ωsp⃗⃗ ⃗⃗ ⃗⃗  , the longest possible path δlsp  along Ωsp⃗⃗ ⃗⃗ ⃗⃗   is computed, and the 
intercepted facets and turbid media along the path are shortlisted. If this list of elements is empty, 
the only possible event is transmission through the cell. Then: 
 rsp⃗⃗ ⃗⃗  ⃗ = rsp⃗⃗ ⃗⃗  ⃗ + Ωsp⃗⃗ ⃗⃗ ⃗⃗  × δlsp (6) 

It brings the SP to the next cell, with δlsp equal to its path distance.  
 
If there are facets along the SP path, and if the cell is not filled with turbid medium, δlsp in Eq. (6) 
is replaced by the distance δl  from the current SP position to the first facet in the list. The 
interaction of the SP with the facet gives rise to 2 possible events: direct transmission or 
interception. Different transmission corresponds to the fact that the SP simply crosses a semi-
transparent facet along Ωsp⃗⃗ ⃗⃗ ⃗⃗   (e.g., windows in buildings). On the other hand, the SP can be 
intercepted, and be further absorbed, or scattered. For a facet direct with transmittance tdir, 
interception occurs if a randomly generated number p verifies the inequality: p < 1 - tdir. If the SP is 
transmitted, it is directed to the next facet of the list for another interaction test.  
 
If the cell contains a turbid medium, turbid interaction must be considered before the SP is moved 
to a facet or exits the cell. Again, the SP can either be transmitted or intercepted. Transmittance 
along the ray path is used to statistically determine if an interception occurs. This transmittance is 
computed using pre-computed extinction coefficients  α(Ωi⃗⃗  ⃗) . For molecules or aerosols in 
atmosphere, α(Ωi⃗⃗  ⃗) is isotropic.  
 
For vegetation turbid cell with K  vegetation types: αv(Ωi⃗⃗  ⃗) = ∑ G(k, Ωi⃗⃗  ⃗)

K
k=1 . uf(k) , where each 

vegetation type k has a parameter G(k, Ωi⃗⃗  ⃗)  (Eq. (3)) and leaf volume density uf(k) . For an 
initialized SP along the illumination source direction Ωi⃗⃗  ⃗, for first order scattering, αv(Ωi⃗⃗  ⃗) takes into 
account the finite dimension df of leaves for simulating the hot spot effect (Kuusk, 1991). Indeed, 
the extinction coefficient for first order scattering αv

1(Ωj⃗⃗  ⃗) depends on Ωi⃗⃗  ⃗. For example, if Ωi⃗⃗  ⃗ and Ωj⃗⃗  ⃗ 

are exactly opposite, a ray scattered along Ωj⃗⃗  ⃗ will not be intercepted, which corresponds to αv(Ωj⃗⃗  ⃗ =

−Ωi⃗⃗  ⃗) = 0. This effect occurs also, with less intensity, for scattering directions near -Ωi⃗⃗  ⃗. The hot 
spot is simulated with Kuusk approach (1991):  
 

αv
1(Ωj⃗⃗  ⃗) = uf. G(Ωj⃗⃗  ⃗) (1 − √

G(Ωi⃗⃗  ⃗). μj

G(Ωj⃗⃗  ⃗). |μi|
) . exp (

−Δ(Ωi⃗⃗  ⃗, Ωj⃗⃗  ⃗)

sf(Ωj⃗⃗  ⃗)
. Δl(Ωj⃗⃗  ⃗). μj) (7) 

where μi = cosθi, μj = cosθj, Δ(Ωi⃗⃗  ⃗, Ωj⃗⃗  ⃗) = √
1

μi
2 +

1

μj
2 −

2cosg

|μi.μj|
 with cosg = Ωi⃗⃗  ⃗. Ωj⃗⃗  ⃗, Δl(Ωj⃗⃗  ⃗) is the path 

length along Ωj⃗⃗  ⃗ and sf(Ωj⃗⃗  ⃗) is the apparent leaf dimension: 

 
sf(Ωj⃗⃗  ⃗) =

π. df. G(Ωj⃗⃗  ⃗)

4μj
∫∫

gf(Ωf) 

2π.√1 + tan2 θf. sin
2ϕf

 

π
2

. dθf

 

2π

. dϕf (8) 

where Ωf is the leaf orientation, and gf(Ωf) is the LAD. 
 
The probability that a SP is intercepted along a path length Δl within a turbid cell is: 

 P(Δl) = 1 − e−α(Ωsp
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ).Δl  (9) 
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A random number p is compared with P(Δl) to state if the SP is intercepted or transmitted. If it is 
transmitted, Eq. (6) is applied to move it with δlsp = Δl. If the SP is intercepted, Eq. (9) is inverted 
to calculate the distance before the interception: 
 

δlsp = −
ln(1 − p)

α(Ωsp⃗⃗ ⃗⃗ ⃗⃗  ) 
 (10) 

Then, the SP is moved by distance δlsp (Eq. (6)) before being absorbed or scattered. 
 
The DART quasi-MCRT method differs from other MCRT models because scattered SPs propagate 
only along the Ndir,nv discrete directions that sample the 4𝜋 space. This simplifying hypothesis is 
acceptable if the divergence of a vector within each pre-calculated discrete direction can be 
neglected, which is valid only if scattering is isotropic or if Ndir,nv is large (i.e., small solid angle per 
discrete direction). This approach allows one to work with pre-computed quantities such as 
scattering matrices T(Ωi, Ωj), which greatly accelerates simulations. For example, direction-based 

parameters such as G(Ω ⃗⃗  ⃗) (Eq. (3)), ω(Ω ⃗⃗  ⃗), α(Ω ⃗⃗  ⃗) and T(Ωi, Ωj) are pre-calculated for any direction, 

whereas in other MCRT models, they are calculated each time for each new Ω ⃗⃗  ⃗, which is very 
computationally demanding. 
 
 

3.2 Scattering 

A SP that is intercepted is absorbed or scattered with a proportion that depends on local single 
scattering albedo ω . This albedo is pre-calculated for facets and turbid media (atmosphere, 
vegetation, fluid). For a facet, with a SP incident along Ωi:  
 

ω(Ωi) =
1

π
. ∫ ρ(Ωi, Ωj). |Ωn. Ωj|

 

2π

. dΩj + tdiff (11) 

where Ωn  is the facet normal, tdiff is the facet isotropic transmittance, and ρ(Ωi, Ωj)  is the facet 
directional reflectance. The integral is over the hemisphere where Ωn. Ωj > 0. 
 
For vegetation turbid medium:  
 

ω(Ωi) =
∫ ∫

gf(Ωf)
2π

. |Ωi. Ωf|F(Ωf, Ωi, Ωj) . dΩf2π4π
. dΩj

G(Ωi)
 (12) 

Most MCRT models generate a random number p and compare it with ω to state if the SP is 
absorbed or scattered. In DART, scattering occurs if ω>0 and the weight Wsp of the scattered SP is 
the weight of the intercepted SP multiplied by ω.  
 Wsp = Wsp ×ω(Ωi) (13) 

By this approach, a SP is never eliminated by absorption, except if  = 0, and the total number of 
launched SPs is much reduced compared with pure MCRT models to achieve the same accuracy. 
For example, a facet with  = 0.01 in a pure MCRT model would eliminate 99% of SPs that reached 
the facet. This model  behavior is particularly interesting in the presence of multiple scattering 
events.  
 
Common MCRT models as FLIGHT (North, 1996) assume an isotropic scattering to the 4𝜋 space. 
Thus, for any incident direction Ωi, the zenith j and azimuth ϕj angles of the scattering vector Ωj 
(ΔΩj = 0) is calculated with 2 random numbers p1 and p2: 
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 θj = cos
−1 p1          ϕj = 2π × p2 (14) 

Depending on models, a SP can have a weight Wsp. Then, during a scattering event, the weight of 
the scattered SP is updated by multiplying it with scattering probability density pijk (Eq. (4)) from 
direction Ωi to direction Ωj: 

 Wsp = Wsp. pij,k (15) 

This approach is less accurate if scattering phase functions are not isotropic because the use of an 
isotropic phase function induces inadequate sampling for directions Ωi with large pij,k values, and 
over sampling for directions with small pij,k values.  
 
In addition, the random generation of Ωj implies to compute pij,k frequently during SP tracking, 
using complex computation (Eq. (2)-(5)) and changing summation terms into integration terms with 
ΔΩj = 0. This is inefficient in terms of computation time. Thus, back-tracking algorithms are often 
implemented to track rays from the sensor (Disney et al., 2000), considering scattering events up to 
a limited scattering order.  
 
During a SP scattering event, DART uses an exact probability of scattering to redirect the SP. 
Moreover, the incident Ωi  and scattered Ωj  directions are restricted to be pre-defined discrete 
directions. Therefore, terms (Eq. (2)-(5)) that traditional MCRT must calculate frequently can be 
pre-calculated in DART. It should be noted that pij,k represents a cumulative probability with non-
zero solid angle ΔΩj, instead of the probability density in Eq. (15). Thus, probabilities of scattering 
towards each discrete direction over the 4𝜋 space are represented by fractional intervals that sum to 
unity. Thus, it is possible to invert a random number p to determine Ωj:  

 Ωj⃗⃗  ⃗ = FX
−1(p) (16) 

where FX is piece-wise CDF with pij,k being the probability of each interval. Usually, FX cannot be 
inverted analytically, which implies that p must be numerically compared with FX. Classical solving 
methods such as the bisection method can be very slow. Thus, a specific search method, hereafter 
called box method, was designed for fast selection of Ωj . This selection relies on two random 
numbers only.  
 
The box method uses an array Bk that is created per element type k in computer memory. Bk stores 
the anisotropic scattering probabilities pij,k (Eq. (4)). For a turbid medium, it has (Ndir,nv + 1) lines 

and Ndir,nv columns (Figure 2). For each line i of Bk, we have: ∑ pij,k
Ndir,nv
j=1  = 1. A basic approach 

would be to transform each pij,k into Xb,i,j,k probability intervals (boxes), each one storing the index j 
of a scattering direction, with the number Xb,i,j  of boxes for a scattering direction j  being 
proportional to probability pij,k. The total number of boxes of a line i is ∑ Xb,i,jj = Xb,i. Thus, a 
random number p, between 0 and 1, defines the box p. Xb,i, and the value of this box gives the index 
of the scattering direction to consider. Actually, this direct approach is unsuitable because it can 
require too much computer memory. Indeed, scattering probabilities are converted to integer 
numbers of boxes, which can require very large numbers of boxes, if the range of pij,k probabilities 
is very large. For example, if 10 boxes are assigned to a scattering direction with probability of 
5×10-7, then a scattering direction with a 0.2 probability must occupy 4×106 boxes.  
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Figure 2 : Box method. a) Array Bk of probabilities pij,k. Ωi is the illumination source direction. b) 
The 3 steps of the box method.  
 
Thus, in order to optimize memory management, the box method (Figure 2) uses an array Bk that is 
created with 3 steps: 

- Step 1: Probabilities pij,k of each line i of Bk are sorted and grouped into classes that have similar 
probabilities. This grouping is such that the range of probabilities of scattering directions within the 
same class is less than a given threshold γ ≥ 1. Thus, for any two scattering directions Ωj and Ωj in 
the same class c, with pij,k ≥ pij',k, we have always: pij,k ≤ γ. pij',k. With this approach, each line i 
has Ci classes.  

- Step 2: Any class c is represented by Ub,i,c  boxes. Thus, the set of classes of each line i is 

represented by Ub,i = ∑ Ub,i,c
C(i)
c=1  boxes.  

- Step 3: Each scattering direction of a class c is represented by Vb,i,c,j boxes. Thus, the selection of 
one direction Ωj in class c relies on a representation of class c by a number of boxes equal to 
Vb,i,c = ∑ Vb,i,c,jj .  
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Thus, ∑ (Ub,i,c
C(i)
c=1 + Vb,i,c) ≪ ∑ Xb,i,jj   line i, and the scattering direction is selected with 2 random 

numbers p1 and p2. First, p1. Ub,i gives a box the value of which is the class c, and then p2. Vb,i,c 
gives a box the value of which is the scattering direction.  
 
Another advantage of the box method is that the computation time for selecting the scattering 
direction does not depend on the number of discrete directions Ndir,nv. Ndir,nv can be very large, for 
instance for sampling very accurately the 4𝜋 space, yet  the required computer memory increases 
with Ndir,nv. Let us consider an Earth scene with a single scene element. The required computer 
memory is defined and assigned per line of B. With an available memory M, the memory per line is 

Ml =
M

nl
, where nl is the total number of lines of B. We have nl = Ndir,nv + 1 for any turbid medium, 

nl =
Ndir,nv

2
+ 1 for any opaque facet with anisotropic reflectance, and nl = 1 for isotropic facet. In 

presence of nturb  turbid mediums and nfacet  anisotropic facets, nl = (Ndir,nv + 1). nturbid +

(
Ndir,nv

2
+ 1) . nfacet.  

 
Sizes of arrays Vb,i,c and Ub,i,c depend on threshold. For example, if the direction with the smaller 
probability in any class c is represented by Vb,i,c,min boxes, then, any scattering direction in the any 
class is represented by a number of boxes between Vb,i,c,min and .Vb,i,c,min. Thus, the mean number 
of boxes that is needed for representing all scattering directions of the C(i) classes is about: 

 
Vb,i,c,min.

γ + 1

2
. Ndir,nv (17) 

On the other hand, the number of classes C(i), and hence the number of boxes that represent all 
classes, is inversely proportional to . For optimizing computer memory,  must be selected to 
minimize the total size of the arrays Vb,i,c and Ub,i,c. This is achieved with an iterative optimization 
method that considers that the worst solution (i.e., largest number of boxes) occurs for  = 1. Then, 
the total number of boxes per line i is Xb,i. This optimization is conducted independently for each 
incident direction because the scattering directions are assumed to be independently distributed per 
incident direction. The accuracy of the box method is discussed in the Appendix B. 
 
 

3.3 Case study and self-validation 

The DART quasi-MCRT mode was tested against simulated bi-directional reflectance factor (BRF) 
and reflectance image of the most heterogeneous site in the RAMI4 experiment (Widlowski et al., 
2013): the 100m × 100m Jarvselja birch stand (Kuusk et al., 2009). This site has 7 tree species 
with heights ranging from 5.9 to 30.51m. 18 trees are constructed by 3-D facets representing 
branches, trunks and leaf elements. Optical properties are given per type of element on RAMI4 
website (http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI-IV/RAMI-IV.php). DART BRFs of 
this test site were validated in the RAMI4 experiment. Figure 3a shows a 20m × 20m DART 
simulation (center: (65m, 55m)), with 0.2m × 0.2m × 0.1m  cell size. Being too numerous (> 

3×107) to be simulated as such, leaf and branch facets were converted into turbid medium for much 
faster processing, with leaf area index (LAI) and LAD being calculated per cell. Computer time can 
be divided by more than 10, depending on the number of facets and the size of DART cells. Figure 
3b shows the simulated scene 3-D representation. The IUSD method (Yin et al., 2013b) was applied 
to create 11 discrete directions with 0.4 sr solid angles and 15o view zenith angle (VZA) step in the 
zenith plane defined by 90o view azimuth angle (VAA) (Figure 3c). These view directions are used 
for studying BRF variation in the plane (VAA = 90∘) with different SP numbers for illumination. 
The simulated LiDAR wavelength was =532nm (=0.03µm ). Sun was positioned at nadir. 
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Figure 3. Quasi-MCRT validation with DART ray-tracking, for RAMI4 Jarvselja birch site. a) Tree 
species map and the simulated 20𝑚 × 20𝑚 scene. b) 3-D simulated scene. c) IUSD discretization 
with 11 directions in the plane VAA=90o-270°. d) BRF of the 11 directions, simulated with ray-
tracking and quasi-MRCT with 5 SP numbers (=532nm). Negative VZA is for the half plane 
VAA=270o. e, f) Ray-tracking and quasi-MCRT (108

 SPs) nadir reflectance images. g) Scatterplot of 
images (e) and (f). h) R2 values with increasing SP number. i) Same as h) with (=1064nm).  
 
Based on the above pre-defined parameters, BRFs and reflectance images of the Jarvselja site were 
simulated with DART quasi-MCRT and ray-tracking modes. In the quasi-MCRT mode, 7 
simulations are run with 7 SP numbers: 0.1, 0.3, 1, 3, 10, 30, 100× 10 6 SPs. Each SP carries an 
energy equal to sun irradiance divided by the SP surface density. The maximal number of scattering 
events was set to 150. On average, the time required for simulating interactions of each SP is  4.1 
10-4 s, with a 3.07 GHz processor. In total, the processing time per simulation ranged from 41 s to 
11.4 h. Figure 3d shows the BRF values for the 11 selected directions and the 7 SP numbers. The 
BRF values (solid line) simulated with DART ray-tracking mode are used as the reference, because 
they were validated in the RAMI experiment (Widlowski et al., 2007). BRF values converge to the 
reference as the number of SPs increases, demonstrating that with enough SPs, the quasi-MCRT 
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method can be very accurate. The hot spot effect in the nadir view direction always occurs. The 
images simulated in the ray-tracking (Figure 3e) and MRCT modes were also compared per pixel, 
with different SP numbers. Figure 3f shows the MRCT reflectance image with 108 SPs, and Figure 
3g shows the close correspondence between the two images (y = 1.0058x, R2 = 0.63). It improves 
only slightly if only the 1st order reflectance is compared (R2 = 0.66). The relationship improves 
logarithmically as the number of SPs increases (Figure 3h), demonstrating that DART ray-tracking 
images corresponding to MRCT images can be computed in much less time. For example, the ray-
tracking image (Figure 3e) required  45 mn with 20 threads to simulate, whereas the image in 
Figure 3f requires 11.4 h and has a large noise content.  
 
The quasi-MCRT method was also validated in the NIR with (=1064nm, =0.1nm) and the 
above experimental conditions. Figure 3h shows the scatterplot of the ray-tracking image versus the 
quasi-MRCT image that was simulated with 108 SPs, for 1st order reflectance (dark points) and total 
(i.e., convergence) reflectance. The strong reduction of R2 value from 0.48 for 1st order reflectance 
down to R2 = 0.19 for convergence reflectance, is due to the strong multiple scattering in NIR. 
Thus, the number of SPs must be increased to get a larger R2 value.  
 
The relationship between 1st order reflectance in the NIR band (R2 = 0.48) is less than in the green 
band (R2 = 0.66). Here, it is explained with a schematic scene that is made of a grass understory 
with backscattering reflectance ρgr,λ(Ω,−Ω) along direction Ω at wavelength λ below a tree canopy, 
with a direct transmittance tdir,λ(Ω) and a 1st order back-scattering phase function Pλ,1(Ω,−Ω). In 
this scene, 1st order back-scattered reflectance for direction (Ω)  is: 

ρλ,1,fp(Ω,−Ω) ≈ tdir,λ(Ω). ρgr,λ(Ω,−Ω) + (1 − tdir,λ(Ω)) . Pλ,1(Ω,−Ω) . The 1st term represents 

grass scattering, and the 2nd term represents vegetation canopy scattering. In DART ray-tracking 
mode, both of the terms are calculated exactly. In the quasi-MCRT mode, the 2 terms are not 
assessed with the same accuracy. For having the same accuracy, the 2 terms should be estimated 
with numbers of SPs weighted on the values of these 2 terms. However, DART estimates each term 
with number of SPs weighted on tdir,λ(Ω) . In the Jarvselja site, tdir,λ(Ω)  is very small, with 
ρgr,λ(Ω,−Ω) small in the visible and very large in the NIR. Thus, grass reflectance has a small 
impact on ρλ,1,fp(Ω,−Ω) in the visible, independent of associated Monte Carlo noise, and a large 
impact in the NIR. In real canopies, interactions with branches and trunks makes the situation even 
more complicated.  
 
 

4. LIDAR WAVEFORM SIMULATION 

This section presents the simulation of wLiDAR, for any instrument configuration (sensor 
orientation, footprint and FOV sizes, etc.) and Earth-atmosphere system.  
 

4.1 LiDAR geometry and simulated photon initialization. 

DART simulates more realistic configurations than previous LiDAR models. For example, scene 
elements are not represented as simplified geometric objects. Figure 4 illustrates how DART 
simulates LiDAR geometry. In LiDARs, laser pulses are reflected by a rotating / oscillating mirror 
towards the observed region. The left part of Figure 4 shows a LiDAR pulse with nadir illumination 
(footprint) and acquisition (FOV) at ground level. The spatial width of transmitted laser beam is 
neglected: the source of pulse transmission is a single point, which is the LiDAR position 
PL(x, y, H), where H is the height above the scene reference minimum altitude (SRMA: elevation 
model smaller altitude). PL is also the location of the acquisition telescope, with radius rt and area 
At = πrt

2. Footprint and FOV are constant parameters for a LiDAR with height H, which defines 
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the illumination and reception regions in nadir direction. They are represented by half dispersion 
angle βfp and βFOV respectively, which are constant parameters for a LiDAR. The footprint and 

FOV give circular regions on the plane at SRMA (Cfp  and CFOV ), with radii rfp =
H

tanβfp
 and 

rFOV =
H

tanβfp
+ rt, respectively.  

 
For oblique LiDAR orientation ΩL⃗⃗ ⃗⃗   (right part of Figure 4), with look angle θL , the circular 
illumination and reception regions at SRMA level in LiDAR local coordinate system (frame 
according to ΩL⃗⃗ ⃗⃗  ) correspond to elliptical regions (Efp and EFOV) in the simulated system frame. The 

short (perpendicular) radii of the ellipses are r⊥,ilm = H.
tanβfp

cosθL
 and r⊥,rcp = H.

tanβFOV

cosθL 
+ rt , 

respectively. The long radii are r∥,ilm = H.
tanβfp

cos2 θL 
 and r∥,rcp =

H⋅tanβfp/ cosθL +rt

cosθL
, respectively.  

 
Cross-beam energy W can have any spatial distribution. Default cross-beam energy W(r) follows 

Gaussian law exp(−
r2

2σ2
), where r is the distance to the center of footprint circle Cfp and standard 

deviation σ is derived from the user defined energy fraction of Gaussian maximum at Cfp boundary 
(r = rfp). Energy outside Cfp is neglected. The associated SP spatial distribution is a squared 

illumination cell grid on a plane perpendicular to ΩL⃗⃗ ⃗⃗   in the LiDAR local frame. The energy to 
launch per cell grid at a distance rsub to the pulse center, within footprint region Cfp, is:  

 
Wsub = WL × Psub  with Psub =

exp(−
rsub
2

2σ2
)

∑ exp(−
rsub
2

2σ2
)fp

 (18) 

where the summation is over all cell grids within footprint region Cfp and WL is the total energy of a 
pulse within its footprint. Basically, the total number of photons to be launched per cell grid is 
proportional to the cell grid energy Wsub. Let Nsp,apr be the user defined value that represents the 
approximated total number of SPs within footprint. Then, for each cell grid, the number of SPs to 
fire is:  

 
Nsp,sub = {

Nsp,apr. Psub        if Nsp,apr. Psub > Nsp,sub,min
  Nsp,sub,min              if Nsp,apr. Psub < Nsp,sub,min

 (19) 

with Nsp,sub,min the minimum number of SP to fire per cell grid to ensure that enough SPs are 

launched at footprint boundary. Each SP in a cell grid has the energy Wsp =
Wsub

Nsp,sub
. Thus, Nsp =

∑ Nsp,subgrid  SPs must be fired, with Nsp ≥ Nsp,apr. 
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Figure 4: LiDAR pulse geometry for nadir (left) and oblique (right) orientations, with the 
illumination and reception areas at the horizontal plane "z = 0". 
 

 
For each SP to be fired from a cell grid, 2 random numbers are generated to select its position in the 
cell grid. This position defines the SP direction vector in the LiDAR frame. This vector is 
multiplied by the rotation matrix of LiDAR orientation ΩL⃗⃗ ⃗⃗   to get the photon direction Ωsp⃗⃗ ⃗⃗ ⃗⃗   in the 

scene coordinate system, which initializes the SP. After its launch, the SP state (Wsp, rsp⃗⃗ ⃗⃗  ⃗, Ωsp⃗⃗ ⃗⃗ ⃗⃗  ) is 
updated at each interaction (Eq. (6), (13), (16)) for setting its new weight Wsp, position rsp and 
direction Ωsp.  
 
 

4.2 Ray Carlo method for waveform retrieval 

The Ray Carlo method relies on adaptations of stratified sampling and quasi-MCRT methods. Nsp 
SPs are launched in sequence, and the traveled distance and energy of all backscattered SPs that 
enter LiDAR are recorded to create the waveform signal. The probability that a SP scattered in P 
enters the LiDAR is proportional to the solid angle (Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , ΔΩp2l)  from P to LiDAR FOV 

convergent point (Pconv), with Pconv⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = PL⃗⃗  ⃗ −
rt

tanβFOV
. ΩL⃗⃗ ⃗⃗   and rt  is LiDAR telescope radius. With 

dp2l the distance from P with intersection of 𝐴𝑡 along Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , we have: ΔΩ𝑝2𝑙 = 𝐴𝑡 ⋅
−Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⋅ΩL⃗⃗ ⃗⃗  ⃗

𝑑𝑝2𝑙
2 , which is 

usually extremely small. Thus, the chance that a SP enters LiDAR by pure MCRT is very low.  
 
To increase the number of measured SPs, a method called Ray Carlo was designed. Figure 5 
illustrates it with 3 scattering events of a SP. At each scattering event in P, the direction Ωsp⃗⃗ ⃗⃗ ⃗⃗   of the 

incident SP is updated to one of the pre-calculated discrete directions ΩD⃗⃗ ⃗⃗  ⃗, and an additional SP is 
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initialized and fired towards LiDAR if P is within LiDAR FOV (−Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . ΩL⃗⃗ ⃗⃗  < cos βFOV). Moreover, 
for entering the telescope, SPs must have incident angles smaller than the LiDAR aperture angle 

βFOV, which requires atan (
rt

dp2l
) < βFOV and reduces ΔΩp2l. Actually, this reduction is significant 

only for very close range scattering. For turbid medium the scattering space is 4𝜋. For facets, it is 
the hemisphere that is defined by Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . Ωf⃗⃗⃗⃗ > 0  for reflection, and Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . Ωf⃗⃗⃗⃗ < 0  for diffuse 
transmission.  
 
The additional SP towards LiDAR is called "virtual SP" because it corresponds to a virtual ray (Yin 
et al., 2013a). The energy of the virtual SP is Wp2l = Wsp. ΔΩp2l. T(Ωi⃗⃗  ⃗, Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ), where T(Ωi⃗⃗  ⃗, Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) is 

the scattering probability towards Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . To simplify calculation, scattering is assumed to be 

isotropic within each pre-calculated scattering discrete direction. Thus, we can write T(Ωi⃗⃗  ⃗, Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) =

T(Ωi⃗⃗ ⃗⃗  ,Ωs(Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

ΔΩs(p2l)
. ΔΩp2l  where s(Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) is the index of the discrete direction that contains Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  in its 

angular sector, which leads to: 

 
Wp2l = Wsp.

ΔΩp2l

ΔΩs(Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

. T(Ωi⃗⃗  ⃗, Ωs(p2l)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) (20) 

 

Figure 5 : Illustration of Ray Carlo method for simulating LiDAR acquisition with multiple 
scattering orders. 

 
The tracking of a virtual SP is equivalent to multiplying its energy by the direct transmittance along 
the path to the LiDAR. With the assumption that LiDAR position does not change during 
acquisition, 1st order scattering is under an exact hot spot condition (Eq. (7)); for vegetation turbid 
medium: αv

1(Ωsp⃗⃗ ⃗⃗ ⃗⃗  = −Ωsr⃗⃗⃗⃗ ⃗⃗ ) = 0. In short, the Ray Carlo method (virtual ray and MCRT) greatly 

increases the number of measured SPs by a factor more or less equal to 
ΔΩnv

ΔΩp2l
 , which can be as large 

as 1010, depending on LiDAR altitude and solid angle ΔΩnv of non virtual directions.  
 
In DART, all SPs are fired at the same time, and the received signal is divided into temporal bins, 
the size of which depends on the acquisition rate. The waveform of a wLiDAR device with an 
emitted laser pulse, is simulated as a temporal convolution of the pulse temporal profile with the 
DART simulated signal. The temporal profile can be a Gaussian profile with its full wave at half 
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maximum and a duration equal to a number of standard deviations, or an imported temporal profile 
from an actual wLiDAR device. The retrieval distance range of the LiDAR signal is also defined 
depending on the spatial region of interest, which depends on the scientific objective (DEM 
generation, vegetation structure, or atmosphere constituent’s analysis). It can be restricted to the 

Earth landscape (usually less than 100m range above and below SRMA) or atmosphere range 
(thousands of meters above the Earth scene). 
 
 

4.3 DART LiDAR products and self-validations 

Figure 6 illustrates a LiDAR waveform that is simulated with the DART Ray Carlo method and a 
small-footprint configuration, for a scene that consists of a single 3-D object from the Jarvselja 
birch stand (Figure 6a). The LiDAR altitude is H=10km , with device configuration given in Table 
1, which is very close to the LiDAR system onboard the Carnegie Airborne Observatory (CAO) 
platform (Asner et al., 2012). The emitted pulse and detector are characterized by =1064nm and 
=0.1nm. The LiDAR acquisition rate is 1ns. Thus, the absolute distance stored per bin is  15cm.  
 
Since DART has the information of each SP that enters the sensor (e.g., SP energy, traveled 
distance, scattering order and direction, etc.), the expected position of scattering of each SP can be 
back-tracked. Figure 6b shows the associated original DART output. Green points show the 
scattering positions of the SPs that enter the sensor through 1st order scattering. They are located on 
the surface of scattering elements. Other colors indicate SPs that have undergone multiple scattering 
events. Thus, they are not located on the surface of their last scattering element. Thus, they can be 
located below the ground and between the ground and the crown canopy. Figure 6c gives the full 
waveform (blue line) and the waveform due to 1st order scattering (red line). The vertical axis 
represents the recorded time and distance according to the ground return. The horizontal axis gives 
the actual number of photons acquired per bin of acquisition (1ns in the simulation). Signals from 
the ground (last waveform peak) and the tree crown (other peaks) are well separated. Peaks from 
the tree crown are somewhat correlated with the horizontal levels of branches and leaves. In actual 
wLiDAR devices, the photon count is converted into electrical voltage by analog signal detectors. 
The multiple scattering contribution to the waveform (Figure 6c) is the difference between the total 
and 1st order waveforms. The large NIR optical properties of vegetation explain that NIR multiple 
scattering is important in vegetation. It increases if LiDAR FOV increases. Multiple scattering is 
usually a source of difficulty for analyzing measured waveforms. Indeed, it prevents from relating 
each waveform bin to a unique Earth scene element. This difficulty stresses the need to have a good 
estimate of the fraction 𝜂  of multiple scattering in LiDAR waveforms 

( 𝜂 =
𝑓𝑢𝑙𝑙 𝑤𝑎𝑣𝑒𝑓𝑜𝑟𝑚−1𝑠𝑡 𝑜𝑟𝑑𝑒𝑟 𝑤𝑎𝑣𝑒𝑓𝑜𝑟𝑚

𝑓𝑢𝑙𝑙 𝑤𝑎𝑣𝑒𝑓𝑜𝑟𝑚
). An example of assessment of 𝜂  is presented in the 

Appendix C for a schematic vegetation cover. It quantifies the impact of 3 parameters (foliar 
spherical albedo 𝜔𝑓, 𝐿𝐴𝐼, footprint size 𝑟𝑓𝑝) on 𝜂. In these cases, 𝜔𝑓 is the predominant parameter.  
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Figure 6. DART waveform of a LiDAR pulse. (a) The scene is a Linden tree from the RAMI-4 
experiment. (b) 3-D plot: each point indicates the distance traveled per acquired photon. (c) 1st order 
(red dashed line) and full (blue line) waveforms. 

 
Table 1. Configuration of the simulated LiDAR. 
Parameters Symbols Values 

Sensor area 𝐴𝑡 0.1m2 

Time step per bin 𝛿𝑡𝑏𝑖𝑛 1 ns 

Footprint divergence half angle 𝛽𝑓𝑝 0.25 mrad 

FOV divergence half angle 𝛽𝐹𝑂𝑉 0.4 mrad 
 
The Ray Carlo method to simulate LiDAR waveform was validated with the Jarvselja birch site 
(Figure 7), with similar methodology as in Section 3.4. LiDAR FOV and footprint centers (Figure 
7a) are located at (65m, 55m), which is the center of the simulated scene in Figure 3a and b. LiDAR 
device configuration is set by Table 1, with (λ = 532nm, Δλ = 0.03nm) as in Section 3.4. The 
acquired waveform is simulated for 5 sensor altitudes (H=2km, 5km, 10km, 20km, 35km), which 
gives the corresponding rfp of small footprint to middle footprint configuration (rfp=0.68m 1.43m 
2.68m 5.18m and 8.93m). LiDAR pulse energy is set to 1mJ for H=35km as a reference. For the 
other cases with different altitudes, it is proportional to H2 for having approximately the same Wp2l 
received through ΔΩp2l  (inversely proportional to H2), with the same scene elements. Thus, 
waveforms can be cross-compared (Figure 7b). For each case, 0.1M SPs are fired from LiDAR to 
calculate the waveform. On average, the time period for simulating each SP is about 4.6 × 10−4 s 
(46 s per simulation), using Ray Carlo method, which is larger than the 4.1 × 10−4 s in the quasi-
MCRT in Section 3.4 because of the tracking of Wp2l.  
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Figure 7. LiDAR simulation and validation with Jarvselja birch stand. (=532nm) in (a-e) and 
(=1064nm) in (f-h). a) Tree species map with Cfp  and CFOV  centered at (65m, 55m). b) 
Simulated waveforms with parameters of Table 1 and different altitudes (H), pulse energy and 
ground projected footprint radii (rfp ). c) LiDAR derived reflectance image for H=35km 
(rfp = 8.926m). d) Difference image: subtraction of ray-tracking (Figure 3e) and LiDAR (c) 
reflectance images within Cfp . e) Linear regression: ray-tracking and LiDAR reflectance 
images within Cfp. f) Simulated waveforms at 1064 nm. g) Linear regression: 1st order LiDAR 
and ray-tracking reflectance images (y=1.0018x). h) Linear regression: LiDAR image versus 
1st order (y=0.94x) and convergent (total: y=1.21x) ray-tracking images. 

 
Figure 7b shows the generated waveforms for the 5 cases. For the case with H=2km, the whole Cfp 
covers part of the crown of a poplar with 25m height. The LiDAR pulse is attenuated within the 
crown with dense leaves and branches, and no SP reaches the ground, which explains that the 
sensor cannot acquire ground signals. Thus, the waveform concentrates in the range between 18m to 
25m above the ground. As the altitude increases, firstly an obvious peak is observed between 10m 
to 15m, which corresponds to the lindens around the 2 poplars. As the altitude further increases, 
several lindens with height range from 5.9m to 20.7m and birches with height from 19.9m to 30.5m 
are profiled by the waveform. In addition, from H=10km, SPs start to reach the ground and are 
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backscattered to LiDAR, through vegetation gaps and space between tree crowns. As the area of Cfp 
increases more signals from the ground contribute to the waveforms.  
 
With the aim to validate the LiDAR received signals, DART creates automatically a reflectance 
“image” by projecting the spatial distribution of received SP energies onto a plane centered on the 
SRMA and perpendicular to the LiDAR orientation. The reflectance value of pixel (i,j) on the plane 
is: 
 

ρi,j =
Ei,j,rcp × π

ΔΩi,j,p2l × Ei,j,ilm
 (21) 

where Ei,j,rcp is the received energy within the pixel, and Ei,j,ilm is the illumination energy on the 
pixel; ΔΩi,j,p2l is the solid angle from the pixel to the LiDAR sensor. This reflectance image is a 
novel DART product which is not produced by usual wLiDARS. Figure 7c shows the LiDAR 
reflectance image generated in the case with H=35km. It is shown within a 20m × 20m window 
that contains Cfp. This is to facilitate the pixel-wise comparison with the reflectance image (Figure 
3e) that is simulated with DART tracking mode. Figure 7d shows the difference image by 
subtracting Figure 7c from Figure 3e. It can be observed that within Cfp, the difference is very 
small. Linear regression of Figure 7c versus Figure 3e is plotted by selecting only the pixels within 
Cfp in Figure 7e. We get y = 1.0024x and R2 = 0.73, with processing time of 58 seconds. This R2 
value is better than the R2 that is obtained with the quasi-MCRT method with 100M SPs, without 
the Ray Carlo method, which takes about 11 hours.  
 

The Ray Carlo method is also validated with NIR band (λ = 1064nm, Δλ = 0.1nm). Figure 7f 
plots waveforms that are simulated with the same experimental condition as Figure 7b. As expected, 
the vegetation and ground responses are much higher in the NIR band than in the visible (Figure 7b). 
Figure 7g plots the linear regression of LiDAR generated reflectance image and DART ray-tracking 
1st order reflectance image. The fit is rather good: y = 1.0018x and R2 = 0.78. It cannot be perfect 
because illumination conditions differ: sun illumination is homogeneous over the studied scene, 
whereas LiDAR illumination has a spatial Gaussian distribution centered on the scene. Thus, here 
the larger LiDAR 1st order reflectance, compared to 1st order ray-tracking reflectance, can be 
explained by the fact that the central part of the observed scene has a larger reflectance than the 
mean scene reflectance. Figure 7h plots convergent LiDAR generated reflectance values versus 1st 
order (red dots: y=1.21x) and convergent (grey dots: y=0.94x) ray-tracking reflectance images. 
LiDAR reflectance image values are larger than 1st order ray-tracking image reflectance values due 
to both single and multiple scattering events. On the other hand, LiDAR reflectance image values 
are smaller than convergent ray-tracking image reflectance values because in LiDAR mode the 
observed scene surroundings are not illuminated, whereas in ray-tracking mode, sun illumination is 
homogeneous, and then the scene surrounding is illuminated as the observed scene itself. Compared 
to the visible domain (Figure 7e), multiple scattering is much larger, which explains that in ray-
tracking mode the illumination of the observed scene has a much larger multiple scattering 
component. Given the potential differences between the LiDAR 1st order reflectance image values 
and convergent ray-tracking reflectance image, the LiDAR simulations compare quite favorably.  
 
 

4.4 Comparison with LVIS data 

For validation, DART LiDAR waveforms were compared with actual airborne waveforms from the 
LVIS sensor (Blair et al., 1999) for a 200m × 150m mixed hardwood and softwood forest plot 
(Figure 8) in Howland Forest, Maine (45°15’N, 68°45’W), part of the Northern Experimental 
Forest (www.nrs.fs.fed.us/ef/). Field measurements took place in 1990, and again in 2003-2004 and 
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2006. Every tree with a diameter larger than 3cm was measured for its location, diameter at breast 
height and species (coniferous: hemlock or deciduous: aspen). Tree height and crown dimensions 
were derived from allometric relationships. Tree crowns were assumed to be cones for coniferous 
(hemlocks) and ellipsoids for deciduous (aspen). The site has a tree height distribution between 2m 
and 26m, fractional cover of  75%, and LAI=4 (LAIdeciduous = 0.4 and LAIconiferous = 3.6). Mean 
volume density of foliar elements uf was computed using tree crown dimensions: uf,deciduous = 0.14 
and uf coniferous  = 0.30. A total of 89 LVIS full waveforms were acquired along 2 flight tracks 
(Figure 8) over the site in the summer of 2003 as part of a NASA Terrestrial Ecology Program 
aircraft campaign. There was nearly no overlap between the footprints along track.  
 
In the absence of accurate ground and foliar optical properties, a normalization was applied to 
DART and LVIS waveforms. Most DART and LVIS waveforms were similar (Figure 9). The 
correlation coefficients of LVIS and DART waveforms ranged from 0.09 to 0.97, with a mean R2

 = 

0.52. The major cause of differences is inaccuracies in forest plot simulation. For instance, tree 
crowns are simply simulated as ellipsoidal or conical volumes without branches. Actually, DART 
can simulate trees very accurately with any crown shape and branches, if branches and foliar 
elements are simulated with facets (Gastellu-Etchegorry et al., 2015). However, this detailed 
information was not available. Additional work, not shown here, showed that DART LiDAR 
simulations are more realistic if branches are simulated. A suggestion for future works is to simulate 
trees with "mean" branch systems, combined with "mean" crown shapes (ellipsoidal, etc.). The fact 
that optical properties based on environmental conditions for ground and foliar elements cannot be 
exact is also a source of differences between the LVIS and DART waveforms.  
 
 

  

Figure 8: a) Howland forest study area and the 89 LVIS footprints acquired along the 2 flight tracks 
(red and blue arrows). Local DART reference system (X,Y) is shown. b) DART forest scene used 
for simulating waveforms. 
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Figure 9: Measured (LVIS, green) and simulated (LVIS, blue) LiDAR footprints with their RMSE. 
See Figure 8 for the location of footprints in the study area.  
 
 

Table 2 : LVIS characteristics (Blair et al., 1999) used for DART simulations. 
 

Telescope aperture 20 cm Altitude 2.5 km 

Telescope total FOV 110 mrad Laser pulse width 10 ns (FWHM) 

Detector FOV 8 mrad Pulse repetition rate 100-500 Hz 
Digitiser sampling 
rate 

500 Msamp/s: 2 

ns 
Laser output 
wavelength 

1064 nm 

Laser output energy 5 mJ Footprint diameter 20 m 
 
 

5. WAVEFORM SIMULATION WITH ATMOSPHERE 

In addition to solar radiation scattering, the atmosphere has 3 major impacts on LiDAR waveforms: 1) 
Interception of the LiDAR pulse before it reaches the Earth’s surface, 2) Interception of the signal 
that is backscattered from the Earth’s surface, and 3) Backward and forward scattering of LiDAR 
photons intercepted by the atmosphere, which depends on the altitudes of scattering events as well 
as the atmosphere density and optical properties. The Ray Carlo method simulates these effects.  
 

5.1 Theory 

Similar to most atmospheric models, the extinction coefficient α(z), with z being the altitude, was 
initially assumed to be a constant per atmosphere layer. In that case, the optical depth that a ray 
meets along a direction of zenith angle θ in an atmosphere layer n of thickness Δzn and extinction 
coefficient αn is δτ = αn. Δzn/ cos θ. The SP travel distance is calculated with Eq. (9) and (10) and 
a random number. 
 
Atmosphere layers can be very thick, up to several kilometers for the top layers. However, even for 
these layers, the assumption of constant α(z) is not a source of inaccuracy for simulating the signals 
of optical passive sensors. Indeed, these signals depend on each layer optical depth and not on the 
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layer vertical distribution of α.(z). For LiDAR, signals, the situation is very different because a 
waveform is a temporal profile of continuous signal which varies with the atmosphere vertical 
density. Thus, simulating the atmosphere with density discontinuity, which implies a discontinuity 
of α , implies a discontinuity of the simulated waveform. A solution could be to simulate the 
atmosphere with layers the depths of which are smaller than the distance associated to LiDAR 
acquisition rates of several nanoseconds (i.e., 15cm/ns). However, this solution is not realistic with 
DART, because it requires a tremendous number of atmosphere layers. It can be noted that this 
discontinuity problem occurs also in vegetation turbid cells in the simulated Earth landscapes. 
However, it is negligible because vegetation cells have very small dimensions. DART solves the 
atmosphere discontinuity problem by simulating δτ  and α  as continuous profiles. For that, 3 
conditions are verified per layer: exact layer optical depth and exact extinction coefficients at the 2 
layer boundaries. In addition, for simplifying photon tracking in LiDAR modeling, the vertical 
variation of δτ(z′) in each layer must be an invertible function in order to replace the relationship 
δτ(δl) = α. δl  that is used with constant α . The selected invertible function is a third-order 
polynomial:  

 δτ(z′) = c3z
′3 + c2z

′2 + c1z′ + c0 (22) 

 
where z′ is the relative altitude in an atmosphere layer: z′ ∈ [0  Δz] with z′ = 0 at the bottom of the 
layer, and z′ = Δz at the top of the layer. The extinction coefficient α(z′)  is derived from the 
relationship δτ(z′) = ∫ α(z′)

z′

Δz
dz′: 

 α(z′) = −3c3z
′2 − 2c2z

′ − c1 (23) 

 
Let n be the index of an atmosphere layer. With pre-defined total optical depth of the layer δτn, and 
the extinction coefficients at the bottom and top of the layer αn0  and αn1 , respectively. Four 
equations must be verified:  

 δτ(Δzn) = 0,   δτ(0) = δτn,   α(Δzn) = αn1,   α(0) = αn0 (24) 

Solving Eq. (24) gives a set of 4 coefficients [c3, c2, c1, c0] per atmosphere layer and constituent 
(gasses and aerosols). These coefficient sets are pre-computed.  
 
Consider a SP along direction Ωsp⃗⃗ ⃗⃗ ⃗⃗  (θsp, ϕsp) at position rsp⃗⃗ ⃗⃗  ⃗ (relative altitude zsp

′  in the layer). If this 
SP has been determined to be intercepted, using a random number p, the interception occurs at an 
optical depth δτ(z′) that is defined by: 
 

 
δτ(zsp

′ )−δτ(z′)

| cosθsp|
 = ln (1 − p) for downward Ωsp⃗⃗ ⃗⃗ ⃗⃗  . 

 
δτ(z′)−δτ(zsp

′ )

| cosθsp|
 = ln (1 − p) for upward Ωsp⃗⃗ ⃗⃗ ⃗⃗  .  

 
z′ is derived from δτ(z′), using Eq. (22). Numerical solutions can be obtained with methods such as 
bisection or Newton's methods. However, these methods are very computer intensive because they 
must be applied to each photon. Therefore, z′ is analytically computed with Cardan method 
(Nickalls, 1993). With the change of variable z′ = x −

c2

3c3
, we can write: 

 x3 + q1. x + q0 = 0 (25) 

where q1 =
c1

c3
−

c2
2

3c1
2, and q0 =

c0−δτ(z
′)

c1
−
c2⋅c1

3c3
3 +

2c2
3

27c1
3.  
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It leads to 3 configurations:  

 4q1
3 + 27q0

2 > 0 implies 1 real root and 2 complex roots. 

 4q1
3 + 27q0

2 = 0 implies 1 real root and 1 real double root. 

 4q1
3 + 27q0

2 < 0 implies 3 real roots. 
 
Usually, 4q1

3 + 27q0
2 > 0 is verified. Thus, Eq. (25) and (22) lead to:  

 

z′ = √−
q0
2
−
1

2
√
4q1

3 + 27q0
2

27

3

+ √−
q0
2
+
1

2
√
4q1

3 + 27q0
2

27

3

−
c2
3c1

 (26) 

Rarely, we get 4q1
3 + 27q0

2 ≤ 0. In that case, there is usually only 1 solution in the atmosphere 
layer (0 < z′ < Δz). Very rarely, all solutions are outside the layer, which means that the layer 
optical depth profile is not well described by the 3rd order polynomial. If this situation occurs, α is 
set as a constant in the layer. Once z′ is known, the traveled distance of the SP before interception is 

calculated: δl =
zsp
′ −z′

| cosθsp|
 for downward Ωsp⃗⃗ ⃗⃗ ⃗⃗  , and δl =

z′−zsp
′

| cosθsp|
 for upward Ωsp⃗⃗ ⃗⃗ ⃗⃗  . 

 
The above method considers the gas and aerosol extinction coefficients for absorption and scattering. 
Let us assume that interception occurs at z′  and that gas and aerosol extinction coefficients for 
scattering are αm,sca(z

′) and αa,sca(z
′), respectively. The Ray Carlo Equation (Eq. (20)) for the 

energy of virtual SP generated is weighted by the instantaneous extinction coefficients for 
atmosphere scattering: 

 

Wp2l = Wsp.
ΔΩp2l

ΔΩs(Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )

.
αm,sca(z

′). Tm (Ωi⃗⃗  ⃗, Ωs(Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) + αa,sca(z

′). Ta (Ωi⃗⃗  ⃗, Ωs(Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)

αm,sca(z′) + αa,sca(z′)
 (27) 

 
where Tm and Ta are gas and aerosol scattering phase functions, respectively.  
 
The large thickness of atmosphere layers explains that many SP must be scattered to the LiDAR in 
order to reduce the Monte Carlo noise due to the fact that photons are scattered from a small 
number of locations in the layer. An approach was designed for improving this situation without 
launching a larger number of photons: if a SP is assumed to be scattered, Nv,sp SPs are scattered 
from the layer to the LiDAR. For that, each time a SP is determined to be scattered, Nv,sp random 
numbers (pn, nϵ[1 Nv,sp]) are generated. These numbers are multiplied by the probability threshold 

of interception P(ΔL) = [1 − exp (−
δτn

|cosθ|
)] in order to make sure all the pn. P(ΔL) can be inverted 

to get the Nv,sp values δτ(z′). Then, application of Eq. (26) gives Nv,sp values of z′  for scattering. 
Finally, Wp2l  calculated from Eq. (27) is divided by Nv,sp  to assign the correct energy to each 

virtual SP. This approach reduces the noise level by a factor equal to √Nv,sp. 
 

5.2 Validation 

The validity of the DART simulated 1st order waveform was tested with the summation of the 
analytical expression of the 1st order waveform for all atmosphere layers. This analytical expression 
considers that the atmosphere is divided into many tiny layers with a thickness that corresponds to 
the acquisition bin Δz = c.

ν

2
. cos θL, where ν is the LiDAR acquisition frequency. Therefore, all 
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photons measured by LiDAR from 1st order scattering within a layer [z z + Δz] belong to the same 
waveform bin. The 1st layer is just above the ground. Let Δτm and Δτa be the total gas and aerosol 
optical depths of the atmosphere, respectively, and Δτm,sca and Δτa,sca the associated optical depths 
for scattering. In addition, the gas and aerosol vertical distributions are defined by height factors Hm 
and Ha, respectively. Thus: 
 

 

{
 

  δτm(z) = Δτm exp (
−z

Hm
)

αm,sca(z) =
Δτm,sca
Hm

exp (
−z

Hm
)
      

{
 

  δτa(z) = Δτa exp (
−z

Ha
)

αa,sca(z) =
Δτa,sca
Ha

exp (
−z

Ha
)
  

 
The mean altitude of layer [z  z + Δz]  is z̅ = z + Δz/2 . Thus, the mean scattering extinction 
coefficients of gasses and aerosols are αm,sca(z̅) and αa,sca(z̅), with the associated optical depths 
 δτm(z̅) and δτa(z̅), respectively. Let Ntot be the number of photons in the emitted pulse (Ntot =
WL

hc/λ
). The number of photons that undergo 1st order scattering in layer [z z + Δz] and that enter the 

LiDAR, is:  
 

 
N[z z+Δz] = Ntot. exp (−2

δτm(z̅) − δτm(H) + δτa(z̅) − δτa(H)

cos θL
) 

. [αm,sca(z̅).
Tm,b
4π

+ αa,sca(z̅).
Ta,b
4π
] .

Δz

cos θL
.
At. cos θL
(H − z)2

 
(28) 

 
The exponential term is the double path direct transmittance to LiDAR at altitude H. Tm,b and Ta,b 
are gas and aerosol backscattered phase functions, respectively (i.e., Ψi,j = 180

∘ in Eq. (5).  
Table 3. Configuration of simulated GLAS device. 

 
Parameters Symbols Values 

Sensor area 𝐴𝑡 0.785m2 

Wavelength 𝜆 532 nm 

Bandwidth Δ𝜆 0.03 nm 

Sensor altitude 𝐻 600 km 

Pulse energy   36 mJ 

Time step per acquisition 𝛿𝑡𝑏𝑖𝑛 500 ns 

Depth per acquisition Δ𝑧 37.5 m 

Footprint divergence half angle 𝛽𝑓𝑝 0.05835 mrad 

Footprint radius 𝑟𝑓𝑝 35.01 m 

FOV divergence half angle 𝛽𝐹𝑂𝑉 0.08 mrad 

FOV radius 𝑟𝐹𝑂𝑉 48 m 

 
 

Table 4. Experimental configuration for atmosphere validation. 
 

Parameters Symbols Values 

Depth of atmosphere layer Δ𝑧𝑛 5000 m 
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Molecule optical depth of 
scattering Δ𝜏𝑚,𝑠𝑐𝑎 0.1 

Molecule transmittance   0.9048 
Molecule scale factor 𝐻𝑚 8400m 

Aerosol total optical depth Δ𝜏𝑎 0.3 

Aerosol albedo 𝜔 0.947 

Aerosol scale factor 𝐻𝑎 2000m 

Henyey Greenstein parameters 
𝑎 0.95 
𝑔1 0.79 
𝑔2 0.4 

Ground reflectance   0 
 

 

 

 

 

Figure 10. Comparison of DART simulated GLAS (Table 3) (blue curve) and analytically 
calculated (Eq. (28)) (red curve) 1st order atmosphere waveforms, with experimental configuration 
from 
 
 

Table 4 shows the atmosphere parameters. Figure 10 shows the theoretically predicted (red line) 
and DART simulated (blue line) 1st order atmosphere responses. Totally, 50K SPs are launched, 
which requires  0.4 s to run the simulation with maximum scattering order that is set to 3. Figure 
10a shows DART results with constant extinction coefficient α per atmosphere layer, and with a 
single scattered SP per scattering event (Nv,sp = 1). Within each layer, the LiDAR pulse attenuation 
follows Beer’s law with the extinction coefficient α. As expected, discontinuities appear at layer 
boundaries due to α discontinuity. Figure 10b shows DART simulations with optical depth and 
extinction coefficient that are fitted with polynomials for each layer (Eq. (22) and (23)). In such 
case, α is continuous at each layer boundary, which explains that the atmosphere response is no 
more discontinuous, and the simulated result fits the theoretical prediction with some Monte Carlo 
noise. The noise level depends on the number of fired SPs. To reduce this noise, here,  Nv,sp is set 
to 10. Thus, 10 SPs are sent per scattering event towards the detector. As shown in Figure 10c, the 
noise level is much reduced, as if 500K SPs are fired, yet firing 500K SPs requires 4 s, whereas 
firing 50K SPs requires 1.5 s. 
 
The above simulation method is adapted to any atmosphere profile hat cannot be analytically 
managed (Eq. (28)). DART has integrated most of the atmosphere molecule and aerosol models 
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from MODTRAN, and it can any import atmosphere vertical profile. In addition, it provides a 
possible prototype to a future model where clouds can exist in a simulated atmosphere system. 
 

6. CONCLUSION 

DART model was extended for simulating airborne and satellite LiDAR acquisitions. Thus, DART 
can now simulate LiDAR waveforms of any Earth landscape, including urban and vegetation 
canopies, for any set of experimental (e.g., atmosphere, vegetation growth state, etc.) and 
instrumental (e.g., LiDAR FOV and footprint sizes, view direction, pulse energy, etc.) conditions. 
Earth scenes are simulated as the combination of facets, to simulate surface elements (e.g., ground, 
tree trunk, foliar element, etc.) that give rise to surface scattering, and volume elements (e.g., fluids, 
vegetation, atmosphere) that are filled with turbid medium and give rise to volume interaction. The 
fact that DART LiDAR mode works with the same Earth scenes as the DART ray-tracking mode 
that is used to simulate radiometer acquisitions from the visible to the thermal infrared domain, is 
very useful for multi-sensor approaches.  
 
DART modeling of single pulse waveform relies on a new modeling method that is called quasi 
Monte Carlo Ray Tracing (quasi-MCRT). It was designed to track efficiently photon propagation in 
any Earth scene and atmosphere. Basically, LiDAR signal propagation is simulated as a flux of tiny 
energy elements called simulated photons (SP), with each SP being characterized by its propagation 
direction and a weight that indicates its energy. The modeling approach is based on 2 new methods, 
the so-called Box method and the Ray Carlo method. The Box method provides fast selection of 
direction of SPs that are scattered. The Ray Carlo method combines classical Monte Carlo and 
DART ray-tracking methods for modeling SP propagation and interaction. The use of SPs with 
weights is very efficient. For example, computational time can be reduced by factors as large as 
1010, compared to direct Monte Carlo methods that manage actual photons. In short, results show 
that the combination of the 2 methods can provide fast and accurate simulation of waveform.  
 
DART wLiDAR modeling was successfully tested with three approaches.  

- Monte Carlo method. The validity of its implementation in DART was analyzed by comparing 
radiometer images that are simulated with this method and with the already validated DART ray-
tracking method. It was verified that Monte Carlo images converge towards ray-tracking images if 
many photons are fired.  

- Quasi-MCRT method. Its validity was tested by comparing LiDAR derived reflectance images 
(i.e., MCRT images) and classical ray-tracking reflectance images. Generally speaking, 1st order 
MCRT images converge to the ray-tracking images if the number of fired SPs increases.  

- LVIS data of a forest stand in Howland Forest. LVIS and DART waveforms were compared and 
correspondence was good: differences were mostly explained by inaccurate forest allometry and 
spectral attributes.  

 
DART wLiDAR modeling approach considers the atmosphere, with two original modeling 
approaches: continuous vertical profile of gas and aerosol extinction coefficients for avoiding 
discontinuities in waveforms, and scattering of several SPs per scattering event for decreasing 
Monte Carlo noise. These advances are critical to provide realistic simulations of satellite LiDAR 
systems over conditions with aerosol contamination.  
 
Preliminary results illustrate that DART is a fast and accurate modeling tool for simulating actual 
LiDAR signals. For example, its multithreaded modeling approach that uses SPs with weights takes 
advantage of the accuracy of Monte Carlo simulations while retaining the small computation time 
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of classical ray-tracking methods. Moreover, DART modeling is adapted to any experimental (e.g., 
Earth landscape and atmosphere) and instrumental (e.g., LiDAR device and platform) 
configuration. Consequently, it is consistent with DART simulation of satellite and airborne 
radiometers. Another practical advantage of the DART model is the user friendly graphic user 
interface. 
 
DART efficiency is a key factor for extending it to LiDAR applications. The integrated approach to 
model LiDAR signals in the DART environment provides a seamless opportunity to simulate solar 
noise impacts on LiDAR signals and actual instrument configurations such as multi-pulse 
acquisitions by satellite, airborne and terrestrial LiDAR devices. Solar noise is an important concern 
for LiDAR devices with low energy pulses, which is the case of photon counting devices. DART 
extension to the simulation of solar noise, multi-pulse satellite, airborne and terrestrial devices, as 
well as photon counting devices, is presented in a companion paper. Free DART licenses can be 
obtained from Paul Sabatier University (www.cesbio.ups-tlse.fr/dart/license/en/getLicense.php) for 
scientific research. 
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Appendix A: Nomenclature 
Acronyms  

BRF  Bidirectional Reflectance Factor 
CDF  Cumulative Distribution Function 
DART  Discrete Anisotropic Radiative Transfer 
FOV  Field Of View 
LAD  Leaf Angle Distribution 
LAI  Leaf Area Index 
LiDAR LIght Detection and Ranging 
wLiDAR waveform LiDAR 
MCRT  Monte Carlo Ray Tracing 
NIR  Near Infrared 
PDF  Probability Density Function 
RTM   Radiative Transfer Model 
SP  Simulated Photon 
SRMA  Scene Reference Minimum Altitude 
VAA  View azimuth angle 
VZA  View zenith angle 
 
Symbols  

(Ω ΔΩ) Discrete direction with unit vector Ω and solid angle ΔΩ. 

(Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , ΔΩp2l) Direction of a virtual SP that is scattered to the LiDAR. 

a, g1, g2 Coefficients of the double Henyey-Greenstein function that fits the scattering 
phase function of a given type of aerosols.  

At  LiDAR telescope area. 

123



 

B𝑘  Array of scattering direction probabilities, in box method for material type k. 

c3, c2, c1, c0 3rd order polynomial coefficients to fit the gas or aerosols extinction coefficient 
α(z) of a given atmosphere layer. 

Cfp, CFOV Circular footprint and FOV regions at SRMA (nadir LiDAR). 

df Leaf dimension. 
d𝑝2𝑙  Distance from point P to LiDAR. 

Eilm, Ercp Elliptical illumination and view regions at SRMA (oblique LiDAR). 

fX  Probability density function of an event X. 
FX  Cumulative probability distribution function of an event X. 

F(Ωf, Ωi, Ωj) Probability to scatter along vector Ωj a ray that is incident along vector Ωi and that 
is intercepted by a facet with orientation Ωf. 

gf  Leaf angle distribution. 
G(Ωi) Relative leaf cross section for vector Ωi in a vegetation turbid medium 
Hm Ha Gas and aerosol scale height factors of α(z) in the atmosphere 1st order analytical 

LiDAR model. 
M  Computer memory usage. 
nl  Number of incident lines (i.e., incident directions) in array B. 
Nsp,sub  Number of SPs per illumination cell grid in LiDAR local frame. 

Ndir,nv  Number of pre-defined (pre-calculated) non virtual discrete directions. 

Ndir,vd  Number of pre-defined (pre-calculated) virtual discrete directions. 

Ndir,vnd Number of non pre-defined virtual directions. 
p A random generated number (0 < p < 1). 
𝑝𝑖𝑗,𝑘  Probability of an intercepted ray along Ω𝑖, scattered towards Ω𝑗 in medium k. For 

given i and k, ∑ pij,k
Ndir,nv
j=1 = 1. 

PX  Probability of an event X. 
PL(x, y, H) LiDAR position with altitude H. 
Pconv  LiDAR reception convergent point. 
P(Ωi, Ωj) Scattering phase function from Ωi towards Ωj 

rsp⃗⃗ ⃗⃗  ⃗  Position vector of a SP. 

rt  LiDAR telescope radius. 
rfp, rFOV Radii of Cfp and CFOV. 

r⊥,ilm, r∥,ilm Short (perpendicular) and long (parallel) radii of  Eilm. 

r⊥,rcp, r∥,rcp Short (perpendicular) and long (parallel) radii of  Ercp. 

rsub  Distance "cell grid center - center of LiDAR pulse spatial distribution". 
sf  Leaf apparent dimension. 
tdir Facet direct transmittance. 
tdiff Facet diffuse transmittance. 

T(Ωi, Ωj) Fraction of flux intercepted along Ωi that is scattered along Ωj. 

uf  Leaf volume density. 
𝑈𝑏,𝑖,𝑐  With incident direction i, the number of boxes to store the probability of certain 

scattering directions which are categorized in class index c. 
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𝑉𝑏,𝑖,𝑐,𝑗  With incident direction i, the number of boxes to store the probability scattering 
towards j, where j is categorized in class index c. 

Wsp  Energy that is carried by a SP. 

WL  Energy carried by a LiDAR pulse. 
Wsub  Total energy of SPs per illumination cell grid in LiDAR local frame. 
Wp2l Energy of a scattered virtual SP in Ray Carlo method. 

𝑋𝑏,𝑖,𝑗,𝑘  Number of boxes to store the probability for ray interaction with material k, with 
incident direction i, and scattering direction j.  

α(z) Gas and aerosol extinction coefficient per absorption and scattering, at altitude z. 
αn0, αn1 Extinction coefficients at the bottom and top of an atmosphere layer with index n. 
βfp, βFOV Half dispersion angle of LiDAR footprint and FOV. 

γ  Threshold used for optimizing computer memory. 
δl  Displacement of a SP along its propagation direction. 
δτn  Total optical depth of an atmosphere layer with index n. 
δτ(z′), α(z′) Optical depth and extinction coefficient with relative altitude z′ in an atmosphere 

layer. 
ΔL Path length of a SP from its current position. 

ΔΩs(p2l) Solid angle of the discrete direction that contains Ωp2l⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 

𝜂  Fraction of signals contributed by multiple scatterings in a LIDAR waveform. 
θ, ϕ  Zenith and azimuth angles. 
Ψi,j  Angle between direction Ωi and direction Ωj. 

ρ(Ωi, Ωs) Facet directional reflectance factor from Ωi towards Ωs. 
ω  Scattering albedo. 

Ωsp⃗⃗ ⃗⃗ ⃗⃗    Propagation direction vector of a SP. 

ΩL⃗⃗ ⃗⃗  (θL, ϕL) LiDAR orientation. 
 

Appendix B: Accuracy of the box method  

MC techniques aim to give results that approach the expected value as the number of photons goes 
to infinity. In reality, computation time always limits the number of photons. Thus, one must assess 
the maximal error that the box method can introduce because the number of boxes that represents a 
probability as an integer, whereas this probability is a real number. For example, let us consider two 
scattering directions Ω1  and Ω2  with probabilities p1 = 0.1 and p2 = 0.273, respectively. If Ω1  is 
represented by 1 box, Ω2 requires 3 boxes, which leads to a strong bias because the ratio of boxes 
differs from the probability ratio. On the other hand, if Ω1 is represented by 10 boxes, then Ω2 is 
represented by 27 boxes, which leads to a smaller bias because the ratio of boxes is closer to the 
ratio of probabilities.  
 
Let us consider an incident direction Ωi. The probability to select a class c and to select a direction j 
in this class c of line i is: 

 
p =  

Ub,i,c
Ub,i

.
Vb,i,c,j

Vb,i,c
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with Ub,i,c the number of boxes that represent class c, Ub,i the number of boxes that represent all 
classes, Vb,i,c,j the number of boxes that represent direction Ωj in class c, and Vb,i,c the number of 
boxes that represent all directions in class c. We have: 

dp

p
=  
dUb,i,c
Ub,i,c

+ 
dVb,ij,c

Vb,ij,c
− 
dUb,i
Ub,i

− 
dVb,i,c
Vb,i,c

  

 
The maximum relative error is: 

ε(p)

p
=  
ε(Ub,i,c)

Ub,i,c
+ 
ε(Vb,i,c,j)

Vb,i,c,j
+ 
ε(Ub,i)

Ub,i
+ 
ε(Vb,i,c)

Vb,i,c
  

 
The maximum rounding error on Ub,i,c and Vb,i,c,j is one box. The error on Ub,i is maximal if the 
maximal rounding error occurs for each class of line i, except for the first class because its number 
of boxes is set to an exact number of boxes (i.e., Vb,i,c,min). With C(i) the number of classes in line i, 
the maximal rounding error on Ub,i is: 

ϵ(Ub,i)  =  0.5. [C(i) –  1]     

 
We always have Ub,i  > C(i). Vb,i,c,min. Thus, we have:  

ε(Ub,i)

Ub,i
< 

0.5

Vb,i,c,min
  

 
The same approach applied to Vb,i,c, using directions instead of classes, leads to: 

ε(Vb,i,c,j)

Vb,i,c,j
< 

0.5

Vb,i,c,min
  

Finally, the maximal relative error on p is: 

ε(p)

p
 <  

2

Vb,i,c,min
  

Thus, with Vb,i,c,min= 1000, the maximum relative error on pj is smaller than 2.10-3, an acceptable 
level compared to the usual satellite sensor accuracy.  
 
Rounding errors do not occur on the least probable class and direction. Indeed, errors arise only if 
some rounding takes place. Thus, Vb,i,c,min is needed at most only from the second least probable 
class or direction. It explains that the number of boxes of the least probable direction and class is 
computed with a simple proportionality relationship. For example, if pc,2 is the probability of the 
second least probable class, the number of boxes of the least probable class (probability pc,1) is 
calculated with: 

Ub,i,c=1 =  ceil(Vb,i,c,min.
pc1

pc2
)  

Then, each number of boxes Ub,i,c=2, Ub,i,c=3,… is computed with the proportionality relationship. 

We can note that we have always: Ub,i,c=2 > Vb,i,c,min. 
 

Appendix C:  
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 Figure C1. Multiple scattering fraction 𝜂(%) in LiDAR waveform of a vegetation layer with no 
ground. a) 𝜂(𝐿𝐴𝐼, 𝑟𝑓𝑝) with 𝜔𝑓 = 0.988. b) 𝜂(𝜔𝑓, 𝑟𝑓𝑝)  with  = 4. c) 𝜂(LAI, ωf) with 𝑟𝑓𝑝 = 10𝑚. 
 
The contribution of within vegetation multiple scattering in LiDAR waveform under variable 
experimental and instrumental conditions is assessed with DART simulations. The studied scene is 
a simple 10m height turbid vegetation layer with spherical leaf angle distribution and an horizontal 
ground the reflectance of which is null. It is simulated with 0.5𝑚 × 0.5𝑚 × 0.5𝑚 cells. The LiDAR 
is at 10km altitude with nadir orientation. The contribution of multiple-scattering in waveforms is 
assessed with 𝜂. Three varying experimental and instrumental conditions are considered: the 𝐿𝐴𝐼, 
the footprint/FOV size (𝑟𝑓𝑝 and 𝑟𝐹𝑂𝑉), and the foliar spherical albedo 𝜔𝑓 = 𝜌𝑓 + 𝑡𝑓,𝑑𝑖𝑓𝑓, where 𝜌𝑓 
represents the first integration term on the right hand side of Eq. (11). By default, we set 𝑟𝐹𝑂𝑉 =
2𝑟𝑓𝑝. The sensitivity study includes the following 3 cases:  
 

1. 𝜂( 𝑟𝑓𝑝, 𝐿𝐴𝐼)  with 𝐿𝐴𝐼 ∈ [0 10] , 𝑟𝑓𝑝 ∈ [0 25𝑚]  and 𝜔𝑓 = 0.988  (𝜌𝑓 = 0.568 , 𝑡𝑓,𝑑𝑖𝑓𝑓 = 0.429 ). 
This case corresponds to NIR band. Figure C1a shows that with a large 𝜔𝑓, the fraction of multiple 
scattering 𝜂 can be very large. It is small if both 𝐿𝐴𝐼 and 𝑟𝑓𝑝 are small (e.g., 𝜂 ≈ 10% if 𝑟𝑓𝑝 = 2𝑚 
and 𝐿𝐴𝐼 = 1), and it increases if 𝐿𝐴𝐼 and/or 𝑟𝑓𝑝 increase, especially for small 𝑟𝑓𝑝 and 𝐿𝐴𝐼 values. 
We can note its relative quick saturation with 𝑟𝑓𝑝. For example, 𝜂 ≈ 20% with (𝑟𝑓𝑝 = 3𝑚, 𝐿𝐴𝐼 =
2), 𝜂 ≈ 50% with (𝑟𝑓𝑝 = 10𝑚, 𝐿𝐴𝐼 = 6), and 𝜂 ≈ 56% with (𝑟𝑓𝑝 ≥ 10𝑚, 𝐿𝐴𝐼 = 9).  

2. 𝜂(𝑟𝑓𝑝, 𝜔𝑓) with 𝑟𝑓𝑝 ∈ [0 25𝑚], 𝜔𝑓 ∈ [0 1] (𝜌𝑓 = 𝑡𝑓,𝑑𝑖𝑓𝑓 =
𝜔𝑓

2
) and LAI= 4. Figure C1b shows that 

the fraction of multiple scattering 𝜂 increases strongly with 𝜔𝑓. It increases also with 𝑟𝑓𝑝, with a 
relatively fast convergence, as noted for 𝜂( 𝑟𝑓𝑝, 𝐿𝐴𝐼) . For example, 𝜂 ≈ 2%  with (𝑟𝑓𝑝 = 5𝑚 , 
𝜔𝑓 = 0.8), 𝜂 ≈ 10% with (𝑟𝑓𝑝 = 5𝑚, 𝜔𝑓 = 0.38), and 𝜂 ≈ 35% with (𝑟𝑓𝑝 = 5𝑚, 𝜔𝑓 = 0.85). 

3. 𝜂(𝐿𝐴𝐼, 𝜔𝑓) with 𝐿𝐴𝐼 ∈ [0 10], with 𝜔𝑓 ∈ [0 1] (𝜌𝑓 = 𝑡𝑓,𝑑𝑖𝑓𝑓 =
𝜔𝑓

2
) and 𝑟𝑓𝑝 = 10𝑚 (𝑟𝐹𝑂𝑉 = 20𝑚). 

Figure C1c shows that 𝜂 increases strongly with 𝜔𝑓 and that 𝜂 converges up to a value that depends 
on 𝜔𝑓. For example, 𝜂 ≈ 5% with (𝐿𝐴𝐼 = 4, 𝜔𝑓 = 0.2), 𝜂 ≈ 34% with (𝐿𝐴𝐼 ≥ 4, 𝜔𝑓 = 0.8). 

 
In short, for the studied cases, the foliar scattering albedo 𝜔𝑓  is the predominant parameter, 
although LAI and 𝑟𝑓𝑝 play also a role. This type of information is useful for analyzing measured 
waveforms and also for devising LiDAR systems. In that case, the homogeneous vegetation layer 
must be replaced with a more realistic vegetation or urban landscape.  
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Simulation of satellite, airborne and terrestrial LiDAR with DART (II): ALS and TLS multi-
pulse acquisitions, photon counting, and solar noise. 
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Abstract: Light Detection And Ranging (LiDAR) devices are increasingly used to provide data on 
Earth’s landscapes structures and atmosphere constituents. Their fast development, especially with 
scanning and multi-beam systems that launch pulses along different directions, requires efficient 
and accurate simulation tools to analyze existing data and to design future systems. A few radiative 
transfer models (RTM) can simulate LiDAR waveform of a single pulse. Based on that, efficient 
and accurate multi-pulse modeling must be developed. This paper presents an efficient, flexible and 
user-friendly approach that extends the LiDAR single pulse modelling functionality of the Discrete 
Anisotropic Radiative Transfer (DART) model to actual multi-pulse systems. Actual acquisition 
configurations (platform positions and orientations) can be imported and simulated waveforms can 
be output to industrial data format and processed by real-world data processing software. 
Application of multi-pulse modeling to airborne and terrestrial devices is presented. DART was also 
extended to simulate photon counting LiDAR data, using single-photon detector physical principles 
and waveform simulation. In addition, it computes solar noise for any atmosphere configuration 
through a combined simulation of LiDAR waveforms and passive sensor radiance images. Its multi-
threading algorithm eases its application to simulate actual acquisition. With these improvements, 
DART has become a unique tool for satellite, airborne and terrestrial LiDAR multiple pulse 
systems. It is illustrated with theoretical configurations of existing and future devices, including 
CAO, ILRIS, MABEL and ATLAS.  
 
Keywords: LiDAR, DART, radiative transfer, ALS, TLS, multiple pulses, photon counting, solar 
noise 
 
1. INTRODUCTION 
 
LiDAR devices are increasingly used in remote sensing and terrestrial systems for many 
applications: topography (Hladik et al., 2013), vegetation architecture and dimensions (Popescu et 
al., 2011, Yang et al., 2013, Montesano et al., 2015), urban mapping (Yan et al., 2015), bathymetry 
(Quadros et al., 2008), atmosphere constituents (Zhang et al., 2011), etc. Waveform LiDAR 
(wLiDAR) does the time of flight measurement of returned signals, transforms signals into analog 
electrical counts in volts, and records them as continuous temporal bins (Shan and Toth, 2008). The 
distance from LiDAR position to the scattering elements along laser path can be estimated from 
recorded waveforms. Waveform acquisition associated to the emission of multiple pulse along 
different directions leads to 3-D (three dimensional) points cloud that reveal both optical properties 
and locations of the scattering elements which give rise to the measured signals (Wagner et al., 
2006). Laser generator pulse repetition frequency (PRF) of wLiDARs can be large. For example, it 
is 400 kHz for the wLiDAR on board the AtoMS system (Airborne Taxonomic Mapping System) of 
the Carnegie Airborne Observatory (CAO) (Asner et al., 2007, 2012). 
 
Among multi-pulse wLiDAR devices, airborne laser scan (ALS) uses small-footprint LiDAR for 
acquisition over a swath that is defined by the platform and sensor configuration (Mallet and Bretar, 
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2009). The term "small-footprint" refers to the combination "Small pulse divergence - Low platform 
altitude". Thus, the vertical illumination region of the pulse on the Earth’s surface is relatively small 
(usually less than 5m in diameter). For example, the CAO has a footprint diameter which is less 
than 1m if platform altitude is less than 2km. The decomposed points from ALS pulses can be 
classified into Earth surface types (ground, vegetation canopy, etc.) (Zhang et al., 2003). Further 
integrated analysis of the 3-D points gives topography, canopy height, as well as landscape 
biophysical parameters. On the other hand, terrestrial laser scan (TLS) is a ground-based device. Its 
pulse distribution can be very dense, which explains why it is increasingly used for tree structure 
retrieval through the calculation of the location of the observed scattering elements (Rosell et al., 
2009). TLS points can be classified into branches, leaves, trunk and ground according to the energy 
and position of each return. Points from TLS acquisitions of the same object from different 
locations and directions can be combined. For example, they can lead to precise 3-D tree 
representations that can be used further by computer graphics software for visualization and by 
RTMs (Côté et al., 2009 , 2011) to simulate remotely sensed data. RTM simulations with this 3-D 
vegetation representation (Schneider et al., 2014) is more accurate than with common vegetation 
representation with turbid medium (Ross, 1981).  
 
The rapid development of wLiDAR technology calls for modeling tools that can simulate its data 
efficiently and accurately, to validate present systems and to prepare future systems. RTMs are 
common tools for simulation, validation and inversion of remote sensing measurements. Currently, 
many existing semi-empirical or geometric optical models can simulate LiDAR waveform of a 
single pulse (Blair and Hofton, 1999, Chauve et al., 2007, Sun and Ranson, 2000, Ni-Meister et al., 
2001). However, these models are based on strong simplifications for simulating landscapes (e.g., 
geo-optical description) and/or ray propagation within landscapes. For example, they often treat 
landscapes as turbid media and consider first-order scattering only. On the other hand, Monte Carlo 
ray tracing (MCRT) methods can be very accurate because they can work with realistically 
simulated landscapes without simplifying hypotheses on multiple scattering mechanisms (North et 
al., 2010). However, they must compromise with the trade-off between simulation accuracy and 
computational speed. A companion paper (Gastellu-Etchegorry et al., 2015a) presents an extension 
of the Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al., 1996, 
2004, 2012) to simulate accurately and quickly single pulse LiDAR waveform with atmosphere 
using a quasi-MCRT approach. The approach tackles most theoretical and experimental bottlenecks 
of existing models with 2 novel methods: the box method and the Ray Carlo method. The box 
method accelerates the weighted random selection of the discrete direction of a scattered photon by 
partitioning discrete directions with similar scattering probabilities and by taking advantage of 
computer memory usage. The Ray Carlo method tracks partial radiation (i.e., weighted photon) 
towards the LiDAR sensor for each scattering event. This method reduces the total number of 
launched simulated photons, and further improves simulation accuracy and processing speed. The 
whole simulation process is optimized in terms of mathematical algorithms, computer processor 
efficiency and memory usage. Waveforms generated by this approach have been successfully 
validated with traditional DART simulated reflectance for total energy received in the LiDAR FOV, 
analytical expression of atmosphere LiDAR signal, and actual data of the Laser Vegetation Imaging 
Sensor (LVIS) system (Blair et al., 1999).  
 
This paper presents an extension of the single pulse LiDAR component of DART model to simulate 
multi-pulse data with concentration on airborne and terrestrial acquisitions. It is optimized in terms 
of efficiency and practicability. For example, the multi-pulse simulation is not an iterative loop on 
the single-pulse model per simulated pulse, which avoids the repetitive loading of a simulated scene, 
and the computation time avoids unnecessary increment. In addition, the device and platform 
parameterization supports abstract configurations (e.g., platform path, zenith angle range, 
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angular/distance separation between pulses, etc.) and the importation of actual configurations (e.g., 
LiDAR position and orientation per pulse) to facilitate comparison with actual data. The objective is 
to simulate any existing or future system. Moreover, algorithmic multi-threading processing is 
implemented, which greatly improves processing speed. It uses the fact that each pulse is 
independently simulated with its own sensor geometry. Another practical advantage is that the 
output data can be converted into an industrial LiDAR format, the sorted pulse data (SPD) (Bunting 
et al., 2013b), and hence processed into point cloud by the associated open-source data processing 
software, the SPDlib (Bunting et al., 2013a).  
 
The DART extension simulates also photon counting LiDAR (pcLiDAR) (Degnan et al., 2013, 
Montesano et al., 2015), i.e., single-photon detection. The approach relies on the available 
simulated waveforms. The acquisition of single-photon detector is defined with sensor parameters 
like quantum efficiency, dark count rate, and detector dead time, etc. The number of photons in 
each waveform bin is converted into probability of detection, which is used to find out if a photon is 
detected. Furthermore, existence of solar noise in LiDAR signal is simulated. The approach utilizes 
the at-sensor radiance image simulation for pinhole camera and linear pushbroom imager which was 
recently implemented in DART (Yin et al., 2015). This reflected radiance image is converted into 
photons per bin, for each LiDAR FOV. During daytime, solar noise is usually a minor problem for 
wLiDARs with high pulse energy and a major problem for pcLiDARs, because of their low pulse 
energy. Thus, it must be considered for analyzing LiDAR data and also for designing future devices. 
Simulating solar noise in LiDAR systems is a "2 sources - 1 sensor" configuration, conversely to 
the "1 source - 1 sensor" configuration handled by traditional RTMs.  
 
Finally, DART LiDAR modelling is illustrated with the simulation of a few systems, including the 
wLiDAR system of the CAO, the ILRIS terrestrial LiDAR system of Optech Inc, the Multiple 
Altimeter Beam Experimental LiDAR (MABEL) (McGill et al., 2013) of NASA's Goddard Space 
Flight Center, as well as the Advanced Topographic Laser Altimeter System (ATLAS, Yu et al. 
(2010)) which will be onboard the upcoming 2nd generation of NASA Ice, Cloud, and Land 
Elevation Satellite (ICESat-2) (Abdalati et al., 2010).  Nomenclature of this paper is shown in 
Appendix A. 
 
2. MULTI-PULSE SIMULATION 
 
2.1 Multi-pulse geometries and configurations 
 
The laser system of an ALS or TLS wLiDAR device generates pulses that are reflected by a 
rotating/oscillating mirror towards the observed region. The previous companion work (Gastellu-
Etchegorry et al., 2015b) presents the theory and methodology of DART model for simulating 
single-pulse waveform, with realistic ALS settings. Figure 1 illustrates the general configuration. 
LiDAR position PL(x, y, H)  depends on the LiDARaltitude H  relative to the scene reference 
minimum altitude (SRMA), which depends on the simulated scene. PL is the laser point source, with 
the assumption that the cross section of the laser beam that exits the LiDAR laser generator is 
negligibleLiDAR. A laser ray is transmitted from PL along the LiDAR orientation ΩL

⃗⃗ ⃗⃗   in a usually 
very small solid angle that is defined by footprint divergence half angle βfp. The telescope for 
signal reception is defined by a circular surface (radius rt, area At = πrt

2) with its center located at 
PL, and its orientation ΩL

⃗⃗ ⃗⃗  . The telescope reception cone is defined by FOV divergence half angle 
βFOV.  
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Figure 1: ALS geometric configuration of a LiDAR pulse for nadir and oblique orientation, 
with corresponding footprint and FOV projected regions at the horizontal SRMA plane. 
(Gastellu-Etchegorry et al., 2015b) 

 
For a given LiDAR device, parameters {rt, At, βfp, βFOV} are constant terms, whereas PL and ΩL

⃗⃗ ⃗⃗   are 
variables during multi-pulse acquisition. The footprint and FOV of the ALS system are shown on 
the left part of Figure 1. They correspond to circular projected regions (Cfp and CFOV) on the plane 
at SRMA, with their radii calculated as: 

 rfp = H ⋅ tan βfp                      rFOV = H ⋅ tan βFOV + rt (1) 

If ΩL
⃗⃗ ⃗⃗   is oblique with look angle θL  (cf. right part of Figure 1), the illumination and reception 

circular regions on the SRMA plane in LiDAR local coordinate system (frame projected ΩL
⃗⃗ ⃗⃗  ) give 

rise to ellipse regions ( Efp  and EFOV ) in the simulated coordinate system frame. Short and 
perpendicular ellipse radii are:  

 
r⊥,ilm =

H ⋅ tan βfp

cosθL
             r⊥,rcp =

H ⋅ tan βFOV

cosθL
+ rt (2) 

Long and parallel radii along the cross-track scan direction, defined by the azimuth angle ϕs, are: 

 

r∥,ilm =
H ⋅ tan βfp

cos2θL
          r∥,rcp =

H ⋅ tan βFOV

cosθL
  + rt

cosθL
 (3) 

The footprint and FOV projected regions on the SRMA plane can be calculated for any LiDAR 
position PL and orientation ΩL

⃗⃗ ⃗⃗  , with Equation (1), (2) and (3).  
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Figure 2: ALS scan patterns for three rotating and oscillating mirror systems. (a) Pattern of 
rotating polygon mirror, with ϕoff=0°. (b) Projected FOV regions for a single scan line from 
rotating polygon mirror, with ϕoff =0°. (c) Pattern of saw-toothed oscillating mirror. (d) 
Pattern of sinusoidal oscillating mirror.  

 
Accurate and efficient account of varying PL and ΩL

⃗⃗ ⃗⃗   per pulse is the major difficulty for simulating 
multi-pulse acquisition. Centers (OC , OE  in Figure 1) of projected regions are located at the 
interception of each line (PL, ΩL

⃗⃗ ⃗⃗  ) with the SRMA plane. They define the scan pattern of the rotation 
or oscillation of the reflecting mirror that redirects pulses. ALS devices can use different scan 
patterns: rotating polygon (Figure 2(a)), saw-toothed (Figure 2(c)) and sinusoidal (Figure 2(d)) 
oscillating mirror, etc. The rotating polygon is the default mode for DART multi-pulse simulation. 
Its scan pattern is a series of parallel lines. Two horizontal axes play a specific role (Figure 2(a)): 
platform track axis ϕp

⃗⃗⃗⃗  ⃗ defined by an azimuth angle ϕp towards forward path direction, and scan 

(cross-track) axis ϕs
⃗⃗ ⃗⃗   defined by the scan azimuth angle ϕs with direction towards the right side of 

the platform track. They are usually nearly perpendicular to each other. Here, we consider an offset 
angle ϕoff, such that: ϕs = ϕp + ϕoff − 90∘. Pulses of a scan line share the same PL. Thus, for an 
arbitrary position along the laser path of a given pulse, PL  horizontal coordinates (x, y) are 
computed as the intersection of platform track along ϕp

⃗⃗⃗⃗  ⃗ and a line crossing the position along ϕs
⃗⃗ ⃗⃗  . 

The ray transmission direction ΩL
⃗⃗ ⃗⃗  (ϕs, θL) reflected by a rotating polygon is defined by ϕs and look 

angle θL, with θL negative on the platform track left side (−ϕs
⃗⃗ ⃗⃗   direction) and positive on the right 

side (+ϕs
⃗⃗ ⃗⃗   direction). Thus, ALS multi-pulse scan pattern of rotating polygon is defined by 2 

parameters in DART: distance step δds between scan lines along platform track and look angle step 
δθL between pulses in a scan line. We have δds = vP/fs with platform velocity vP and scan (line) 
frequency fs. The number of pulses per scan is ns = PRF/fs, and the look angle step between pulses 
in a scan is: 

 
δθL =

2θL,max,scan. fs
PRF

 (4) 

with θL,max,scan  the maximum look angle per scan, which is system-based. δds  and δθL  can be 
directly specified in DART. δθL sets the pulse density on the SRMA plane. The pulse density is 
larger around nadir (θL ≈ 0∘) than for oblique directions (Figure 2(b)). Let the total distance of a 
swath along ϕp

⃗⃗⃗⃗  ⃗ be Δd, and the difference between maximum and minimum look angles within the 
swath be ΔθL,swath.Then, the total number of simulated pulses Np, and the average density of pulses 
ρp are:  
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Np =

Δd

δds
⋅
ΔθL,swath

δθL
               ρp =

Np

Aswath
 (5) 

with Aswath the swath area on the SRMA plane. For each pulse, {PL, ΩL
⃗⃗ ⃗⃗  } is derived from the multi-

pulse parameters {θL,max, δθL, Δd, Δds} and a known control point. Geometrical configurations and 
illumination / reception projections are calculated for all pulses with Equation (1), (2) and (3). 
 
For TLS (Figure 3), there are no footprint and FOV projected regions on the SRMA plane. PL is a 
constant. ΩL

⃗⃗ ⃗⃗   is defined by classical zenith angle θtls  and azimuth angle ϕtls  in the coordinate 
system of the studied scene. The illumination and reception range of each pulse are specified by βfp 
and βFOV, respectively. For multi-pulse simulation, the region of TLS observation is defined by 
zenith angle range Δθtls and azimuth angle range Δϕtls. The angle step between pulses in zenith 
and azimuth ranges are δθtls  and δϕtls , respectively. Therefore, an acquisition corresponds to 

Np =
Δϕtls

δϕtls
⋅
Δθtls

δθtls
 pulses.  

 

 
Figure 3: Scanning pattern of a terrestrial LiDAR 

 
Multi-pulse modeling is implemented in such a way that computation time is minimized. For 
example, the scene and the associated memory loading for quantifying phase functions in the box 
method (Gastellu-Etchegorry et al., 2015b) are computed once, only. Moreover, waveform 
simulation is independent between pulses. Each pulse is referred by 2 indices {i, j}. For ALS, i is 
the index of scan line along the platform track, and j is the pulse index in scan line i. For TLS, i is 
the zenith angle index, and j is the azimuth angle index. Simulations are accelerated using 
algorithmic multithreading with BOOST library (Demming and Duffy, 2010). With Nth threads, 
Np/Nth pulses are assigned per thread. Thus, the acceleration factor is about Nth. Waveforms are 
simulated with DART quasi-MCRT method (Gastellu-Etchegorry et al., 2015b).  
 
2.2 Output data format conversion and processing into point cloud 

All simulated waveforms are processed and then, stored in a binary file the format of which is 
shown in Table B1 in Appendix B. A single file stores all data, which eases the access to pulse 
information. DART uses this file to display the waveform of any selected pulse. The data design 
methodology is optimized to store only the information which is relevant to data processing. 
Parameters irrelevant to data processing (PRF, sensor speed, etc.) are not stored.  
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In actual ALS or TLS wLiDAR data processing, waveforms are usually decomposed into points, 
which are estimated locations where transmitted laser pulses are scattered by scene elements. Then, 
these points are usually classified for various applications like digital elevation model (DEM) 
generation, canopy structure retrieval, etc. DART has no LiDAR data processing functionality such 
as waveform decomposition, classification, etc. Thus, simulated LiDAR data are transformed into a 
format compatible with industrial software that processes actual wLiDAR data. Several formats are 
used to store ALS and TLS data. The American Society for Photogrammetry and Remote Sensing 
(ASPRS) develops and supports the LAS format. For a long period, it has been employed to store 
traditional discrete return LiDAR data as a binary file with point indexing and compression. Since 
version 1.3, LAS supports waveform storage. However, its management of waveforms is not 
efficient. Waveforms are generally stored and indexed as points without reference to individual 
pulses. Waveform data associated to a given point are linked by offset in bytes or stored in another 
file, which is difficult to manage and to support. Furthermore, some current open source libraries of 
LAS format (e.g., libLAS: http://www.liblas.org/) do not support waveform reading and writing.  
 
DART LiDAR outputs are converted into a newer industrial format, the Sorted Pulse Data (SPD) 
format. SPD uses version 5 Hierarchy Data Format (HDF5) for storing waveform data (Bunting et 
al., 2013b). HDF5 is an open-source and self-describing database format with full input/output 
support through many programs and libraries. SPD uses a pulse-based model with better storage 
management than the LAS format. A SPD file stores waveforms with pulse indexing in arrays with 
various categories of associated parameters per pulse.  The DART-to-SPD conversion is through 
python binding of the associated open-source library SPDlib (Bunting et al., 2013a)Most parameters 
stored in a multi-pulse output binary file (Table B1) can be mapped accordingly in a SPD file. 
DART stores waveforms defined by photon number per bin. However, actually measured 
waveforms are stored in analog digital number per bin. The conversion formula is:  

 Vbin = Voff,bin + g. Nph,bin (6) 

with Vbin the recorded digital number (e.g., 8 bits positive integer from 0 to 127), Voff,bin the offset, 
and g the simulated gain which converts waveform intensity unit from number of photons per bin 
Nph,bin into digital number. Voff,bin and g are fixed parameters in waveform recording per pulse. 
The conversion can use a constant g for all pulses, or a value per pulse or group of pulses to adjust 
the maximum value. For example, if Nph,max,bin is the maximum number of photons per bin for the 
waveform of a reference pulse, the gain is g = (Vmax,bin − Voff,bin)/Nph,max,bin , with Vmax,bin ∈

[1 127] in an 8 bits system, which is roughly corresponding to the automatic gain control of  the 
detector in an actual wLiDAR.  
 
Pulse information from different threads is stacked with the producer-consumer pattern (Demming 
and Duffy, 2010). Thus, simulations of LiDAR pulses managed by different threads are not 
completed in the same sequence as their original indexing. SPD uses a grid based sorting algorithm 
for optimizing memory usage and access speed to fast display all or part of the retrieved points. 
SPD file also supports data compression using deflate algorithm, which produces more than 50 
times smaller size file than the original DART output.  
 
SPDlib (Bunting et al., 2013a) can decompose SPD waveform data into point cloud, and classify 
the points into different categories (ground, vegetation canopy, etc.). DEMs can be generated from 
ALS ground returns, and tree heights are retrieved from differences of elevation between DEMs and 
LiDAR canopy returns. SPDlib can also subset and merge LiDAR points from different 
measurements, and create industrial file of surface model from points, which can be used for 
geographical information system application. Python binding script for data conversion is provided 
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with DART latest release (V5.5.3). However, its use requires SPDlib pre-installation under LINUX 
system.  
 
 
2.3 ALS example 
 
DART participated to the 4 RAMI experiments (http://rami-benchmark.jrc.ec.europa.eu/HTML/) 
over the last 15 years (Widlowski et al., 2007, 2008, 2013) and proved to be one of the accurate 
BRF models. Some RAMI4 3-D tree and scenes that are simulated with facets, are used below to 
illustrate DART outputs. In particular, the Jarvselja pine stand (during summer) (110m × 110m) in 
Estonia is used to illustrate ALS simulation. Most trees are scots pines. There are 1114 pines from 
10 tree species that have the same leaf and trunk optical properties, but different tree heights 
(10.21m to 18.56m), crown radii (0.48m to 3.70m), and one-side total leaf area (1.2975m2 to 
79.0104m2). Figure 4(a) shows the pine distribution in the simulated scene. Each pine is indicated 
as a circle with an area proportional to its crown size. Facet representation of all foliar elements of a 
single tree requires tremendous computer memories, which forbids the simulation of the whole pine 
stand with facets. Thus, for simulating this stand, DART converts "foliar" facets within each 
rectangular cell of the simulated scene into turbid medium (Ross, 1981). Here, we consider 0.4m ×
 0.4m × 0.4m cells. Two horizontal coordinate systems are used (Figure 4(a)): the simulated scene 
global system (x-y axes), and wLiDAR system (platform-track ϕp

⃗⃗⃗⃗  ⃗ axis (+x direction, ϕp = 0∘) and 

cross-track ϕs
⃗⃗ ⃗⃗   axis (-y direction, ϕs = 270∘, ϕoff = 0∘)). The platform path crosses the scene center 

at altitude H = 500m. The wLiDAR has a rotating mirror polygon that gives a 108m × 108m swath 
area. The look angle θL ranges from −6.16∘ on the platform track left side to 6.16∘ on the other 
side (ΔθL,swath = 12.32∘). This instrumental configuration mimics the LiDAR onboard the CAO 
AtoMS system as illustrated in Table 1 (Asner et al., 2012). Unpublished parameters are set to 
DART default setting (e.g., 2ns pulse duration, 36.8% of pulse spatial energy at footprint boundary, 
etc.). From Equation (1), we get rfp = 0.25m  and rFOV = 0.4m . From Equation (5), we get 
Np = 167478  (309 scans along track, and 542 pulses per scan), and ρp = 14.35 pulses/m2. Since 
multiple scattering plays an important role with vegetation in near infrared band, 5000 simulated 
photons are transmitted per pulse, and processing time is 0.78 second per pulse per thread. With 20 
parallel threads of 3.07 GHz processors, the whole simulation takes about 110 minutes. 
 
 

Table 1 : Instrumental parameters that mimic the wLiDAR onboard the AtoMS system of the 
Carnegie Airborne Observatory 

 
Parameters Symbols Values 

Sensor area At 0.1m2 

Wavelength λ 1064 nm 

Pulse energy   1 mJ 

Time step per bin δtbin 1 ns 

Distance step per bin δdbin 30 cm 

Footprint divergence half 
angle βfp 0.25 mrad 

FOV divergence half angle βFOV 0.4 mrad 

Pulse Repetition Frequency PRF 400 kHz 

Scan frequency fs 140 Hz 

Maximum look angle θL,max,scan 32.5 o  
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Platform speed vp 
49 m/s (95.24 

knots) 

Along-track distance step 
per scan δds 0.35 m 

Look angle step per pulse δθL 0.02275 o  

 
 

 
Figure 4: ALS simulation of Jarvselja pine stand. (a) Pine distribution and wLiDAR platform 
geometrical configuration (𝐻 = 500𝑚, θL ∈ [−6.16∘, 6.16∘] ). (b) Reflectance image per 
pulse. (c) Point cloud displayed by SPDlib. (d) Points of scan i in (a). From top to bottom: 
waveform, elevation, and ground classification (red: ground, white: no ground). (e) Another 
example of generated point cloud by configuring the platform path to make θL = +45∘ at the 
center of the swath with the same configuration of altitude and platform direction as (a).  

 
DART maps (Figure 4(b)) the reflectance Ri,j  associated to each DART generated pulse. This 
reflectance is calculated with: 

 
Ri,j =

Nph,rcp,i,j ⋅ π

cos θL,i,j ⋅ δΩOE,i,j ⋅ Nph,ilm
 (7) 

with Nph,rcp,i,j the number of photons in the waveform, δΩOE,i,j = At. cos
2 θL,i,j /H

2 the solid angle 
through which OE sees the LiDAR telescope, and Nph,ilm the total number of transmitted photons. 
The original size of the reflectance image is consistent with the number of LiDAR pulses (309 ×
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542 pixels). The image in Figure 4(b) is rescaled according to the swath dimension. Reflectance 
distribution in the map is generally correlated with the pine leaf area index distribution. 
 
Output data are converted into SPD format with gain g=2.3 10-6

 volts/photon. Figure 4(c) shows the 
SPDlib processed point cloud. In all, 393926 points are retrieved by Gaussian decomposition ( 

2.35 points / pulse). Color indicates the elevation. Ground signal is discontinuous because some 
pulses have no ground return. Figure 4(d) shows 3 vertical sections for the scan of index i in Figure 
4(a): waveforms (amplitude / bin), elevation, and classification, from top to bottom. Pine trunks give 
sparse returns. Indeed, 𝜃𝐿 range being around nadir direction, very few photons can reach trunks. 
Another configuration is assessed with 𝜃𝐿  at 45∘ at the scene center. Then, trunk returns appear 
clearly in the generated point cloud (Figure 4(e)), and ground returns are much smaller. It illustrates 
that DART can simulate any ALS experimental geometric configuration.  
 
 
2.4 TLS illustration 
 
TLS simulation is illustrated with a citrus tree object (identifier CISI6 in RAMI4) from a 
Wellington Citrus Orchard site, South Africa. Figure 5(a) shows this tree and a 3-D reference frame. 
It is 3.26m high, with 1.23m maximum crown radius. Total leaf area is 15.3𝑚2 and total wood area 
is 6.29𝑚2. Here, the simulated TLS mimics configurations of the ILRIS-LR (Table 2) of Optech Inc. 
(www.optech.com). Côté et al. (2009)  used this device for tree object reconstruction. Its operation 
wavelength (1535nm) allowed them to distinguish leaves (reflectance: 0.43) and wood (reflectance: 
0.765). The terrestrial LiDAR is 5.5m away from the citrus vertical axis along the –x axis. It is 1.7m 
above ground, with a FOV center along x axis. The scan FOV covers a 40∘ × 40∘ window (4𝑚 ×
4𝑚 cross section region at citrus center location). In all, about 1.777 million (1333 × 1333) pulses 
are simulated. The measured distance range is set to 4-8 m from the LiDAR position to cover the 
whole object volume. The laser beam divergence is very small (0.075 mrad). Thus, multiple 
scattering is very small, and as little as 150 photons are fired per pulse. Simulation time is 0.093 
seconds per pulse. With 20 threads, the simulation takes 138 minutes. 
 
 

Table 2 : Instrumental configurations that mimic ILRIS-LR terrestrial LiDAR  
 

Parameters Symbols Values 

Sensor area At 0.1024m2 

Wavelength λ 1535 nm 

Pulse energy   1 mJ 

Time step per bin δtbin 0.05 ns 

Distance step per bin δdbin 15 mm 

Laser divergence half angle βfp 0.075 mrad 

FOV divergence half angle βFOV 0.1 mrad 

Zenith angle step per pulse δθtls 0.03 o  

Azimuth angle step per pulse δφtls 0.03 o  
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Figure 5 : TLS simulation for a citrus object. (a) The simulated tree object. (b) Forward view 
of the decomposed point cloud with amplitude. (c) Side view of the point cloud (red points). 
(d) Side view of merged point cloud with another simulation from reverse direction (blue 
points). 

 
 
Conversion into SPD format is done with g = 7.58 × 10−5 𝑣𝑜𝑙𝑡𝑠/𝑝ℎ𝑜𝑡𝑜𝑛. In all, 823754 points are 
extracted by SPDlib. This number is much smaller than the number of transmitted laser pulses, 
because many pulses are not intercepted or give rise to returns that are outside the measured 
distance range. Figure 5(b) shows the 3-D points with color indicating each return energy. The 
viewpoint of the 3-D display is the same as Figure 5(a), along LiDAR mean orientation (+x 
direction). Returns from the facets of branches (red), leaves (blue, green, purple) and ground 
(yellow) can be distinguished through their energy, and tree objects can be reconstructed from these 
points. Figure 5(c) shows a point cloud side view (along +y direction). Point density is much larger 
on the LiDAR-illuminated side than on the opposite side, since laser pulses can be intercepted along 
their within crown paths. In actual acquisitions, LiDAR data from several directions are merged to 
solve this problem (Rosell et al., 2009, Côté et al., 2009 ), which leads to complete and accurate tree 
and leaf distributions. Figure 5(d) shows the merged resulting point cloud from another simulation: 
the LiDAR is 5.5m away along +x direction and measures the citrus towards –x direction. This 
measurement is complementary to the original points and fills most of the missing points from the 
opposite side.  
 
 
3. PHOTON COUNTING DATA SIMULATION 
 
Photon counting LiDAR (pcLiDAR) is a novel technology which uses single-photon detector 
instead of traditional analog electronics detector. Compared with wLiDAR, pcLiDAR pulses 
usually have much lower energy (10’s-100’s µJ), higher PRF (Spinhirne, 1993, McGill et al., 2002), 
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and smaller 𝛽𝑓𝑝 and 𝛽𝐹𝑂𝑉. Three key parameters of a single-photon detector are considered here: 
the quantum efficiency 𝑃𝑄 (the probability to detect a photon that reaches the detector), the detector 
dead time 𝑡𝑑𝑒𝑎𝑑 (the period needed by the detector to recover from a detection event, before another 
photon can be detected), and the dark count rate 𝑓𝑑𝑎𝑟𝑘(the detector’s minimum count rate without 
light source). Bin time width 𝛿t𝑏𝑖𝑛  for single-photon detector is usually small (100’s 𝑝𝑠, which 
gives  10’s mm accuracy in distance measurement). The theoretical distance accuracy is better than 
wLiDAR for which 𝛿𝑡𝑏𝑖𝑛 is around a few nanoseconds (i.e., around 10 cm accuracy in distance 
measurement). Moreover, single-photon detector can avoid the wLiDAR acquisition analog signal 
noise. Presently, a few airborne pcLiDARs are operational. Some of them are used to prepare future 
space missions. For example, MABEL (McGill et al., 2013) and Swath Imaging Multi-polarization 
Photon-counting LiDAR (SIMPL) (Dabney et al., 2010, Harding et al., 2007) are both prototypes 
for the next ATLAS (Yu et al., 2010) onboard ICESat-2 (Abdalati et al., 2010).  
 
pcLiDAR and wLiDAR data acquisition and interpretation differ a lot. Instead of waveform data 
continuous profile, which needs post processing, pcLiDAR data can be directly seen as scattering 
events locations. Actually, waveforms indicate the probabilities of occurrence of photon detection 
events, thus it can be converted into pcLiDAR data with implementation of single-photon detector 
physical mode. The approach presented below converts DART simulated single or multiple pulses 
waveforms, for any instrumental configuration, into detected photons of single-photon detector.  
 
Assume that 𝑁𝑝 photons reach a single-photon detector during a short time period 𝛥𝑡. Then, the 
probability that a photon is detected is:  

 𝑃 (𝛥𝑡) = 1 − (1 − 𝑃𝑄)
𝑁𝑝+𝑓𝑑𝑎𝑟𝑘.𝛥𝑡

 (8) 

where 𝑓𝑑𝑎𝑟𝑘 . 𝛥𝑡 is the number of background photons associated to the dark count rate during an 
acquisition period. Let 𝑡𝑝𝑐 be a cursor that indices the waveform time axis within the pre-defined 

record time period from 
𝑡𝑚𝑖𝑛

2
 to 

𝑡𝑚𝑎𝑥

2
, in order to test detection event. This time period corresponds 

to the actual distance of scattering points to the LiDAR, which is half of the recorded distance. The 
increase of 𝑡𝑝𝑐 with time step 𝛥𝑡 (cf. Figure 6) represents the time flow. Then, photon detection is 

modeled in the single-photon detector for each 𝑡𝑝𝑐  value. At the initial state, 𝑡𝑝𝑐 =
𝑡𝑚𝑖𝑛

2
 and 

𝛥𝑡 = 𝛿𝑡𝑏𝑖𝑛. With 𝑃 (𝛥𝑡) from Equation (8) and a random number 𝑝 (0 < 𝑝 < 1), the following rule 
states for each 𝑡𝑝𝑐 value if there is photon detection: 

- If 𝑝 > 𝑃 (𝛥𝑡): no photon is detected, and 𝑡𝑝𝑐 is updated with 𝑡𝑝𝑐 = 𝑡𝑝𝑐 +
𝛥𝑡

2
  

- If 𝑝 < 𝑃 (𝛥𝑡): a photon is detected at a position defined by 𝑡𝑝𝑐 +
𝑝

𝑃 (𝛥𝑡)
⋅
𝛥𝑡

2
, and 𝑡𝑝𝑐  is 

updated with 𝑡𝑝𝑐 = 𝑡𝑝𝑐 +
𝑝⋅𝛥𝑡

2𝑃 (𝛥𝑡)
+

𝑡𝑑𝑒𝑎𝑑

2
. 

(9) 

Initially, 𝑡𝑝𝑐 is at a time bin left boundary (Figure 6), and 𝛥𝑡 = 𝛿𝑡𝑏𝑖𝑛. Once, a photon is detected 
(𝑝 < 𝑃 (𝛥𝑡), 𝑡𝑝𝑐 is no more located at a bin boundary. Then, 𝛥𝑡 is set to the time period to the next 
bin boundary, which is smaller than 𝛿𝑡𝑏𝑖𝑛, and Equation (9) can be applied again.  
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Figure 6 : Illustration of photon counting simulation 

 
 
Here, the photon counting method is used to simulate MABEL instrumental configuration (McGill 
et al., 2013) for the RAMI4 Jarvselja Pine Stand test site (Figure 4(a)). Conversely to 
rotating/oscillating mirrors that reflect pulses towards targets, MABEL splits each laser pulse 
through 24 optical fibers to generate 16 beams at 532 nm and 8 beams at 1064 nm. The pulses of 
these beams have the same PRF and much smaller energies than the generated pulse, and 𝛿𝑑𝑠 =
𝑣𝑝/𝑃𝑅𝐹 = 2𝑐𝑚 . Platform altitude is 20 km, which gives 𝑟𝑓𝑝 = 1𝑚  and 𝑟𝐹𝑂𝑉 = 2.16𝑚  on the 
SRMA. Night conditions with clear atmosphere are considered with a rural (23km visibility) aerosol 
model and a US standard gas model (1976). Thus, the laser generator of MABEL is the only source 
of photons.  
 
Pulses of two beams of MABEL at 532nm and 1064nm are simulated along scan i (Figure 4(a)) 
with nadir 𝛺𝐿. Figure 7 illustrates results: sub-figure (a) for 532nm and (b) for 1064nm. The upper 
figures of each sub-figure show the detected photons over the wide vertical range (-2000m, 
10000m). Points above the Earth’s scene are from the atmosphere, whereas photons below the 
ground are mostly from the dark count rate 𝑓𝑑𝑎𝑟𝑘 . The lower figures are enlargements for the 
vertical range (-5m, 25m). They mainly show photons from the Earth’s scene. Photons from ground 
and vegetation are clearly distinguished. Their spatial distribution is coherent with that of the 
associated wLiDAR data (Figure 4(d)). We distinguish 3 regions: (25m, 10000m) above the Earth 
scene, (-5m, 25m) in the Earth scene, and (-2000m, -5m) below the scene. For 532nm band, the 
vertical photon detection rate is 0.95 photons/m vertically above the scene, from atmosphere 
scattering and dark count rate, 119.23 photons/m within the scene, from the scene elements, and 
0.60 photons/m below the scene (from the detector dark count rate). Conversely, for 1064nm, the 
photon detection rate is 0.0625 photons/m above the scene, 266.9 photons/m within the scene, and 
0.0564 photons/m below the scene. As expected, atmosphere returns are more numerous for 532nm. 
The large near infrared reflectance of vegetation explains that returns are more numerous for 
1064nm, although quantum efficiency is larger for 532nm. The horizontal distribution of 
atmosphere photons is rather uniform in both figures, because the atmosphere was assumed to be 
horizontally homogeneous.  
 
 
 

Table 3 : Instrumental configurations that mimic MABEL 
 

Parameters Symbols Values 

Wavelength λ 532 nm / 1064 nm 

Bandwitdth λ 0.03 nm / 0.4 nm 

Pulse energy   6 μJ 

Time resolution δtbin 0.083 ns 

Single photon detector 
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Distance step per bin δdbin 24.9 mm 

Footprint dispersion half angle βfp 0.05 mrad 

FOV dispersion half angle βFOV 0.105 mrad 

Pulse Repetition Frequency PRF 10 kHz 

Number of beams   16 / 8 

Platform speed vp 200 m/s 

Quantum efficiency pQ 12.5% / 1.5% 

Detector dead time td 2.5 ns 

Dark count rate fdark 100 kHz 

 
 
 

 
 
Figure 7 : Along track MABEL simulated photon counting data, for Jarvselja Pine Stand test 
site (scan i in Figure 4(a)). (a) 532nm band. (b) 1064nm band. 

 
 
4. SOLAR NOISE SIMULATION 
 
4.1 Modeling method 
 
Solar noise refers to sun rays which are scattered into the LiDAR sensor by the atmosphere and the 
Earth’s surface during daytime. A novel DART method simulates LiDAR data with solar noise. It 
relies on the combination of 2 DART modeling modes:  

a) Quasi-MCRT mode. It simulates noiseless LiDAR waveforms. LiDAR is both the source and the 
sensor.  

b) Ray-tracking mode. Sun is the source and LiDAR is the sensor. The at-sensor radiance image is 
simulated as if LiDAR is a passive imaging radiance sensor (pinhole  camera or linear pushbroom 
imager). Then, radiance within the FOV of each pulse is converted into number of photons and 
added to each noiseless waveform as the solar noise for each pulse. 

 
The ray-tracking mode is an iterative process in the Earth scene (Gastellu-Etchegorry et al., 1996) 
and atmosphere (Grau and Gastellu-Etchegorry, 2013). In the illumination stage, atmosphere and/or 
sun rays that enter the Earth scene are tracked along pre-defined downward directions that sample 
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the 2𝜋  hemisphere. They undergo surface and volume interactions (absorption, scattering) with 
facets and turbid cells that simulate the Earth scene, respectively. In each iteration n, radiation 
intercepted at iteration (n-1) is scattered through the pre-defined directions that sample the 4𝜋 space 
(Yin et al., 2013), and directions that head to an eventual pinhole camera or linear pushbroom 
imager (Yin et al., 2015). Rays that reach pre-defined altitude levels are recorded for creating 
radiance, reflectance and/or brightness temperature images. Iterations stop if relative increase of the 
Earth scene exitance between successive iterations is smaller than a user specified threshold.  
 
When a ray reaches the top of a simulated scene, its intensity and its source element (within cell 
facet or sub-face of turbid cell) are projected onto a horizontal image plane (HIPlane) with altitude 
at the SRMA (Yin et al., 2015). Depending on the sensor product to simulate, one of three types of 
projections is applied: 

1. Orthographic projection for sensors at infinite distance. The divergence of rays that enter the 
sensor is neglected. All pixels of the same image are viewed along the same direction, for each 
simulated direction. 

2. Perspective projection for pinhole cameras. The sensor  is a single point, and rays that enter it 
are converging to this point. The source element is projected onto the HIPlane along lines 
defined by the pinhole camera and the vertices of the source element.  

3. Parallel-perspective projection for linear pushbroom imagers. Pushbroom imager acquisition 
geometry is similar to the rotating polygon scan pattern (Figure 2(a)): orthographic projection 
along platform track, and perspective projection along the scan axis (Gupta and Hartley, 1997). 
The source element and sensor locations, and platform track are linked similarly as 𝑃𝐿  with 
known 𝜙𝑝, 𝜙𝑠 and a control point (Section 2.1). Thus, a point is projected onto the HIPlane by 
finding first the corresponding scan line and the sensor position, and then applying perspective 
projection along ϕs

⃗⃗ ⃗⃗  . 
 

 

 
 

Figure 8: LiDAR solar noise simulation in DART. (a) Workflow of solar noise simulation. (b) 
Segmentation and interpolation for estimating solar noise on the HIPlane. The mesh grid 
represents the radiance image generated on the HIPlane. The red ellipse is the LiDAR 
reception area on the HIPlane. Symbols × and + show the initial selected points inside and 
outside the LiDAR FOV, respectively. 
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wLiDAR with solar noise is simulated for single and multiple pulse configurations with a dual-
simulation approach (Figure 8(a)), which includes 3 processing steps: 

1) Pre-processing. DART pre-calculation steps are performed: discrete directions definition, scene 
simulation and scattering phase function calculation per type of scene element for all directions, 
including solar and LiDAR illumination directions. 

2) Dual simulation. The LiDAR waveform and the passive sensor radiance image on the HIPlane 
are simulated with the quasi-MCRT DART and ray tracking methods, respectively. The passive 
sensor image is simulated with the wLiDAR geometry configuration ( 𝑃𝐿 , 𝜙𝑝 , 𝜙𝑠 , etc.), 
wavelength 𝜆 , bandwidth 𝛥𝜆 , using pinhole camera mode for single-pulse simulation and 
pushbroom imager mode for multi-pulse simulation. The region of 𝐸𝑟𝑐𝑝 on the SRMA plane is 
stored per pulse, during wLiDAR simulation.  

3) Reception radiance calculation. The radiance image HIPlane and wLiDAR SRMA are in the 
same plane. Thus, the radiance image, without orthorectification to preserve each pixel view 
direction, can be segmented per LiDAR reception region 𝐸𝑟𝑐𝑝  (Figure 1) for computing the 
average radiance 𝐿𝑖,𝑗 per pulse. Let us consider a region 𝐸𝑟𝑐𝑝, with a center 𝑂𝐸, a grid of defined 
dimensions along 𝜙𝑠 and its perpendicular axis, and points (×) of the radiance image within 𝐸𝑟𝑐𝑝 
(Figure 8(b)). 𝐿𝑖,𝑗 is derived from cubic spline interpolation on points (×). Its accuracy depends 
on the grid dimension. 𝑂𝐸 can differ from HIPlane pixel centers, which allows one to work with 
extreme cases such as radiance image with pixel size larger than 𝐸𝑟𝑐𝑝.  

 
The average radiance per pulse 𝐿𝑖,𝑗 (unit: W/sr/m2/nm) is converted into a number of solar noise 
photons per waveform per bin: 

 
𝑁𝑝ℎ,𝑆𝑁,𝑖,𝑗,𝑏𝑖𝑛 = 𝐿𝑖,𝑗 ⋅ 𝛥𝜆 ⋅ 𝐴𝐸,𝑟𝑐𝑝 ⋅ 𝑐𝑜𝑠 𝜃𝐿,𝑖,𝑗 ⋅ 𝛥𝜔 ⋅ 𝛿𝑡𝑏𝑖𝑛 ⋅

𝜆

ℎ. 𝑐
 (10) 

𝛿𝑡𝑏𝑖𝑛  is the time step per bin in the simulated waveform. 𝛥𝜔 = 𝐴𝑡. 𝑐𝑜𝑠
2 𝜃𝐿,𝑖,𝑗/𝐻

2 is the solid 
angle through which the center of projection 𝑂𝐸 sees the LiDAR telescope. 𝐴𝐸,𝑟𝑐𝑝 = 𝜋 ⋅ 𝑟⊥,𝑟𝑐𝑝 ⋅

𝑟∥,𝑟𝑐𝑝 is the area of 𝐸𝑟𝑐𝑝, where 𝑟⊥,𝑟𝑐𝑝 and 𝑟∥,𝑟𝑐𝑝 are calculated by Equation (2) and (3). ℎ is the 
Plank’s constant. c is the speed of light.  

 
𝑁𝑝ℎ𝑜𝑡𝑜𝑛,𝑆𝑁,𝑖,𝑗  photons are added to each bin of the pulse waveform. We assume that H ⋅

𝑡𝑎𝑛 𝛽𝐹𝑂𝑉 / 𝑐𝑜𝑠 𝜃𝐿,𝑖,𝑗  ≫ 𝑟𝑡, which is usually valid for long range detection. In that case, the 𝑟𝑡 term 
can be removed from Equation (3), and Equation (10) becomes:  

 
𝑁𝑝ℎ,𝑆𝑁,𝑖,𝑗,𝑏𝑖𝑛 ≈ 𝐿𝑖,𝑗 ⋅ 𝛥𝜆 ⋅ 𝜋2 ⋅ 𝑡𝑎𝑛2 𝛽𝐹𝑂𝑉 ⋅ 𝐴𝑡 ⋅ 𝛿𝑡𝑏𝑖𝑛 ⋅

𝜆

ℎ ⋅ 𝑐
 (11) 

As expected, solar noise depends on 𝐿𝑖,𝑗, and thus on scene spectral reflectance, atmosphere spectral 
transmittance and solar spectra. Its absolute value is reduced if 𝐴𝑡 , 𝛿𝑡𝑏𝑖𝑛  and 𝛽𝐹𝑂𝑉  are reduced. 
Variation of 𝛥𝜆 can change 𝐿𝑖,𝑗 at the same time, so there is no direct trend. The pure LiDAR signal 
is proportional to 𝐴𝑡 and 𝛿𝑡𝑏𝑖𝑛, so the ratio of pure LiDAR signal over solar noise is not improved 
by changing 𝐴𝑡 and 𝛿𝑡𝑏𝑖𝑛.  Reduction of 𝛽𝐹𝑂𝑉 can improve this ratio. The value of  𝛽𝐹𝑂𝑉 is limited 
by technique bottle neck of detector design. 
 
Solar zenith angle and surface reflectance affect a lot solar noise. It is illustrated here with 2 cases: 
single pulse of spaceborne (large-footprint) LiDAR with varying solar zenith angle, and multiple 
pulses of an airborne (small-footprint) LiDAR.  
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4.2 Solar noise in the waveform of a single pulse of a large-footprint LiDAR 
 
Usually, actual pcLiDAR pulses have a much smaller energy than wLiDAR pulses. Thus, solar 
noise ratio for pcLiDAR is much larger than for wLiDAR. It can restrict the use of pcLiDAR 
devices to early or late in the day, as with the initial data of MABEL (McGill et al., 2013)). Solar 
zenith angle impact on solar noise is assessed for waveform from a fictive wLiDAR with pcLiDAR 
ATLAS parameters (Table 4). Platform altitude H = 496 km  leads to footprint and FOV 
dimensions on the HIPlane equal to 𝑟𝑓𝑝 = 4.22𝑚 and 𝑟𝐹𝑂𝑉 = 21.06𝑚, respectively. We consider 
the minimum pulse energy of 25µJ of all ATLAS beams (Yu et al., 2010), wavelength 532nm and 
𝛿𝑡𝑏𝑖𝑛 = 1𝑛𝑠.  
 

Table 4: Instrumental configuration of a wLiDAR device similar to ATLAS. 
 

Parameters Symbols Values 

Sensor area At 0.5024 m2 

Wavelength λ 532 nm 

Bandwitdth λ 0.03 nm 

Pulse energy   25 μJ 

Pulse width   1.5ns 

Time step per bin δtbin 1 ns 

Distance step per bin δdbin 30 cm 

Footprint divergence half angle βfp 8.5 μrad 

FOV divergence half angle βFOV 41.65 μrad 
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Figure 9: Impact of solar noise on the waveform of a fictive wLiDAR device with ATLAS 
parameters. (a) Jarvselja pine stand with LiDAR footprint and FOV projected regions 
(𝜃𝑠𝑢𝑛 = 45∘, 𝜙𝑠𝑢𝑛 = 180∘). (b) Waveform with solar noise. (c) Radiance image (W/sr/m2/nm) 
of a simulated pinhole camera which captures the LiDAR FOV region. (e) 𝑁𝑝ℎ,𝑆𝑁,𝑖,𝑗,𝑏𝑖𝑛 with 
solar zenith angle from -80° to 80°.  

 

 
Figure 10 : Simulation of solar noise in MABEL data with 𝜆 = 1064nm. (a) Tree distribution 
in the Wellington Citrus Orchard test site. The blue arrow indicates the platform path. 
(θsun = 70∘, ϕsun = 0∘). (b) Pushbroom radiance image on the HIPlane. (c) Solar noise in 
number of photons per bin versus the pulse index. (d) Detected photons for 2 vertical ranges. 
Top: [-2000m, 10000m]). Bottom: [-5m, 10m]).. 

 
Solar noise simulation is conducted with Jarvselja pine stand of RAMI4. Figure 9(a) shows the pine 
distribution, together with LiDAR footprint and FOV projected regions on the ground (Cfp  and 
CFOV ). Sun zenith and azimuth angles are 𝜃𝑠𝑢𝑛 = 30∘ and 𝜙𝑠𝑢𝑛 = 180∘ , respectively. The 
atmosphere is clear sky with the same parameters as in section 2.3. Figure 9(b) shows the resultant 
waveform from -5m to 22m in altitude (blue curve) and solar noise contribution (red dashed line). 
Without solar noise, the maximum count per bin (in 15cm’s distance) in the noiseless LiDAR signal 
is 0.0767 photons/bin (from the ground). Solar noise adds a constant number of photons 
Nph,SN,bin = 0.0078 photons/bin (Equation (10)), and the maximum count per bin becomes 0.0845 
photons/bin. Nph,SN,bin is computed through the simulation of the radiance image acquired by a 
pinhole camera that has the same LiDAR location, wavelength and bandwidth. For that, the 
radiance image on the HIPlane is segmented into LiDAR FOV CFOV regions (Figure 9(c)) for 
computing the average radiance per pulse 𝐿𝑖,𝑗. Crown and ground sunlit and shadowed areas appear 
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clearly in Figure 9(c). Their proportions affect 𝐿𝑖,𝑗. As solar zenith angle varies during day time, 
these proportions change. Figure 9(d) shows how solar noise (number of photons per bin) changes 
during daytime with 𝜃𝑠𝑢𝑛  from −80∘  to 80∘  (𝜃𝑠𝑢𝑛 < 0∘  if 𝜙𝑠𝑢𝑛 = 0∘ ). As 𝜃𝑠𝑢𝑛  approaches 0∘ 
(nadir), shadows decrease, and 𝐿𝑖,𝑗 increases. Solar noise variation with 𝜃𝑠𝑢𝑛 is nearly symmetric, 
with a maximum for 𝜃𝑠𝑢𝑛 = 0∘, partly due to the hot spot effect (Kuusk, 1991), when sun and 
LiDAR directions are identical (nadir). Actually, this change of 𝜃𝑠𝑢𝑛 is unrealistic for Jarvselja site, 
because its latitude is larger than that of tropic of cancer. 
 
4.3 Solar noise in multiple pulses of small-footprint photon counting LiDAR  
 
Simulating N LiDAR pulses with solar noise for a moving platform, with the "single pulse" method 
(section 4.2) implies to simulate radiance images of N passive sensors. This solution is not optimal 
for computation time and memory usage. Thus, the adopted approach is to simulate the radiance 
image of a single passive linear pushbroom sensor. Indeed, a pushbroom imager measures fluxes 
entering the sensor over the swath through parallel-perspective projection. The along-track angular 
acquisition divergence of each individual pulse is neglected, because βFOV is small. Similarly to the 
single pulse method, solar noise is computed for each segmented region on the HIPlane pushbroom 
image. Here, the test site is the Wellington citrus orchard (Figure 10(a)) of RAMI4. It comprises 
1115 citruses (10 types) along 24 parallel rows (with some gaps) along the x axis. Their average 
height is 3.2m. Tree crowns are spherical with 1.53m maximum radius. Distance between tree rows 
along the x axis is  4.6m. Sun angles are 𝜃𝑠𝑢𝑛 = 70∘ and 𝜙𝑠𝑢𝑛 = 0∘. Thus, tree shadows occupy 
most gaps between the rows. The atmosphere is clear sky with the same parameters as in section 
2.3.  
 
MABEL pcLiDAR nadir-view beam is simulated with 𝜆 = 1064nm. Platform altitude being 20km, 
we have rfp = 1m and rFOV = 2.16m. A blue arrow (𝜙𝑝 = 45∘) shows the 138.56m platform path. 
In all, 6929 pulses are launched with 0.02m step. The pushbroom radiance image (Figure 10(b)) on 
the HIPlane is simulated with pcLiDAR wavelength, bandwidth and platform path. Parallel-
perspective projection is applied, and the image orientation is rotated to show the swath along the 
path. The effect of perspective projection is small because the simulated area is very small (−0.2∘ 
on the left corner to 0.2∘ on the right corner), compared to platform altitude. In the image, citrus 
shadows cover the area between the parallel tree rows. All pulse reception regions are segmented in 
the radiance image (Figure 10(b)) to calculate their average radiance values Li,j , which are 
transformed in a second stage into solar noise per pulse (Equation (11)). In theory, a pulse with a 
reception region in a shaded area has a small solar noise. Figure 10(c) plots the solar noise in 
number of photons per bin versus the pulse index. As expected, solar noise fluctuates as the 
platform overflies the citrus rows. In all, 23 peaks occur, which is consistent with the number of 
citrus rows that the platform overflies. Solar noise is maximal over vegetation and minimal over the 
shadows between rows. Figure 10(d) shows the detected photons by using the algorithms presented 
in Section 3, in both large ([-2000, 10000]) and small ([-5, 10]) vertical ranges. Similarly, noiseless 
pcLiDAR returns are more important over vegetation than over shadows. Thus, the along track 
heterogeneity of actual pcLiDAR returns is coherent with surface reflectance heterogeneity. Points 
scattered by citrus can still be recognized. In actual pcLiDAR data, solar noise can be reduced by 
special filters (e.g. etalon filter), and post-processing can also help. DART can provide information 
on solar noise and its spatial distribution for specific filtering per pulse. 
 
5. CONCLUDING REMARKS 
 
This paper is the second part of a paper that details the DART theory of single pulse LiDAR 
waveform simulation (Gastellu-Etchegorry et al., 2015b). It presents newly designed methods that 
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extend DART simulation functionalities to the simulation of actual multi-pulse waveform and 
photon counting wLiDAR and pcLiDAR systems in presence of solar noise. Multiple pulse 
simulations are illustrated with the cases of terrestrial and airborne LiDARs. Photon counting 
LiDAR data is simulated with a specifically designed statistical method that transforms DART 
simulated LiDAR waveforms. This method can also be applied to actual wLiDAR. LiDAR signals 
with solar noise are simulated with a method that combines the classical DART ray-tracking mode 
and the new LiDAR quasi MCRT mode. For that, the radiance image of a passive sensor is 
simulated with the ray tracking method, and the segmentation of this radiance image informs on the 
average radiance per pulse. In a following step, this average radiance is transformed into a number 
of solar photons per bin of waveform. The passive sensor is a pinhole camera for single pulse 
simulation and a linear pushbroom system or multiple beam system for multiple pulse acquisition. It 
constitutes a solution for the "2 sources - 1 sensor" configuration. These methodological 
improvements are applied to case studies with the aim to illustrate the potential of DART, while 
investigating common scientific questions. As expected, solar noise increases with the increase of 
the reflectance of Earth surfaces.  
 
A major objective of our work is to make both pulse-by-pulse and comprehensive comparisons with 
actual data. All the examples of ALS multi-pulse simulation presented in this paper are based on 
regular scan pattern from rotating polygon (Figure 2(a)). Other regular scan patterns (Figure 2(c) 
and (d)) as well as other irregular patterns are not by default implemented in DART. Actually, in 
real-world LiDAR systems, all patterns are irregular. Non-straight platform path, platform 
fluctuation, error in positioning and look angle, and optical fibers used in pcLiDAR, etc… can be 
potential sources of any irregular pattern. In order to take these effects into account, we recently 
implemented a method to import and process information on the actual position (PL) and orientation 
(ΩL) of each pulse to simulate (Yin et al., 2015). For example, this information can be retrieved 
from the global navigation satellite system (GNSS) positioning for PL and inertial measurement unit 
(IMU) for ΩL in the CAO (Asner et al., 2012). Therefore, any scan pattern can be imported into 
DART, which serves as a preparation for pulse-by-pulse comparison with actual data. In future, 
other importations will be available, including temporal and spatial profile of each transmitted pulse, 
in order to better account the diversity between single pulses (none of them is exactly the same).  
 
The new general-purpose LiDAR simulation tool that is implemented in DART can help to evaluate 
the influences of instrumental and experimental configurations on retrieved signals, and further help 
to develop inversion algorithms for specific current and future systems. For example, it can help in 
quantifying the sources of inaccuracy for retrieving biomass from LiDARs on board airborne 
(Popescu et al., 2011) and satellite (Montesano et al., 2015) systems.  
 
DART is provided as free licenses for scientific research and education by Paul Sabatier University 
(http://www.cesbio.ups-tlse.fr/dart/license/en/index.php). 
 
6. ACKNOWLEDGEMENT 

This work was supported by the ANR in the frame of the FOLI3-D project and by the Centre 
National d’Etudes Spatiales (CNES) in the frame of the TOSCA projects ‘Stem-Leaf’ and 

‘Hypertropik’. Part of the work was conducted in the frame of the NASA project "DART-LiDAR". 
The authors are especially grateful to Bruce D. Cook, Douglas C. Morton, and Guoqing Sun from 
NASA’s Goddard Space Flight Center for their suggestions in LiDAR configurations. The authors 
are thankful to all scientists who contributed to DART development since its first steps in 1992. The 
authors appreciate Pete Bunting and other scientists who contribute to the developments of SPDlib.  

148



 

 

Appendix A: Nomenclature 
 
Acronyms  
 
ALS  Airborne Laser Scan. 
ATLAS Advanced Topographic Laser Altimeter System. 
AtoMS Airborne taxonomic Mapping System. 
BRF  Bidirectional Reflectance Factor. 
CAO  Carnegie Airborne Observatory.  
DART  Discrete Anisotropic Radiative Transfer. 
DEM  Digital Elevation Model. 
FOV  Field Of View. 
HDF  Hierarchy Data Format. 
HIPlane Horizontal Image Plane. 
LiDAR Light Detection and Ranging. 
wLiDAR waveform LiDAR. 
pcLiDAR photon-counting LiDAR. 
MCRT  Monte Carlo Ray Tracing. 
MABEL Multiple Altimeter Beam Experimental LiDAR. 
PRF  Pulse Repetition Frequency. 
RTM   Radiative Transfer Model. 
SIMPL Swath Imaging Multi-polarization Photon-counting LiDAR. 
SPD  Sorted Pulse Data. 
SRMA  Scene Reference Minimum Altitude. 
TLS  Terrestrial Laser Scan. 
 
Symbols  
 
(Ω, ΔΩ) Direction with unit vector Ω and solid angle ΔΩ. 
At  LiDAR telescope area. 
Aswath  Total covered area of swath on the SRMA plane. 
AE,rcp  Area of Ercp. 

Cfp, CFOV Circular footprint and FOV projected regions onto the SRMA plane, for nadir 
LiDAR (ALS). 

c Speed of light. 
Eilm, Ercp Elliptical footprint and FOV projected regions onto the SRMA plane, for oblique 

LiDAR (ALS). 
fs  Scan frequency within a recorded swath. 
fdark Dark count rate. 
g Gain that converts waveform intensity unit from number of photons per bin Nph,bin 

into volts. 
h Plank’s constant  6.62606957 10−34m2kg/s. 
i, j Indices of a LiDAR pulse. 
Li,j Mean radiance of segmented FOV projected region (i,j) in the simulated passive 

sensor radiance image, for solar noise estimation. 
Np Total number of pulses in a multi-pulse simulation. 

Nth Number of threads used in a multi-pulse simulation . 
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Nbin Total number of recorded bins for a LiDAR pulse. 
Nph,bin Number of received photons per bin. 

Nph,rcp,i,j Total number of photons received for a pulse with indices {i,j}. 

Nph,SN,i,j,bin Number of "solar noise" photons per waveform bin for LiDAR pulse with indices 
{i,j}. 

ns  Number of pulses per scan. 
OC, OE  Center of Cfp, CFOV and Eilm, Ercp (ALS). 

p Random generated number (0 < p < 1). 
PL(x, y, H) LiDAR position with altitude H. 
Pconv  LiDAR reception convergent point. 
PQ LiDARQuantum efficiency (probability to detect a photon in a single-photon 

detector). 
P(Δt) LiDARProbability to detect a photon in a time period Δt for a single-photon detector. 
Ri,j  LiDAR associated reflectance for pulse with indices {i,j}. 

rt  LiDAR telescope radius. 
rfp, rFOV Radii of Cfp and CFOV (ALS). 

r⊥,ilm, r∥,ilm Short (perpendicular) and long (parallel) radii of Eilm (ALS). 

r⊥,rcp, r∥,rcp Short (perpendicular) and long (parallel) radii of Ercp (ALS). 

tmin, tmax  Start and end record time of waveform. 
tdead LiDARDead time of a single-photon detection. 
tpc Modeling of time flow during functioning of a pcLiDAR. 

Vbin Recorded digital number per bin in wLiDAR data. 
Voff,bin  Recorded electric offset per bin in actual wLiDAR data. 

Vmax,bin Maximum voltage per bin. 

vp Platform speed. 

βfp, βFOV Half divergence angle of LiDAR footprint and FOV. 

λ, Δλ  Central wavelength and bandwidth of a band in a simulated system. 
Δd  Total distance of recorded swath along platform track (ALS). 
δds  Distance step between scans along platform track (ALS). 
δdbin Photon path distance per stored wLiDAR bin or pcLiDAR acquisition. 
Δt Time period. 
δtbin  Time step per stored wLiDAR bin or pcLiDAR acquisition. 
ρp  Density of pulses (ALS). 

θ  Zenith angle. 
θL  LiDAR look angle (ALS). 
θL,max,scan Maximum look angle on a scan side (system-based; not swath-based). 

ΔθL,swath Look angle range difference within a recorded swath (ALS).  

θtls  Zenith angle for terrestrial LiDAR orientation (TLS). 
θsun  Solar zenith angle. 
Δθtls  Zenith angle range (TLS). 
δθtls  Zenith angle scan step (TLS). 
δθL  Look angle step between pulses in a scan (ALS). 
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ϕ  Azimuth angle. 
ϕp  Platform track azimuth angle (ALS). 

ϕp
⃗⃗⃗⃗  ⃗  Horizontal axis along ϕp (ALS). 

ϕs  Cross-track scan azimuth angle (ALS). 
ϕs
⃗⃗ ⃗⃗    Horizontal axis along ϕs (ALS). 
ϕoff  Offset between angle perpendicular to ϕp and ϕs (ALS). 

ϕtls  Azimuth angle for terrestrial LiDAR orientation (TLS). 
ϕsun  Solar azimuth angle. 
Δϕtls  Azimuth angle range (TLS). 
δϕtls  Azimuth angle scan step (TLS). 
Δω  Solid angle through which OE sees the LiDAR telescope. 
ΩL
⃗⃗ ⃗⃗    LiDAR orientation. It depends on (θL, ϕs) for ALS.  
 
Appendix B: DART multi-pulse output data format 

There are 4 records in the multi-pulse output data format:  

1. Text Version Record. It stores the text header (e.g., version number).  

2. Format Description Record. It stores DART input parameters: flag for wLiDAR or pcLiDAR 
product, precision format (4-byte float or 8-byte double), scanning pattern, and flags that 
indicate the optional presence of first-order scattering waveform, not convolved waveform and 
file that stores radiation statistics (scattered, absorbed, lost energy) per atmosphere-Earth 
segment.   

3. Global Parameters Record. It stores global parameters to all pulses: time step (δtbin ) and 
distance step (δdbin) represented by each bin, total number of recorded bins per pulse (Nbin), 
total number of simulated pulses (Np), etc. 

4. Data Record. It stores the data for all pulses. Thus, data recording of each single pulse is iterated 
Np times. For each pulse, there are 5 sub-records:  

4.1. Parameter Sub-Record: configuration{PL, ΩL
⃗⃗ ⃗⃗  , i, j} per pulse. Begin time of each waveform 

(tmin) is also recorded to locate the starting position of each waveform. The associated 
waveform end time (tmax=tmin + δtbin × Nbin) can be calculated because Nbin is known.  

4.2. Waveform Sub-Record: number of photons per LiDAR bin. Thus, the sub-record length 
depends on Nbin and on the above defined precision format.  

4.3. - 4.6. Other Sub-Records: first-order waveform, waveform before Gaussian convolution 
and radiation statistics. These optional records are specified in the Format Description 
Record. The format of radiation statistics is omitted in Table B1. It is given in the DART 
user manual (Gastellu-Etchegorry, 2015).  

 
Table B1. Data format of multi-pulse output binary file. Words in bold letters are variables which 
are used in the specification of stored data formats. Records marked with * are optional 
parameters defined by the user. 

 
Record / Byte Format Description 

  1. Text Version Record     

1---50 char 
  Product type specifier = 

"DART_SIMULATED_LIDAR_WAVEFORM_VE
RSION_N.NN" 

39---42 char 
  Version number = “N.NN” (i.e. 1.00, 1.01, ..., 

1.10, ..., 2.00) 
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  2. Format Description Record   

1---4 unsigned int 
  Lidar data type: (default: 0) 

     0: laser scanning data; 1: photon counting 
data  

5---8 unsigned int 

  Scanning type: (default: 1) 
     0: not applicable; 1: spinning polygon; 2: 

sawtooth pattern;  
3: sinusoidal pattern; 4: ellipsoid pattern. 

9 bool 

  If the waveform record format is float (true) or 
double (false).  

true: nbyte=4; wformat=float; 
  false: nbyte=8; wformat=double; 

10 bool 
  If the unconvolved waveform is written 

(ifNonconv) 

11 bool   If the first-order-scattering waveform is written 
(If1order) 

12 bool   If the statistical information is written 
(ifStatinfo) 

  3. Global Parameters Record   

1---8 double   Time step of each bin 

9---16 double   Distance step of each bin 

17---20 unsigned int   Number of bins for each convolved waveform 
(nConv) 

21---24 unsigned int   Number of bins for each non-convolved 
waveform (nNonconv) 

25---28 unsigned int   Total number of pulses (N) 

  4. Data Record  
(Totally N repetitive records) 

  

      4.1. Prameter Record     

1—8 double look angle (in rad) (from -pi/2 (left) to pi/2 (right)) 

9---24 double * 2   Incident angles: theta, phi (in rad) 

25—48 double * 3 Incident unit distance: x, y, z (in meter) 

49---72 double * 3   Platform position: x, y, z (in meter) 

73---80 double   Beginning time of the convolved waveform 

81---88 double   Beginning time of the non-convolved waveform 

89---92 unsigned int   Number of bins from sensor to center of FOV 

93---96 unsigned int Pulse index i 

97---100 unsigned int Pulse index j 

      4.2. Convolved Waveform Record   

1 --- (nConv*nbyte) wformat * 
nConv   Lidar convolved waveform 

      *4.3. First-Order Convolved 
Waveform Record (exist if1order == true)   

1 --- (nConv*nbyte) 
wformat * 

nConv 
  Lidar first-order convolved waveform  
(it does not exist if if1order is false) 

      *4.4. Non-Convolved Waveform 
Record (ifNonconv == true) 

  

1 --- (nNonconv*nbyte) wformat * 
nNonconv 

  Lidar non-convolved waveform  
(it does not exist if ifNonconv is false) 

      *4.5. First-Order Non-Convolved 
Waveform Record (ifNonconv == true 

and if1order == true) 
  

1 --- (nNonconv*nbyte) wformat * 
nNonconv 

  Lidar first-order non-convolved waveform  
(it does not exist if ifNonconv or if1order is 

false) 

      *4.6. Statistics Record  
(ifStatinfo == true)   

 
1 --- (9+41*nbyte) …… 

  Statistics Record 
(it does not exist if ifNonconv or ifStatinfo is 

false) 
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Chapter 5

In-flight fusion of imaging spectroscopy
and LiDAR multi-sensor system

This chapter presents the a novel functionality through combination of Chapter 3 and Chapter 4.

Multi-sensor systems are increasingly demanding in recent airborne RS applications. They usually

provide data which are combined by measurements of several active or passive devices, which reflect the

properties of the Earth’s landscape through various perspectives. These devices share the same sensor

acquisition geometry which facilitate the fusion of their data.

Combination of waveform LiDAR and imaging spectrometers is an emerging technique used by

several recent airborne systems, including CAO (Asner et al., 2012, 2007), G-LIHT (Cook et al., 2013),

and NEON AOP (Kampe et al., 2010), etc... The combined data provide both functional and structural

information, which makes this technique a unique tool for understanding and management of the Earth’s

ecosystems.

The rapid development of this technique urgently demands the simulation and validation of these

combined data. Nowadays, several radiative transfer models can partially simulate spectrometer data

or laser ranging and detection (LiDAR) data with limitations. The fusion of their simulated data has

not been completely addressed due to theoretical and experimental bottlenecks of these models. In this

chapter, we introduce a new combined method to simulate realistically large-scale data fusion which

combined waveform LiDAR and imaging spectrometer, with any experimental, instrumental, and geo-

metrical configurations of systems. This method benefits from the fact that DART is currently an unique

model that can simulate data of both imaging spectrometry with multi-view configuration (Chapter 3)

and waveform LiDAR with multiple pulses (Chapter 4). The fusion process acts on the data simulated

by these two modes under the condition that geometrical configuration of the sensors are the same.

Actually this method is an extension from the solar noise estimation algorithm presented in Section

3.1. Simulated data examples are presented with configurations of currently existing airborne devices

based on both urban and forest landscapes. The dimensionality of principal components are analyzed

on the fusion data. The results in this chapter verify that high-quality realistic data can be simulated and

combined by DART for potential application and preparation of current and new multi-sensor systems.
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5.1 Article: In-flight fusion for simulated data of airborne imaging spec-
trometer and waveform LiDAR multi-sensor system through DART
model
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Abstract

Multi-sensor remote sensing system is capable to integrate several passive and/or active
devices which share the same acquisition geometry to facilitate the combined use of their
data. Fusion of light ranging and detection (LiDAR) and imaging spectroscopy is an emerg-
ing technique that combines both functional and structural information for understanding
and management of the Earth’s ecosystems. Nowadays, several radiative transfer models
(RTMs) can partially simulate imaging spectroscopy and/or LiDAR data. The simulation
of their combined data has not been completely addressed due to the constraints caused
by both theoretical and experimental bottlenecks of these models. The discrete anisotropic
radiative transfer (DART) model is capable to simulate both satellite and airborne spectrom-
eter images and LiDAR waveforms with multiple pulses for any instrumental, geometrical
and experimental configurations. A novel approach of using DART to simulate and combine
multi-sensor airborne data with realistic configurations is presented here. The fusion process
is based on a technique in which the LiDAR points are back-projected to the image plane of
spectrometer through same sensor geometrical configurations. Examples of similar configu-
rations as the Carnegie Airborne Observatory (CAO) for both urban and forest landscapes
are presented. A selection of principal components is then analyzed for each sensor to eval-
uate the in-flight fusion technique on the simulated data. The results in this paper shows
that DART becomes a powerful tool which simulates realistic data for validation of current
and future multi-sensor systems.

Keywords: radiative transfer, DART, fusion, imaging spectroscopy, LiDAR, multi-sensor
system, principal component analysis

1. Introduction

Remote sensing is an increasingly used source of data for the study of forest ecosystems.
Spatial and temporal estimations of key biophysical and biochemical variables help under-
stand local and global interactions between phenology, photosynthetic activity, ecological
processes, climate changes and various other dynamic processes (Asner and Vitousek, 2005;
Asner et al., 2006). Multi-sensor fusion becomes an emerging trend in the progression of
current RS technologies due to the complementarity of information derived from each type
of devices. Indeed, instead of processing information retrieved through different sensors
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separately, data fusion techniques consist in the combination of multiple sources to obtain
improved information. The data fusion framework is rich of a variety of techniques, the
success of which relying at the first place on the accuracy of the registration/data alignment.

Imaging spectrometer and LiDAR data are essentially complementary to each other,
which helps estimating both constitution and structure of the Earth’s ecosystem. Imaging
spectroscopy is a passive remote sensing (RS) technique which measures upwelling spectral
radiance value per pixel, combining both emitted and reflected components. In the spectral
domain from visible (VIS) to short wave infrared (SWIR), the reflection from solar and
atmospheric radiations is predominant. When acquired under appropriate conditions, the
recorded reflected radiometric signals from an imaging spectrometer provide information
about the biophysical and biochemical properties of the Earth’s ecosystems (Asner, 1998;
Ustin et al., 2004). LiDAR is an active RS device using the time of flight technique, which
records reflected laser pulse signals to retrieve the positions of scatterers. LiDAR data can
be used to infer 3-D structure of vast landscapes through measurements of multiple pulses
(Lefsky et al., 2002). The fusion of imaging spectrometer and LiDAR is a particularly
active field of research (Asner et al., 2008; Dalponte et al., 2008, 2012; Féret and Asner,
2012). Previous works show that the fusion of hyperspectral and airborne laser scan (ALS)
data can significantly improve the dimensionality of information obtained from Principal
Components Analysis (PCA) (Asner et al., 2012) and accuracy of tree species classification
(Dalponte et al., 2008; Mundt et al., 2006).

In order to facilitate data registration and fusion, multi-sensor systems are recently pre-
ferred. Hence all the sensors share the same acquisition geometry over comparable swath
region. The so-called in-flight fusion method is adapted during data acquisitions on multi-
sensor systems Asner et al. (2007). Airborne platforms are commonly accepted for their
flexibility, relative low cost and high spatial and temporal resolution, so they are the pri-
mary choice for the calibration and validation of in-flight data fusion. Several Imaging
Spectrometer and LiDAR Multi-sensor Systems (ISLMS) have been employed in airborne
RS, including Carnegie Airborne Observatory (CAO, Asner et al. (2007, 2012)), National
Ecological Observatory’s Airborne Observation Platform (NEON AOP, Kampe et al. (2010)),
and NASA Goddard’s LiDAR, Hyperspectral and Thermal Airborne Imager (G-LIHT, Cook
et al. (2013)). The sensors that are integrated in these systems include small-footprint scan-
ning full-waveform LiDAR (wLiDAR), hyperspectral pushbroom sensor with spectral bands
ranging from 400nm to 2500nm, as well as thermal infrared sensors for measuring tem-
perature (only with G-LIHT). The rapid development of the ISLMS requires accurate and
efficient simulation tool of a variety of data acquisitions, in order to validate data of current
systems, identify limitations, and evaluate possible future systems.

Radiative transfer models (RTMs) are appropriate tools to simulate radiation propaga-
tion and interaction within the Earth’s landscape based on physical processes. They are
intensively used to simulate radiance for any given sun and observer geometry, thus radio-
metric properties such as bidirectional reflectance factor (BRF), albedo, as well as waveform
of single LiDAR pulse, over simulated media of various complexity. The inversion of RTMs
also is applied to measured RS data to retrieve biophysical and biochemical characteristics
of observation area. The fusion of imaging spectrometer and LiDAR through RTM has not
been completely addressed before. It was evaluated by Koetz et al. (2007) through combina-
tion of 2 different RTMs: 2-D GeoSAIL model (Koetz et al., 2007) for imaging spectrometer
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simulation and a 3-D LiDAR waveform model developed by Sun and Ranson (2000). This
method demonstrates the synergistic parameters retrieval, but the data simulation was lim-
ited to unrealistic conditions, including constrained description of simulated scene, large
footprint wLiDAR with only first-order scattering signal, and single pulse per simulation.
Furthermore, the combination of two independent models (in 2-D and 3-D, respectively, and
developed by 2 institutes) induces extra difficulties for unification. Other than synergistic
parameter retrieval per acquisition, another application of fusion is the systematic analysis
of combined large-scale data to study the biodiversity of the Earth’s ecosystem. To date, no
single RTM that is open to the scientific community can efficiently simulate large-scale RS
image and points retrieval from thousands or millions of wLiDAR pulses with consideration
of realistic sensor geometry.

In order to simulate such data for ISLMS, several prerequisites have to be satisfied :

1. The model must work with 3-D heterogeneous scenes for both for imaging spectrometer
and LiDAR configurations. Especially for wLiDAR simulation, photon tracking in 3-D
space is essential for accurate waveform retrieval including multiple scatterings and the
preliminary products are 3-D profiles.

2. The model must simulate reflectance images of the scene. Some of the existing RTMs
can only calculate the reflectance of the whole simulated scene, which in many cases
limits the pixel-wise validation with RS acquisitions, especially with high spatial reso-
lution RS data. The reflectance must be accurately calculated per pixel based on each
local content in the simulated landscape.

3. The model must consider varying view direction per pixel in a sensor image acquired by
an imaging spectrometer, i.e., the sensor geometrical projection model. It is typically
the case for RS systems such as pushbroom sensors with wide field of view (FOV).
Parallel-perspective projection must be considered for linear pushbroom sensors (Gupta
and Hartley, 1997; Chai and Shum, 2000; Zhu et al., 2004).

4. The model must simulate LiDAR waveforms of multiple pulses efficiently with var-
ious footprint size and consider the multiple scatterings especially in near infrared:
Points (usually less than 10) can be extracted from each recorded waveform in ALS.
Decomposed point cloud from multiple pulses is one of the primary products of ALS.
Generally speaking, the density on the ground for ALS is about 1-20 pulses per m2,
and a scenes size that exceeds 100m×100m is common for certain types of application.
The simulated ALS data should be capable to be processed into point cloud, by using
state-of-art LiDAR data processing techniques.

5. The model must be capable to project locations of all LiDAR pulses at the image of
pushbroom sensor, thus the registered data can be combined for fusion.

Most of theses prerequisites are quite challenging for many existing RTMs. Simulation tools
which can fully satisfy all these prerequisites do not exist in previous works.

The Discrete Anisotropic Radiative Transfer (DART) model (Gastellu-Etchegorry et al.,
1996, 2004, 2012) has satisfied most of theses requirements. DART has been developed
since 1992, and becomes one of the most functional, comprehensive and accurate 3-D RTMs
((Pinty et al., 2004; Widlowski et al., 2007)) for simulating RS data from VIS to thermal
infrared band and radiative budget of the Earth’s landscape. It can simulate images of
heterogeneous scenes (radiance value/reflectance/brightness temperature) with atmosphere
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coupling (Grau and Gastellu-Etchegorry, 2013) through orthographic projection. Recently,
a new approach, the so-called convergent tracking and perspective projection (CTPP) is
introduced into DART, in order to simulate passive sensor images with a finite FOV through
perspective projections (Yin et al., 2015b). DART simulates LiDAR waveform by using an
approach called Ray Carlo method (Gastellu-Etchegorry et al., 2015a). This method also
is extended into efficient multi-pulse simulation for both airborne and terrestrial laser scan
systems (Yin et al., 2015a).

This paper presents a novel approach which combines the recent implementations in
DART to simulate both data and in-flight fusion of ISLMS systems. The hyperspectral
sensor images and wLiDAR data which are separately simulated in DART are linked in
this approach. The ultimate objective of this approach is to simulate ISLMS data of any
configuration, with the same quality as actual-acquired data. Two types of fusion process
are illustrated:

1. The output of multi-pulse LiDAR simulation is converted into an industrial LiDAR
data format for storage of waveform data, the sorted pulse data format (SPD, Bunting
et al. (2013b)). The associated open-source library SPDlib (Bunting et al., 2013a) is
used to process the data into point cloud. The retrieved point cloud is registered with
simulated hyperspectral pushbroom sensor images. Examples of the combined points
are demonstrated for both urban and vegetation landscapes.

2. In the case of vegetation landscape, processings aiming at extracting spectral features
(PCA), identifying tree species (classification) and estimating biophysical properties
(regression models for biophysical parameters) are applied to the simulated data cube
(stacking of hyperspectral images and retrieved time-gated images from LiDAR wave-
forms). Classification and regression results are discussed to validate the improvements
by the fusion process.

2. Review on DART simulation of passive sensor image and multi-pulse LiDAR

Figure 1: DART scene system

DART is a 3-D RTM which simulates ray propagation and interaction within Earth-
atmosphere system, in spectral domain ranging from VIS to SWIR band. The implemen-
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tations of DART which are used in simulating imaging spectrometers are briefly presented
in this section, including the construction and parametrization of the simulated scene, ray
tracking within the scene, and algorithm for image generation and projection. Readers are
invited to refer to Gastellu-Etchegorry et al. (2004, 2012, 2015b) for more details.

2.1. Scene system and ray tracking method

The construction of a 3-D heterogeneous scene in DART is based on the division of
the Earth-atmosphere system into cells (volume elements) of varying sizes and properties.
Figure 1 shows an illustration of a simulated scene system made up of different types of
cells. The 3 domains (the high atmosphere, the mid atmosphere, and the Earth’s scene) are
discretized into cells with different specific sizes for the sake of computational efficiency and
contribution of each domain. Triangles and turbid media are the basic elements in each cell
that constitutes the Earth’s scene. They give rise to surface and volume interactions with
rays, respectively. Atmosphere, vegetation, and any other type of fluid can be described as
a turbid medium with specific properties such as aerosol density, vegetation leaf area index
(LAI), leaf angle distribution (LAD), chlorophyll content, etc..., The attenuation of a ray
in turbid mediums follows Beer’s law. On the other hand, surfaces such as roofs, and walls
of houses, trunks and branches of trees, foliar elements or part of them, as well as defined
topography, can be represented using triangle formalism, with each triangle being defined
by its precise location in 3-D space. They give rise to surface interactions. Their properties
are specified with specular/isotropic/anisotropic reflectance, direct/isotropic transmittance,
absorption, etc.... They are used to for calculating ray interactions at the boundaries of
surfaces.

DART uses the so-called Ray Tracking method to simulate propagation of rays. In a
steady state, for a ray ~I(r,Ωn) propagating along direction ~Ωn with radiant flux I(Ωn), the
3-D discrete radiative transfer equation is repetitively solved:

5 · ~I(Ωn) = −α(Ωn)I(Ωn) + Je(Ωn) +
N∑

m=1

αd(Ωm)
P (Ωm → Ωn)

4π
I(Ωm)∆Ωm (1)

where α is the total extinction coefficients of absorption and scattering (α = αa + αd);

Je(r,Ωn) is the emitted radiant flux along ~Ωn; the summation term is the numerical inte-

gration of each incoming flux ~I(Ωm) along direction Ωm which are scattered towards ~I(Ωn);
P (Ωm→Ωn)

4π
is the scattering phase function from Ωm to Ωn of the participating medium. In

DART, any number N of discretized directions over the 4π space are pre-computed (Yin

et al., 2013). P (Ωm→Ωn)
4π

of all permuted directions combinations are as well pre-computed for
each participating medium.

Ray tracking method in the Earth scene is divided into illumination step and scatter-
ing step. During the illumination step, both the solar radiation (through solar direction)
and atmosphere radiations (through downward discrete directions) are calculated. They are
tracked from the top faces of the cells at the top of the Earth scene (bottom of the atmo-
sphere). Radiations are tracked along their associated directions until they are intercepted
or absorbed. The scattering step is an iterative process running until convergence is reached.
In each iteration, previously intercepted rays are scattered and tracked towards all the N
discrete directions over the 4π space, according to the pre-calculated phase functions. These
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rays are either absorbed, or intercepted to be scattered in the next iteration. For each iter-
ation, the directional radiance images and the exitance of the simulated scene are recorded.
Convergence is reached when the total exitance of an iteration is less than a given threshold.
DART products are calculated by extrapolation of the last 3 iterations before convergence.

2.2. Simulation of passive sensor images

For each iteration during ray tracking, if a scattered ray reaches the top of a simulated
scene, its power and its source scattering element area are projected along its associated
direction onto a horizontal image plane (HIPlane). The HIPlane is a mesh grid with de-
fined size, where areas of grids represent pixels comprising images for each direction on the
HIPlane. The altitude of HIPlane is chosen to be at the scene reference minimum altitude
(SRMA), which is either 0 for the scene without digital elevation model (DEM), or the lowest
altitude of an imported DEM. At the SRMA, the HIPlane is co-registered with the georef-
erenced coordinate system of the simulated scene in DART. The radiance value generated
by the ray are distributed to each occupied pixel with the proportion of the projected area
within each pixel. The number of images on the HIPlane equals the total number of defined
upwards directions in a simulation. Since projected images on the HIPlane are created for
each direction, a direction-image bijection map is used in DART to store the images asso-
ciated to their directions. In addition to the discrete directions that sample the 4π space,
DART allows another kind of pre-defined direction, the so-called virtual direction. Virtual
directions can be arbitrary defined with their zenith and azimuth angles. Rays scattered
along a virtual direction (virtual rays) undergo interceptions as those along the other dis-
crete directions, except that the intercepted virtual ray can not be scattered, thus the total
energy is conserved. Therefore, virtual direction is purely used for calculation of reflectance
and generation of images along an arbitrary direction.

For simulation of images, there are 3 types of projection simulated in DART: orthographic
projection, perspective projection, and parallel-perspective projection. Orthographic pro-
jection is applied for images which are bijected to pre-defined directions. It is based on an
assumption that the directions of all rays which generates a radiance image are parallel. The
average pixel values of the HIPlane gives the reflectance of the scene along that direction.
This corresponds to the BRF product, which in reality, is calculated by a region of RS images
where divergence of the view angles within sensor FOV can be neglected. The orthographic
projection is classically used in the previous DART releases. The convergent tracking and
perspective projections (CTPP) method has been recently introduced (Yin et al., 2015b).
It combines 3-D RTM with 3-D perspective projections, to simulate images specifically to
imaging spectrometers with finite FOV. This method makes DART adapted with acquisi-
tion geometry configurations of general sensors, including classical perspective projection for
cameras, and parallel-perspective projection for pushbroom sensors. For pushbroom sensor
configuration, there are 2 key horizontal axes to consider: the platform direction, and the
cross-track direction. They are usually perpendicular. The convergent point of radiations
depends on the position of the scattering object. With known horizontal trajectory, the
convergent point coordinates are determined from the intersection of the cross-track plane
passing through the object and the trajectory path. Along the trajectory, parallel (ortho-
graphic) projection is adapted. Otherwise, along cross-track plane, perspective projection is
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adapted. The projection orientation of a pushbroom sensor is usually selected to be horizon-
tal, so the image on the HIPlane can be directly considered as the realistic raw image. With
the CTPP approach, DART can simulate original pushbroom sensor images with any num-
ber of bands. Usually, these original images have to be orthorectified for RS applications.
However, for purpose of fusion, original images are directly used, since orthorectification can
induce loss of geometrical projection information for each pixel.

2.3. Single- and multi- pulse data simulation of waveform LiDAR

H
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SRMA
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Point

(a) (b)
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Figure 2: Geometries for single- and multi- pulse ALS simulation in DART. (a) LiDAR geometrical con-
figuration and variables for a single pulse simulated in an ALS simulation (oblique view). (b) Projected
region on the SRMA plane by footprint (blue dashed ellipse) and FOV (red solid ellipse). (c) Geometrical
configuration and distribution of the scan pattern on the SRMA plane for an optical polygon rotation mirror
in ALS. Black dots indicates the pulse center on the SRMA plane.

The approaches which are used to simulate wLiDAR data in DART are generally reviewed
in this section. For details of single- and multi- pulse simulation and validation of LiDAR in
DART, one is advices to refer to Gastellu-Etchegorry et al. (2015a); Yin et al. (2015a). DART
is capable to simulate LiDAR pulse at any altitude with any LiDAR orientation and any
footprint/FOV configurations (Figure 2). Figure 2(a) illustrates geometrical configuration
of a LiDAR pulse in a DART simulation. For a scanning ALS device, the generated laser
pulses are reflected by rotating/oscillating mirrors to direct pulses through various directions.
The source of transmitted photons is considered to be located at PL(x, y,H) (width of
beam is neglected at the exit of laser generator), which is also considered to be the LiDAR
position. It also represents the location of the reception telescope, with radius rt and area
At = πr2

t . Footprint and FOV are constant parameters for each LiDAR device which are
represented by half dispersion angle αfp and αFOV respectively. All parameters above are
the fixed instrumental parameters of a LiDAR device defined in DART. αfp and αFOV
give rise to elliptical projected regions on the SRMA plane when the LiDAR has an oblique
viewing angle θL. The elliptical projected regions of illumination and reception on the SRMA
are represented by Eilm and Ercp respective in the scene’s coordinate frame (Figure 2(b)).
The details for calculating the short (perpendicular) radii (R⊥,ilm and R⊥,rcp) and the long
(parallel) radii (R‖,ilm and R‖,rcp) are elaborated in Gastellu-Etchegorry et al. (2015a).

To simulate a LiDAR waveform, DART uses a quasi- Monte Carlo Ray Tracing (quasi-
MCRT) method to simulate photon transportation within simulated scene. Actual number
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of photons carried by a LiDAR pulse is unmanageable in terms of computational load. The
concept of simulated photon is introduced in DART to represent every discrete energy that
is launched from a laser generator. The simulated photons are launched from PL towards
Eilm on the SRMA plane. They are continuously tracked until they are absorbed or their
experienced order of scattering is larger than a defined number. Random number generation
is frequently applied during photon interactions (i.e. transmission, interception, absorption,
and scattering) with scene elements. When a simulated photon is scattered from an element,
if the scattering position is inside the FOV of the LiDAR, a ray along a virtual direction
(virtual ray) is created at the scattering position towards the sensor. The virtual ray is
considered to reach the sensor by multiplying its energy by the direct transmittance of
the path from the element to the sensor. The distance of this path is added to the photon
propagation distance. With this method, almost every scattering event within the FOV cone
volume gives rise to a measured signal propagation time. This method significantly reduces
total number of launched simulated photons. The speed of simulation can be reduced to
less than 0.001 seconds in certain cases which is far beyond current performance of any
traditional Monte Carlo method. In DART, all photons are assumed to be launched at the
same time, and the simulated signal is convolved with temporal profile of launched LiDAR
pulse. The LiDAR signal from atmosphere is also simulated in the current version of DART.

In reality, wLiDAR devices for RS applications have pulse repetition frequencies up to
100’s KHz. Rotation polygon mirror system (Shan and Toth, 2008) is implemented in multi-
pulse simulation of DART. As illustrated in Figure 2(c), such system has a scan pattern which
consists of a series of parallel lines of footprint and FOV on the ground plane. ALS system
has geometrical configuration which is similar to the pushbroom sensor acquisitions (Section
2.2). Two axes are considered: the azimuth axis (platform trajectory direction), and the
range axis (direction of parallel lines pointing to the right side of platform). The rotation
velocity of the mirror and the speed of platform are both assumed to be constants, then
geometric configuration of each pulse (Figure 2(a)) can be derived (PL and θL). αfp and
αFOV are both constant for the configuration of each pulse. According to the scan pattern
of the parallel lines, each pulse is specified by 2-D indices (i, j). i is the scan index along
the azimuth axis, and j is the pulse index of each scan along the range axis. Waveforms
are simulated for each pulse, and they are stored in a binary file with their corresponding
geometrical parameters and pulse indices. Since processing for each pulse are independent,
multi-threading technique is introduced to accelerate the speed of multi-pulse simulation.
With Np parallel threads, the processing time is reduced by Np times.

In order to process the simulated data into point cloud, the output binary file of multiple
pulses is converted into an industrial LiDAR data format, the SPD format (Bunting et al.,
2013b). SPD is specially designed store large set of the waveforms using hierarchy data
format (HDF5) compound data type. The number of photons per bin Nb in industrial LiDAR
format by setting a proper ratio (gain) g, where Cb = Nb × g. The associated processing
tool, SPDlib (Bunting et al., 2013a), supports Gaussian decomposition to generate point
cloud from waveform data. For each pulse, multiple points can be generated, depending on
detected number of Gaussian profiles. Theses points are ordered from nearest distance to
farthest distance, where the first return usually represents the canopy position and the last
return usually represents the ground position. The pulse indices (i,j) are preserved during
the whole process, so the retrieved points are surjectively mapped to each pulse index.
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3. In-flight fusion of simulated ISLMS data

(a)

Platform trajectory
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Lidar Range axis
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Figure 3: Data combination of imaging spectrometer and wLiDAR multi-sensor system. (a) The flow chart of
the whole process. (b) Acquisition geometry diagram. (c) Interpolation diagram to retrieve the corresponding
radiance value within wLiDAR FOV. The grid represents radiance image pixels on the HIPlane; the red ellipse
is the FOV region on the HIPlane; ’*’ is the center of the FOV; ×s are points inside the FOV that can be
selected for interpolation; +s are the points outside the FOV which are excluded in calculation.

The two streams of DART to simulate pushbroom sensor image and multi-pulse LiDAR
data are linked for fusion of ISLMS.

3.1. Process chain

The acquisition geometry for ISLMS is illustrated in Figure 3(b). It can be summarized
as 2 illumination sources (sun and wLiDAR) and 2 reception sensors (pushbroom imaging
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spectrometer and scanning wLiDAR). The same platform path and acquisition geometry is
shared by the 2 sensors. The cross-track plane of the pushbroom sensor and the range axis
of the wLiDAR (rotating polygon system) are aligned. Figure 3(a) shows the workflow of
ISLMS data fusion process in DART, which contains 3 stages:

1. Preprocessing. In this stage, pre-defined discrete and virtual directions are gener-
ated; simulated scene is initialized; platform path and cross-track plane/range axis are
parameterized. These inputs are shared by both pushbroom sensor and wLiDAR sim-
ulation. The scattering phase functions according to the illumination source incident
direction are separately calculated for pushbroom sensor and wLiDAR.

2. Separate data simulation. The preprocessed inputs are separately passed to simulations
of pushbroom sensor and wLiDAR. The pushbroom sensor simulation gives multi-angle
original images on the HIPlane, while the wLiDAR simulation gives a binary file which
stores multi-pulse waveforms. During the wLiDAR simulation, the parametrization
and acquisition geometry (Figure 2(a)) is calculated for each pulse. Ercp are retrieved
from the stored acquisition geometries for each pulse. They are temporarily stored.

3. Data combination. The HIPlane which stores the unorthoredtified image is also located
at the SRMA, and thus is registered with DART coordinate system, a connection can
be build between each pulse to the radiance images on HIPlane. Therefore, HIPlane
is the rendezvous node for the outputs from the 2 streams. Figure 3(c) illustrates
this connection, where the background grids are the pixels of a simulated image on
the HIPlane. The position of the blue ? represents the center of Ercp from the stored
output in Stage 2, which is not necessarily located at the center of a pixel on the
HIPlane. Thus, radiance values are calculated by cubic spline interpolation of the
HIPlane radiance images on the blue ?. These values are assigned to the pulse indices
of the LiDAR simulation. To be more accurate, several points (× in Figure 3(c)) can
be derived from the blue ? along short and long axes of the ellipse in equal separation,
where blue ×s are inside the ellipse and red ×s are outside the ellipse. So the radiance
value assigned to the pulse is the average interpolated radiance values at the blue ×s.
The radiance images of pulse indices are then added to the data cube generated by
pure wLiDAR. The output wLiDAR file can also be converted into SPD format and
processed by SPDlib into point cloud, with surjective map from 3-D points to 2-D
indices of each pulse still being preserved. Until this step, the data are combined.

3.2. Registration of digital images with LiDAR point cloud

Figure 4 illustrates an example of multi-pulse wLiDAR simulation over the city center
of Toulouse, France. The scene is a subregion of the urban database from CAPITOUL
experiment (Masson et al., 2008). Table 1 provides the instrumental parameters setting
of simulated small-footprint wLiDAR, and Table 2 provides the platform and acquisition
configuration. Figure 4(a) illustrates the geometry of acquisition. The wLiDAR platform
passes through the center of the scene at an altitude of 300m and the LiDAR orientation
range is from −39.8◦ (left view) to 39.8◦ (right view) over the whole scene. The density of
points that are retrieved by SPDlib (3.924/m2) is not much larger than the density of pulses
(3.711/m2), because majority components of the scene are buildings and topography, which
mostly give rise to a unique single return per pulse. Multiple returns are retrieved only
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Figure 4: ISLMS data combination of the simulated scene of Toulouse city center (France). (a) Geometrical
configuration of the ALS simulation over the scene. (b) Image of elevation of retrieved first returned point
for each pulse, with range index as horizontal axis, and azimuth index as vertical axis. (c) and (e): Layers
of true and false color composites of interpolated radiance value on the HIPlane for each pulse. (d) and (f):
3-D visualization of LiDAR point cloud with true and false color composite on each point.
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Table 1: LiDAR instrumental configuration for multi-pulse simulation

Parameters Value

Wavelength 1064nm
Bandwidth 10nm

Energy of each pulse 1mJ
Acquisition rate 1ns

Pulse duration at FWHM 2ns
Telescope area (At) 0.1m2

Dispersion footprint (αfp) 0.00025◦

Dispersion FOV (αfp) 0.0004◦

Table 2: LiDAR platform and acquisition configuration for multi-pulse simulation over city center of Toulouse

Parameters Value

Platform altitude (H) 300m
Viewing angle range (−39.8◦, 39.8◦)
Separation of lines 0.5m

Separation of viewing angle 0.0015rad
Number of scanned lines 1001
Number of pulses per line 927

Total number of pulses 927927
Density of pulses 3.711/m2

Total number of points 981065
Density of points 3.924/m2

when a footprint is partially intercepted by the edge of the a roof and a surface underneath,
or by tree crowns. Figure 4(b) presents an image with pulse indices (1001 × 927 pixels),
in which pixel values give the height of the first return (highest return) for each pulse. It
generally present the urban canopy structure from processed LiDAR points. The horizontal
and vertical axes of the image indicate the range and azimuth indices. The pixels actually
are not equally spaced in the horizontal direction. Some walls of buildings are observed from
both sides of the platform path, including the walls on the left side facing right, and the walls
of the right side facing left, where left-view and right-view LiDAR orientations are applied,
respectively.

The wLiDAR simulation of Toulouse city center is combined with pushbroom sensor
simulation. Four bands of pushbroom sensor original images on the HIPlane are simulated:
450nm 550nm 650nm and 850nm, with bandwidth of 10nm. Interpolations on the HIPlane
are applied on the centers of reception ellipses for each LiDAR pulse. The true-color and
false-color images associated to the corresponding pulse indices are generated from the data
combination stages above (Figure 4(c) and 4(e)). The horizontal and the vertical axes of
the layers represent the azimuth index and the range index, respectively. These layers are
exactly registered to the first return height layer (Figure 4(b)) product of LiDAR simulation.
Majority of rays which enter the sensor came from the canopy of the scene, so the patterns of
these layers are also registered with the first return height layer. Walls are also seen on both
side of the platform path. The walls facing right are presented on the side with negative θL,
but missing on the side with positive θL, because they are not viewed by the sensors (same
as in Figure 4(b)).

In addition to the data cube of the 4 bands of pushbroom sensor, the wLiDAR products
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based on each pulse can be added as superimposed layers. The possible LiDAR products
may include the first return height (proved to be the most useful attribute in classification
in Dalponte et al. (2008)), the number of returns, apparent reflectance, count per bin of
waveform (used in Asner et al. (2012)), etc.... All of them can potentially increase the data
dimensionality comparing to purely pushbroom sensor data. The radiance values can be
further assigned to the retrieved points of each pulse through the point-to-indices surjective
map. 3-D visualizations of the LiDAR point cloud with true/false color composition assigned
to each point are displayed in Figure 4(d) and 4(f). which is similar to the actual CAO data
presented in (Asner et al., 2007) by the CAO.

3.3. Analysis of data cube generated with hyperspectral images and time-gated waveform
images: application to forested areas

The airborne acquisition of LiDAR and imaging spectrometer data with metric spatial
resolution allows improved performances of tasks such as species identification and linkages
between biological diversity and environmental factors such as microtopography (Féret and
Asner, 2014b). Understanding the interactions between incoming light and these complex
ecosystems is the key for a correct interpretation of remotely sensed data (Morton et al.,
2014). In this perspective, physically-based radiative transfer models are increasingly being
used, allowing detailed 3-D description of vegetation and realistic simulation of remotely
sensed data. Some research focus on the absolute accuracy of simulations when compared to
experimental acquisitions, which involves an extremely detailed scene to identify the relative
contribution of each element to the simulated radiometric signal at fine spectral and spatial
scale (Schneider et al., 2014a,b). On the other hand, the maturity and computational effi-
ciency of radiative transfer codes allow building sensitivity studies to estimate how viewing
conditions, vegetation properties and instrumental characteristics globally influence the ra-
diometric signal (Morton et al., 2014). Here our goal is to illustrate the possibilities offered
by DART simulations for ecological and environmental applications. Therefore we focus on
two applications: species classification of emerging trees and biophysical variable estimation,
which in our case is the LAI.

(a) (b)

Figure 5: Simulation of Jarvselja birch stand test site. (a) Location distribution of the tree species. (b) The
optical property of leaf facets for each tree species.
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We use DART to simulate both hyperspectral and full waveform LiDAR data based
on a 3-D representation of a plot proposed by the RAMI-4 canopy experiment. This plot
corresponds to the test site of Jarvselja birch stand (Estonia) in summer. The simulated scene
(110m× 110m) consists in a total of 18 importable tree objects, distributed between seven
tree species summarized in Table 3. These imported objects are made of facets representing
leaves, branches and trunks generated from actual measurements. For each tree species,
between one and five 3-D objects are derived from actual measurements and used to build the
scene. Species represented by more than one object correspond to dominant species emerging
from the canopy. The spatial distribution of species in the scene is illustrated in Figure 5(a).
Three species are particularly dominant in the upper canopy and represent a large majority
of the emerging species : ALGL, BEPE and POTR. Each species is defined by a unique set
of leaf optical properties (reflectance and transmittance), and each leaf is considered as a
Lambertian scattering element. These leaf optical properties are initially provided by RAMI
for 19 bands ranging from visible to near infrared. Our hyperspectral simulations require a
finer spectral sampling over a broader spectral domain, so we estimated leaf structural and
chemical properties for each species using PROSPECT inversion Feret et al. (2008) (Table
3), and further provide full-spectrum leaf-level optical properties, from 400nm to 2500nm
with 1nm spectral sampling (Figure 5(b)). The absence of SWIR data provided for the initial
leaf optical properties does not allow reliable estimation for EWT and LMA. However the
main purpose of this scene is to illustrate DART simulations, and the exactness of the leaf
optical properties corresponding to each species is not critical. To conclude about the tree
representation, within-species variability of leaf optical properties is not taken into account,
whereas within-species variability of structure and other physical parameters, such as crown
dimensions, LAI and LAD, is partly taken into account for dominant and emerging species
(Table 3, NBIO> 1).

Once the simulated scene is prepared, all the leave facets are converted into turbid cell
with dimension of 0.25m × 0.25m × 0.5m. The LAI and LAD are calculated separately
within each cell. The branches and trunks are embedded within the turbid cells. The
parameter settings for the ISLMS are based on the configuration described for the CAO.
For hyperspectral configuration, a total of 210 spectral bands are simulated from 405nm
to 2495nm, with spectral resolution of 10nm and bandwidth of 10nm. The instrumental
configuration of wLiDAR is the same as shown in Table 1. Table 4 gives the platform and
acquisition configuration.

In this case, sensor altitude is set to 1000m, so the viewing angle range is relatively small
with the center at NADIR Figure 6 illustrates the elevation and number of returns derived
from the point cloud extracted from SPDlib. Unlike the previous example of Toulouse city
center, the density of extracted points (20.598/m2) is significantly larger than the density
of pulses (7.891/m2), since multiple pulse returns corresponding to tree crown, branches,
trunk and eventually ground can be recorded during the penetration of each laser through
the canopy. The wLiDAR data is converted to time-gated data cube of digital numbers (209
overlapping images of digital numbers for the corresponding bins over various pulses). The
distance represented by each bin is 15cm, so totally a vertical distance of approximately
31.35m is recorded. Prior to classification and regression tasks, we reduced the dimension-
ality of the data with a feature extraction method. We expect our scene to contain most
of the information necessary for our tasks in a limited amount of latent features, due to
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(a) (b) (c)

Figure 6: Primary simulated results of of Jarvselja birch stand test site before fusion. (a) Pushbroom sensor
image of RGB band combination (b,c) Simulated LiDAR point cloud. (b) Elevation. (c) Counts number.

(a) (b)

(c) (d)

Figure 7: (a) Relationship between the normalized bare soil reflectance and the first principal component.
(b) RGB Color composition of components 8, 5 and 4. (c) 3-D mapping of subfigure (d) by combination
with LiDAR point cloud.
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Table 3: Species in the test site of Jarvselja birch stand and corresponding biochemical parameters used
for leave facets. (NBIO=number of importable objects, THPO=tree height per object, LSP=leaf struc-
ture parameter, CHL=chlorophyll concentration, CAR=carotenoid concentration, EMT=equivalent water
thickness, LMA=leaf mass per area)

Species Acronym NBIO
THPO

(m)
LSP

CHL
(g/cm2)

CAR
(g/cm2)

EWT
(cm)

LMA
(g/cm2)

Alnus
Glutinosa

ALGL 4
19.35 22.58
25.76 27.09

1.971 60.402 12.531 0.015 0.01235

Betula
Pendula

BEPE 4
19.86 25.49
27.99 30.51

1.518 45.294 9.975 0.015 0.01

Tilia
Cordata

TICO 5
5.91 11.27 14.41

18.34 20.70
1.486 62.998 13.538 0.015 0.01040

Populus
Tremuloides

POTR 2 25.27, 30.49 1.324 52.848 11.627 0.015 0.01

Picea
Abies

PIAB 1 10.90 1.818 72.791 13.152 0.01833 0.02150

Fraxinus
Excelsior

FREX 1 13.72 2.038 65.489 10.601 0.015 0.01145

Acer
Platanoides

ACPL 1 15.37 1.407 34.937 8.386 0.015 0.01

Table 4: LiDAR platform and acquisition configuration for multi-pulse simulation over test site of Jarvselja
birch stand

Parameters Value

Platform altitude (H) 1000m
viewing angle range (−2.862◦, 2.862◦)
Separation of lines 0.35m

Separation of viewing angle 0.0035rad
Number of scanned lines 309
Number of pulses per line 309

Total number of pulses 95481
Density of pulses 7.891/m2

Total number of points 249241
Density of points 20.598/m2

the low biophysical and biochemical variability in the scene. Principal Component Analysis
is a widespread unsupervised feature extraction method, following the postulate that the
greater the variance, the greater the contribution to the representation. The selection of
the components derived from PCA and the interpretation of the information they contain
is not trivial: higher contribution of a component to the global variance of the scene does
not allow to conclude that this component contains appropriate information for any given
information. Although PCA is not the most appropriate method to study phenomena that
cause subtle differences in target reflectance (Thenkabail et al., 2011; Wang and Chang,
2006), it has been used to reduce dimensionality of hyperspectral data and proved its ability
to extract relevant information for vegetation studies such as biodiversity mapping (Féret
and Asner, 2014a). In our study, we mask the pixels corresponding to bare soil and per-
formed a PCA on both LiDAR and hyperspectral data. A quick analysis of the results of
the PCA shows that only two components contribute to more than 99.9 percents of the
total variance of the radiometric signal measured in the scene. Although low dimensionality
was expected after PCA, such value is important. After analysis of the score of the first
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component, we noticed a very strong signal corresponding to the contribution of the soil.
Figure 7(a) shows the relationship existing between the scores of the first component and the
normalized reflectance of pixels corresponding to bare soil. The first component then allows
detecting pixels with strong radiometric influence of the soil. Therefore the varying proper-
ties of vegetation only contribute to a very minor part of the radiometric variability. The
results obtained for LiDAR data show that the contribution to signal variance is distributed
among a more important number of components: 34 components are required to explain 99
percent of the variability. This can be explained by a more diverse vertical variability. This
vertical variability, evidenced by the PCA applied to LiDAR data, has a moderate impact
on the variability of the spectral information measured by the hyperspectral sensor. We then
perform a backward feature selection for classification and regression problems in order to
identify the most relevant spectral components for each analysis.

1. Classification. We select pixels corresponding to each of the three main emerging
species (ALGL, BEPE and POTR), avoiding mixed pixels. Linear Discriminant Anal-
ysis is used for classification, with 20 samples of each species used to train the classifier,
and 2,000 samples per species then used to test the classifier. The backward feature se-
lection performed on the 30 first components obtained from hyperspectral data shows
that only six components are required to identify the three main species with more
than 99 percent accuracy. These components are ranked as followed by decreasing dis-
criminant power: 8, 5, 4, 3, 6, 7. After visual inspection, the second component which
has very low discriminant power, corresponds to changes in illumination of the scene.
This result confirms experimental observations. Figure 7(b) shows the distribution of
the three dominant species in a 2-dimensional space corresponding to component 8 and
5, and Figure 7(c) displays a colored composition of the three most discriminant com-
ponents (3-D display of combination with LiDAR point cloud on Figure 7(d)). The
comparison with Figure 5(a) shows strong similarities in the distribution of spatial
patterns: trees with yellow color in Figure 7(c) and Figure 7(d) correspond to POTR,
while trees in purple correspond to ALGL and trees in blue correspond to BEPE. In
the case of LiDAR data, the classification accuracy is not as good as for hyperspectral
data, reaching 90 percent correct identification with seven component, and a maximum
accuracy of 91.3 percent with 13 components. This can be partly explained by the fact
that the vertical profile corresponding to a pixel identified based on the corresponding
emerging species is not specific to that species, because of the presence of vegetation
understorey.

2. Regression. We build a Partial Least Square regression model for the estimation of
LAI. We first selected pixels in order to obtain a subset with uniform LAI distribution,
then randomly selected 50 samples for training and 2,000 samples to test the model.
to avoid overfitting, we chose the number of latent vectors to include in the regression
model with respect to the minimum root mean squared error in cross-validation. As for
classification, we performed backward feature selection using the 30 first components
obtained from hyperspectral data and LiDAR data. Unlike classification, regression
performed with PCA results obtained from hyperspectral and LiDAR data showed sim-
ilar performances: six components from hyperspectral data and ten components from
LiDAR data were necessary to obtain a regression model with close to optimal perfor-
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mances (RMSE=1.24 and R2=0.66 for hyperspectral data, RMSE=1.20 and R2=0.67
for LiDAR data). The model derived from hyperspectral data shows a well described
saturation of the estimated LAI for high values (Zhang et al, 2000; Haboudane et al.,
2004) (Figure 8(a)). Such saturation appears to be milder when using LiDAR data to
build a regression model (8(b)). LiDAR and multispectral fusion have been used for the
estimation of various variables from forested ecosystems such as tree height (Popescu
and Wynne, 2004) or timber volume (Tonolli et al., 2011). In our case, we combined
the two regression models by averaging the estimated LAI from each regression model,
which resulted in improved estimation of LAI, as showed in figure (8(c)), with RMSE
decreasing to 1.01 and R2 increasing to 0.77.

(a) (b) (c)

Figure 8: Estimation of LAI using a PLS regression model built with (a) 6 components of a PCA im-
age derived from hyperspectral information, and (b) 10 components of a PCA image derived from LiDAR
information; (c) LAI estimation averaged from the two regression models.

The relatively scattered results obtained for LAI estimation are explained by the relatively
high LAI variability included in the 3-D scene, which is more realistic than the variability
in leaf optical properties.

4. Conclusion, and prospect

The DART functionality of in-flight fusion for ISLMS through combination of multi-
pulse LiDAR simulation and pushbroom sensor radiance image simulation, is presented in
this paper. The workflow as illustrated in Figure 3(a) has been implemented in the latest
release of DART (Version >= 5.5.0), with user-friendly interface. Two practical cases were
studied in this paper, the first one focusing on urban environment, and the second one
focusing on a forested ecosystem.

In the case of forested ecosystem, hyperspectral and LiDAR simulations were analyzed
and PCA was applied to extract information and reduce dimensionality. These preliminary
results showed that the radiometric signal corresponding to different components of the scene,
such as soil properties, illumination effect and signal corresponding to tree species could be
identified from the components derived from the hyperspectral image. We succeeded in
applying methods routinely used to study vegetation such for applications such as species
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identification and estimation of biophysical properties such as LAI, derived from both LiDAR
and hyperspectral simulations. Although purely illustrative and simplistic compared to real
situations (particularly for the definition of the optical properties of the scene), these results
meet our expectations, providing a promising basis for further studies focusing on studying
complex natural ecosystems. This new functionality of the DART model offers the possibility
to explore the potential of sensor fusion for the monitoring of various vegetation variables,
as well as the uncertainty they are associated with.

The ultimate objectives of our work are to create realistic system-based simulated data
which can be pixel-wisely or pulse-wisely compared with actual acquisition, and to develop
and assess new data processing algorithm which can be applied to actual data. The cases
investigated in this paper are based on the default DART settings of parallel scan lines
for both pushbroom sensor and wLiDAR, which is valid for whiskbroom pushbroom sensor,
pushbroom sensor and LiDAR using rotating polygon to redirect laser pulses, etc... Actually,
the scan pattern from actual data acquisition is irregular, which makes it difficult for data
adaptation. For example, the oscillating mirror system in some LiDAR devices produces
saw-toothed or sinusoidal scan patterns. Nonlinear platform path, fluctuation and oscilla-
tion can potentially produce any pattern of irregularity. In order to account for irregular
patterns, DART support importation of a file which contains the platform position, and di-
rection for each acquisition in both pushbroom sensor image and wLiDAR simulation. These
information are usually available with actual data through devices like the global navigation
satellite system (GNSS) and inertial measurement unit (IMU) (Asner et al., 2012). How-
ever, a more difficult part is the precise reconstruction of a simulated scene. If that can be
achieved, combination of precise parameters in both instrument and experiment can possibly
make realistic simulated data.

A similar approach is applied to simulate background solar noise of LiDAR device, which
can play an important role especially for photon counting devices during day time acquisition
(Yin et al., 2015a). It is achieved by setting the accompanied pushbroom sensor with the same
band and bandwidth as the LiDAR, thus the radiance captured in the reception of pushbroom
sensor for each pulse can be converted to number of photons per LiDAR acquisition bin.
Therefore, temporal and localized solar noise can be assigned to each pulse in a multi-pulse
LiDAR simulation. Case studies are presented in another work.

In addition, the ill-posed problem is one of the most common problems in RS data fusion.
It can be easily implemented with defined or statistically random shift of reception ellipse
center as illustrated in Figure 3(c). Actually, the fusion approach presented in this paper is
not limited to in-flight fusion of multi-sensor systems. It can be expanded to a general fusion
approach for sensors from different systems, by defining separate paths for each system. All
these works are currently in progress.
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Conclusion and perspectives

This dissertation presents my contributions since 2011 for improving radiative transfer in the Earth

surfaces and the atmosphere, with aim to improve the simulation of remote sensing signals from spec-

troradiometer and Lidar devices and also the radiative budget of natural and urban Earth surfaces. This

improvement was conducted with the Discrete Anisotropic Radiative Transfer (DART) model. The four

main chapters present separately the four research domains of my work. These domains are very much

related to each other.

Each chapter ends with conclusive remarks that are directly related to the research domain of the

Chapter. Here, the objective is to stress the relations between these domains and to give more general

conclusion and remarks.

Chapter 2 introduces a new direction discretization and oversampling method, the so-called iterative

uniform squared discretization (IUSD), for general radiative transfer modeling. The method focuses

on the restriction of the squared shape and optimized selection of the centroid of each angular sector

that sample the spherical surface of the 4π space. Algorithms for generating both uniform and cosine-

weighted distribution of discrete directions are presented. Results shows that the discretization method

provides more accurate and fast-convergent results compared with traditional methods, and the oversam-

pling method gives precise results with high resolution for strongly anisotropic simulated scene (e.g. hot

spot, specular surface, urban canyon radiative balance etc...). A major advantage of the IUSD is that

it produces precise results with a rather small total number of directions. The application of the IUSD

is not limited in RTMs for remote sensing field. For example, the heat transfer field could also benefit

from this approach, which actually used to have more discussions in this domain. The concept of virtual

direction is developed in order to generate reflectance/radiance result along a flexible pre-defined direc-

tion. A ray traveling along a virtual direction (a virtual ray) does not contribute to any further scattering

event. The virtual direction concept is the prerequisite for both passive sensor simulation through a finite

FOV (Chapter 3), and the Ray Carlo method (Chapter 4) in LIDAR waveform simulation.

Chapter 3 presents a method that combines perspective projection with 3D RTM, the so-called con-

verging tracking and perspective projection (CTPP), to simulate sensor images with finite FOV. The

pre-defined virtual direction concept presented in Chapter 2 is extended to the automated steering vir-

tual direction (ASVD). The ASVDs are not pre-defined. Their directional vectors change during ray

tracking, according to the vector from scattering/emission element position towards the sensor posi-

tion. The simulated sensor image stores spectral radiance per pixel. These radiance values depend on
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the position-to-sensor directional reflectance. Simulation of cameras (through perspective projections)

and cross-track imager (through parallel-perspective projections) are both presented. Examples are il-

lustrated including video captured by a drone, regional hot spot effect on a sensor image, as well as

the variation of reflectance between airborne and spaceborne measurements (sub-pixel shadow effect),

etc. The image generated by this method makes it possible to have pixel-wise comparison with other

simulated images or actual data. An iterative technique is developed to import the platform track and

view direction to derive the view direction for each element within a simulated scene. Thus, this tech-

nique makes DART output well adapted to comparisons with actual data. The DART simulated images

are compared with the Airborne Prism Experiment (APEX) hyperspectral data. This comparison il-

lustrates important improvements compared with past works, in which images were simulated through

orthographic projection along the average view direction of the swath. The CTPP method proved to be

very useful for estimating solar noise in LIDAR signals (Chapter 4), and also for LIDAR and imaging

spectroscopy image fusion (Chapter 5).

Chapter 4 presents how DART simulates LIDAR data. A new mode of quasi Monte Carlo Ray Trac-

ing (quasi-MCRT) is designed to simulate photon propagation in the Earth’s scene. Based on that, 2 new

approaches, the so-called Box method and Ray Carlo method, are implemented to provide robust simu-

lation of LIDAR waveform with any geometrical configuration, any footprint size, any simulated land-

scape, and any atmosphere distribution. The box method discretized the probability of a scattering phase

function into a large number of boxes through usage of computer memory, and each scattering event is

simulated by random selection of box instead of a series of tedious calculations in the traditional MCRT

models. It optimizes and enormously accelerates the selection of scattering direction of a photon during

interaction with materials of anisotropic properties. The Ray Carlo method brings DART traditional ray

tracking into Monte Carlo simulation. For each scattering event occurs within the LIDAR FOV, a virtual

ray (Chapter 2) is directly sent back to LIDAR through a ASVD (Chapter 3), and contribute to the total

waveform. The Ray Carlo method increases the significant signals received by a LIDAR with reduced

number of initially launched simulated photons. Simulated waveforms are validated with reflectance

value generated by traditional ray tracking mode of DART. An approach to simulate LIDAR signals in

atmosphere is also presented to avoid the discontinuous signals at the boundaries of the layers. The

quasi-MCRT method for simulation of single-pulse waveform is extended to multi-pulse simulation for

both airborne laser scan (ALS) and terrestrial laser scan (TLS). The parameterization for ALS simulation

is quite similar to the scanner as presented in Chapter 3. An advantage of this implementation is that the

simulated waveforms for both ALS and TLS can be converted into industrial data format and processed

by real-world data processing software. Furthermore, a method is designed to convert the simulated

LIDAR waveforms into data of photon counting system by modeling the acquisitions of single photon

detector. In addition, solar noise in LIDAR signal, in presence of atmosphere, is modeled through the

combination of LIDAR waveform simulation and radiance image simulation from passive sensors with

finite FOV (Chapter 3). It corresponds to a system with two sources (solar radiation and LIDAR pulses)

and one sensor (LIDAR telescope). It is implemented in an user-friendly manner. The field of view
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(FOV) projected regions on the ground image plane are segmented from the simulated radiance image

of multi-view sensor. Through estimation of the average radiance within the FOV projected regions on

the ground image plane, the number of photons per unit time that is recorded by the sensor is calculated.

As expected, results show that solar noise plays a more important role in photon counting systems than

in waveform LIDAR systems. As view direction importation presented in Chapter 3, LIDAR position

and orientation for each pulse can also be imported with available data from actual measurement. This

facilitates the comprehensive multi-pulse comparison with actual data, in future.

In Chapter 5, the 2 sources and 1 sensor system presented in Chapter 4 is extended to simulate the in-

flight fusion technique which is used in many existing LIDAR and hyperspectral multi-sensor platforms

(e.g. Carnegie Airborne Observatory, Goddard’s LIDAR, Hyperspectral and Thermal Imager, etc...).

The hyperspectral images and the LIDAR data are simulated with algorithms presented in Chapter 3 and

Chapter 4, respectively. The FOV projected region of each pulse is exactly registered with the segmented

average radiance. An image cube is created with superimposition of bands provided by both LIDAR and

hyperspectral imaging spectrometer. The dimensionality of principal components are analyzed on the

fusion data. This work validates the acquisition principals of several existing multi-sensor systems.

In addition to these new functionalities, multi-thread parallelization in also introduced in both ray

tracking and LIDAR mode of DART. This helps DART to efficiently simulate large-scale data without

waiting for several days of running the simulation.

DART model was surely the most complete radiative transfer model before my work. It is even more

complete now, and work continues in DART team in order to bring new major improvements. A few

prospective works are mentioned below. Some of these works already started in DART team at CESBIO,

but also in other laboratories and centers such as NASA (GSFC, USA) and RSL (University of Zurich,

Switzerland).

1. The IUSD of uniform and cosine-weighted distribution of directions can be compared with each

other or other approaches to find the optimized direction discretization method in RTMs for remote

sensing applications.

2. Image simulation of passive sensors with finite FOV, for further pixel-wise comparison on the

at-sensor radiance over much larger scenes (e.g., 5 km x 5 km) with more varying view direc-

tions over the simulated scene, and with atmosphere coupling. This work is currently in progress

through collaboration with Remote Sensing Laboratory of Zürich University, for the case of moun-

tain forests.

3. An algorithm will be developed to simulate an ordinary camera or a hemispherical camera within

the scene, viewing towards horizontal or upward direction. It will be very useful for simulating

ground measurement devices (e.g. hemispherical camera for retrieval of vegetation chlorophyll

content and LAI).

4. Simulation of images of RS sensors that are operated in geometric configurations such as the

so called hot spot affects those images. This approach allows to "filter" the hot spot effect in
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the images, and consequently to avoid erroneous interpretation of these images. For example,

the analysis of satellite images of the Amazon forest without consideration of the hot spot effect

explains that during many years, until very recently, that this forest was regreening (i.e., so-called

green illusion) during the dry season (Morton et al., 2014).

5. Ground based atmosphere LIDAR viewing upward will be implemented to simulate downward

signals received from atmosphere scattering.

6. Terrestrial LIDAR can be further extended for simultaneous localization and mapping (SLAM),

i.e. a moving vehicle carrying a LIDAR with it to scan the 3D map of a city.

7. Comparison of simulated results with existing waveform or photon counting LIDAR data in vari-

ous dimensions, for both single pulse and multiple pulses.

8. Generally speaking, DART has become a very powerful tool for the preparation of future spectro-

radiometer and LIDAR systems onboard satellite, plane and UAV, and also for better processing

data of existing RS devices.

9. The fusion algorithm in Chapter 5 has the potential to be extended to simulate general fusion data

(e.g. LIDAR and hyperspectral data from different systems), and develop fusion algorithms with

biases (e.g. accuracy of registration) taken into account.

Finally, it is interesting to note that many exchanges with scientists who use DART and / or wish

to use it are an important source of inspiration. The very open policy of the University Paul Sabatier,

CNES, CNRS and IRD in the distribution of DART (free licenses for scientists, annual training on

DART, etc.) contributes to the emergence of innovative ideas.
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Conclusion et perspectives

Cette thèse présente le travail que j’ai réalisé depuis 2011 pour améliorer la modélisation du transfert

radiatif au sein des surfaces terrestres et de l’atmosphère, avec pour objectif de mieux simuler à la fois

le bilan radiatif et les mesures de télédétection des surfaces terrestres naturelles et urbaines par des spec-

troradiomètres et Lidars embarqués sur satellite et avion. Cette amélioration a été réalisée dans le cadre

du développement du modèle DART (Discrete Anisotropic Radiative Transfer). Les quatre domaines de

recherche de mon travail sont préssentés dans les quatre principaux chapitres de ce manuscript.

Chaque chapitre se termine par des remarques concluantes qui sont directement liées au domaine de

recherche du Chapitre. Ici, l’objectif est de souligner les relations entre ces domaines et de donner des

remarques et conclusions plus générales.

Le chapitre 2 présente une nouvelle méthode de discrétisation des directions de l’espace 4π , appelée

IUSD (iterative uniform squared discretization), pour la modélisation générale de transfert radiatif. La

méthode met l’accent sur la restriction de la forme carrée et la sélection optimisée du centre de gravité

de chaque secteur angulaire qui échantillonne l’espace 4π . Des algorithmes pour générer à la fois une

distribution uniforme et une distribution pondérée par les cosinus des directions discrètes sont présentés.

Les résultats montrent que la méthode de discrétisation fournit des résultats plus précis et qui convergent

plus rapidement par rapport aux méthodes traditionnelles. De même, la méthode de suréchantillonnage

s’avère être bien adaptée pour prendre en compte l’hétérogénéité angulaire du rayonnement, par ex-

emple associés aux phénomènes du point chaud (hot spot) et de la réflexion spéculaire. De même

l’approche permet de simuler avec beaucoup plus de précision le bilan radiatif qui sont spatialement

très hétérogènes, comme les milieux urbains qui comportent des immeubles. Un avantage majeur de la

IUSD est qu’il produit des résultats précis avec un assez petit nombre de directions. L’application de la

IUSD n’est pas limitée à la modélisation du transfert radiatif. Ainsi, le domaine du transfert de chaleur

peut également bénéficier de cette approche. Il s’agit d’un domaine où la distribution des direction de

propagation des flux est un sujet couramment débattu. De plus, ce chapitre introduit la notion de di-

rection virtuelle de manière à simuler la propagation du rayonnement lue long de directions flexibles

pré-définies. Un rayon se déplaçant le long d’une direction virtuelle (i.e., rayon virtuel) ne peut donner

de phénomène de diffusion supplémentaire. Le concept de direction virtuelle, ou plus exactement son

extension, est très utile pour à la fois pour la simulation de capteur passif à champ de vue fini (chapitre

3), et pour la simulation des capteurs Lidars via le procédé Ray Carlo ( chapitre 4).

Le Chapitre 3 présente une méthode qui combine la projection en perspective avec les modèles "clas-
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siques" de transfert radiatif. Il s’agit de la méthode CTPP (converging tracking and perspective projec-

tion), conçue pour simuler les mesures de capteurs avec FOV fini. Le concept de direction virtuelle

pré-défini présenté dans le chapitre 2 est étendu à la notion de ASVD (automated steering virtual direc-

tion). Contrairement aux autres directions, les ASVDs ne sont pas pré-définies. Leurs vecteurs directeurs

ne sont pas constants. Ils dépendent du lieu du point de diffusion / émission du rayonnement et de la

position du capteur. Toute image de capteur correspond à une distribution 2D de luminances dont les

directions dépendent de la position relative du capteur et des points de diffusion / émission. Ce nombre

de directions est plus ou moins égal au nombre de points diffusants / émetteurs dans une scène. Cette

approche est mise en œuvre pour simuler différents capteurs satellites et avion : caméra, via la projection

en perspective, ) et capteur à visée transverse (scanner, pushbroom,. . . ), via la combinaison de projec-

tions parallèle et perspective. Plusieurs exemples de simulations sont présentés : vidéo capturée par un

drone, perception du hot spot selon l’altitude de la plateforme, évolution de la réflectance et luminance

entre des mesures avion et satellite, etc. Les images simulées avec cette approche sont tout à fait adap-

tées aux comparaisons pixel à pixel avec des images acquises par des spectroradiomètres. La méthode

de comparaison utilisée avec les modèles classiques de transfert radiatif est souvent imprécise, car ces

modèles négligent la projection perspective. D’autre part, une technique itérative a été conçue pour im-

porter la position et l’attitude de la plateforme et du capteur obtenues à partir d’instruments embarqués

(GPS, IMU). Cette possibilité facilite la comparaison de simulations DART avec des mesures réelles.

Cette comparaison a été réalisée avec les données hyperspectrales acquises dans le cadre de l’expérience

Airborne Prism (APEX). Le résultat de la comparaison montre que la prise en compte de la projection

perspective améliore la comparaison, par rapport aux travaux antérieurs, où les images étaient simulées

avec la projection orthogonale le long de la direction moyenne du champ de vue. La méthode CTPP

s’est avérée extrêmement utile pour simuler le bruit solaire dans les mesures Lidar (chapitre 4) et pour

simuler la fusion "données Lidar - Images hyperspectrales" (chapitre 5).

Le chapitre 4 présente l’approche utilisée par DART pour simuler les mesures des LIDARs. Cette

approche s’appuie sur une modélisation originale dite quasi-MCRT (Monte Carlo Ray Tracing), conçue

pour simuler la propagation des photons dans les paysages terrestres et l’atmosphère. Elle comprend

deux méthodes majeures, la méthode dite Box et la méthode Ray Carlo, pour simuler de manière précise

et robuste les formes d’onde Lidars, pour configuration géométrique d’acquisition, tout paysage et toute

atmosphère. La méthode dite de la boîte discrétise la probabilité d’une fonction de phase (i.e., fonction

de diffusion) selon dans un grand nombre de boîtes, fonction de la mémoire ordinateur disponible,

si bien que chaque événement de diffusion est simulé par sélection aléatoire d’une boîte, au lieu de

recourir aux calculs fastidieux réalisés dans les modèles traditionnels MCRT. Cette méthode optimise

et accélère considérablement la sélection de la direction de diffusion d’un photon lors de l’interaction

du rayonnement avec des matériaux de propriétés optiques anisotropes. La méthode Ray Carlo apporte

dans le suivi de rayons "classique" de DART l’approche Monte Carlo. Chaque événement de diffusion

se traduit par l’envoi d’un rayon virtuel (Chapitre 2) dans le champ de vue du LIDAR. Il s’agit d’un

rayon ASVD (chapitre 3), qui contribue à la formation de forme d’onde. Ainsi, la méthode Ray Carlo
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permet de simuler avec précision des mesures Lidars avec un nombre de photons beaucoup plus réduit

(exemple : facteur 10-10) que le nombre nécessaire avec une méthode Monte Carlo directe classique.

Différentes approches, internes à DART, sont développées pour tester la validité des simulations. Ainsi,

DART calcule la réflectance des surfaces terrestres associée à chaque impulsion. Une approche pour

simuler des signaux LIDAR dans l’atmosphère est également présentée. Elle permet d’éviter les signaux

discontinus aux limites des couches atmosphériques.

La méthode quasi-MCRT de simulation d’une impulsion unique forme d’onde a été étendue dans le

but de simuler l’acquisition d’impulsions multiples, à la fois par des capteurs Lidars aéroportés (ALS)

et terrestres (TLS). L’approche adoptée pour simuler les mesures aéroportées présente de fortes simili-

tudes avec l’approche mise en œuvre pour simuler les images des spectroradiomètres du type scanner et

pushbroom (chapitre 3). Au vu de la complexité des méthodes mlises en œuvre pour traiter les données

Lidar, une méthode a été développée pour exporter les simulations DART dans un format "industriel",

dans le but de pouvoir traiter les simulations DART avec des logiciels dédiés. Ce Chapitre présente deux

autres développements importants. 1) La transformation des formes d’onde de données LIDAR en des

acquisitions réalisées par des détecteurs dits à comptage de photon, à partir d’une approche statistique.

2) La modélisation du bruit solaire dans les mesures Lidars. L’approche s’appuie sur la modélisation des

images à champ de vue fini (chapitre 3). Il s’agit d’un système à deux sources de rayonnement (soleil

et Lidar) et à 1 système de capteur (télescope du Lidar). Les régions associées au champ de vue (FOV)

du Lidar et projetées sur le plan de l’image du sol sont segmentées au sein de l’image du spectrora-

diomètre. Ainsi, l’estimation de la luminance moyenne dans les régions FOV projetées sur l’image de

plan de plus basse altitude fournit un nombre de photons par unité de temps, qui est enregistré en tant

que bruit solaire. Les simulations réalisées avec des caractéristiques réalistes d’instruments montrent

que le bruit solaire joue un rôle plus important dans les systèmes de comptage de photons que dans les

systèmes LIDAR de forme d’onde. De manière similaire à l’importation de la configuration géométrique

d’acquisition de spectroradiomètres (chapitre 3), la position et l’orientation de chaque impulsion LIDAR

peut être importée. Cela approche facilite la comparaison de simulations et de mesures.

Le chapitre 5 étend le concept de système à 2 sources et 1 capteur présenté dans le chapitre 4

dans le but de simuler la technique de fusion en vol qui est utilisée dans de nombreux systèmes multi-

capteurs LIDARs et hyperspectraux tels que le système "Carnegie Airborne Observatory" et le système

GLIGHT (LIDAR, hyperspectrale et thermique) de la NASA. Les images hyperspectrales et les données

LIDAR sont simulées avec des algorithmes respectivement présentés dans les chapitres 3 et 4. La région

associée au FOV de chaque impulsion est projetée dans le plan image correspondant au plan image du

spectroradiomètre. Un cube image est ainsi créé avec les images hyperspectrales et Lidar superposées,

ce qui permet l’analyse de ce produit de fusion à partir d’analyse en composantes principales. Cette

approche permet de valider les principes d’acquisition de plusieurs systèmes multi-capteurs existants.

En plus des nouvelles fonctionnalités indiquées ci-dessus, mon travail a aussi porté sur l’amélioration

des performances techniques de DART. La principale amélioration technique porte sur la parallélisation

du code "Lidar" de DART, réalisé en collaboration avec Nicolas Lauret. Il est intéressant de noter que
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ce travail de parallélisation se poursuit actuellement de manière à accélérer toutes les parties du code

(e.g., simulation de paysages) qui se prêtent à cette amélioration). Cette parallélisation offre l’avantage

de pouvoir travailler sur de grands paysages avec de faibles temps de calcul.

Avant le début de mon travail, DART était déjà le modèle le plus complet dans le domaine de la

télédétection optique. Les nouvelles fonctionnalités que j’ai introduites ouvrent la porte à de nouveaux

travaux de recherche et/ou facilitent des travaux déjà existants. Quelques exemples sont indiqués ci-

dessous. Certains des travaux indiqués ont déjà démarré dans le cadre de l”équipe DART au CESBIO,

mais aussi dans d’autres laboratoires et Centres comme la NASA (GSFC, USA) et RSL (Université de

Zurich, Suisse).

1. La méthode dite IUSD, de distribution uniforme et pondérée par les cosinus des directions peut

être utilisée pour déterminer la meilleure discrétisation des directions discrètes pour les modèles

de transfert radiatif.

2. Simulation d’image de capteur passif à FOV fini, par modélisation du transfert radiatif dans les

paysages terrestres et l’atmosphère, dans le but de comparaisons pixel à pixel des luminances

simulées et mesurées par des capteurs embarqués sur satellite ou avion, pour de plus grands

paysages (e.g., 5km x5km). Ce travail est actuellement en cours de réalisation, en collabora-

tion avec le Laboratoire de télédétection de l’Université de Zürich, pour un paysage de forêt de

montagne.

3. Développement de la modélisation de capteur, appareil photo ordinaire ou caméra hémisphérique,

situé dans le paysage terrestre (e.g., forêt, culture, ville, etc.) et qui observe le milieu selon toute

direction (e.g., verticale). Cette modélisation sera très utile pour simuler les mesures d’appareils

de mesure de terrain, comme les caméras hémisphériques et l’instrument Licor 2000 utilisés pour

estimer le LAI et la concentration en chlorophylle des cultures et forêts.

4. Simulation d’images de capteurs embarqués acquises dans des configurations géométriques telles

que l’effet dit du hot spot affecte ces images. Cette approche permet de "filtrer" l’effet "hot

spot" au sein de ces images et donc d’éviter des erreurs d’interprétation de ces images. Ainsi,

l’analyse des images satellites de la forêt amazonienne sans prise en compte de cet effet a conduit

les scientifiques à estimer pendant de nombreuses années, jusqu’à très récemment, que cette forêt

"verdissait" durant la saison sèche (Morton et al., 2014).

5. Modélisation des mesures de capteurs Lidar dédiés à la mesure des rétrodiffusions atmosphériques.

Il s’agit de capteurs Lidars au sein des paysages terrestres et qui émettent des photons selon des

directions montantes.

6. Extension de la modélisation des Lidars terrestres pour des applications en lien avec la localisation

et la cartographie simultanées (SLAM: Simultaneous Localization And Mapping), par exemple

dans le cas de véhicule qui embarquent un Lidar terrestre pour établir des cartes 3D de ville.
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7. Comparaison de simulations et mesures Lidar forme d’onde ou comptage de photons, à la fois

pour les cas "simple impulsion" et "impulsions multiples".

8. D’une manière générale, DART est devenu un outil très puissant pour la préparation des futurs

systèmes d’observation (spectroradiomètres et Lidars) embarqués sur satellite, avion et drone, et

aussi pour mieux exploiter les mesures des systèmes actuels.

9. L’algorithme de fusion introduit dans le chapitre 5 est adapté à la fusion de tout type de mesures

de spectroradiomètres et de Lidars, ce qui facilite le développement d’algorithmes de fusion et

d’exploitation des données résultantes, avec prise en compte des conditions réelles d’acquisition,

comme les incertitudes de recalage géométrique.

Finalement, il est intéressant que de noter que les nombreux échanges avec les scientifiques qui

utilisent DART et/ou souhaitent l’utiliser constituent une source importante d’inspiration. La politique

très ouverte de l’Université Paul Sabatier, du CNES, du CNRS et de l’IRD en matière de distribution

de DART (licences gratuites pour les scientifiques, formations annuelles sur DART, etc.) participe cette

émergence d’idées novatrices.
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Appendix I: Generation of
cosine-weighted direction set

Cosine-Weighted hemispherical sampling is a well-known technique for Monte-Carlo ray tracing (MCRT),

in order to avoid the cosine distributed scattered energy sampling towards uniformly distributed solid

angles, to have uniformly distributed scattered energy sampling towards cosine-weighted solid angles.

This technique was usually applied to reduce the sampling noise. In contrast, for the equally celebrated

discrete-ordinate ray tracking technique, a uniformly distribution of the sampling is usually preferred.

The objective of this appendix is to find a way to adapt the cosine weighted distribution to discrete

ordinates.

Probability density of uniformly distributed direction set

DART combine exact kernel and discrete ordinate techniques for solving the radiative transfer equation.

The IUSD method presented in Chapter 2 generates a set of uniformly distributed directions with equal

solid angles and well-defined shapes. Table 1 of Chapter 2 gives the attributes of any direction (Ω, ∆Ω).

The center of the solid angle is selected to be the center of mass, which divides the solid angle (Ω, ∆Ω)

into 2 equal solid angles (∆Ω/2). The center of (Ω, ∆Ω) is defined as:

θc = arccos(cosθ0−∆cosθ/2) = arccos(
cosθ0 + cosθ1

2
) (1)

φc =
φ0 +φ1

2
(2)

and the solid angle is calculated as:

∆Ω = ∆cosθ ×∆φ (3)

The zenith angles of the directions are equally spaced. It leads to several layers, with different

number of directions within each layer. Another condition is used in order to ensure the shape of solid

angles is more or less a square: the within solid angle vertical and horizontal arc that pass through the

direction center (θc,φc) have equal lengths. It is:
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∆θ = sinθc∆φ (4)

By substitution of Equation (4) into Equation (3), we get:

∆Ω = (cosθ0− cosθ1)
∆θ

sinθc

If ∆θ is determined, the corresponding layer can be generated. Assume the superscript l to be the

layer index, the total solid angle of a layer is:

∆Ω
l = (cos(θ l

0)− cos(θ l
1))×2π

Therefore, the number of directions n in layer l is:

nl =
2π× sinθc

∆θ l

Let N be the total number of directions, the probability of a direction located in layer l is:

Pl =
2π× sinθc

∆θ l×N

This expression can be converted to an average probability density (p(θc)) of layer l in terms of θ ,

it gives:

p(θc)
l =

2π× sinθc

∆θ l×∆θ l×N
(5)

We have:

p(θ) ∝ sinθ (6)

Within each layer, the solid angle of each direction is equal, so the φ is uniformly distributed. The

resultant DART direction is shown in Figure 2 of Chapter 2. As N → 106, the histogram of direction

distribution of upper hemisphere over θ is shown in Figure 1, which is corresponding to Eqa.(6).

Cosine-weighted direction set

The cosine-weighted hemisphere sampling method provides a 3D distribution of rays. The angle density

of which on the sphere is proportional to that of a Lambertian surface. The energy that a Lambertian

surface has in a solid angle dΩ = sinθdθdφ is 1
2 Lsin(2θ)dθdφ , where L is the surface radiance. The

classical random method for obtaining the rays (i.e., directions) is shown below:

1. Choose 2 random number r1, r2 in the range (0, 1).

2. φ(r1) = 2π× r1
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Fig. 1: The histogram of 5×105 DART directions over upper hemisphere

3. θ(r2) = arccos(
√

r2)

It implies that φ is uniformly distributed in the 2π space. θ is not uniformly distributed. The

probability density function (pdf) of r2 is a constant equals 1 ( fX(r2) = 1). According to the “change of

variable” rule of pdf:

fY (θ) = |
d

dθ
r2(θ)|× fX(r2(θ))

= | d
dθ

(cos2(θ))|

= |−2cos(θ)sin(θ)|
= sin(2θ)

(7)

Figure 2 shows a histogram of 5×105 cosine-weighted sampling, which corresponds to Eqa. (7).

Cosine-weighted discrete ordinates can be difined through Eqa.(5) and Eqa.(7). The only parameter

that is flexible is ∆θ . It means that ∆θ must be such that the density of DART directions equals the

probability density of cosine-weighted sampling. We must have:

(∆θ
l)2

∝
1

cos(θ l
c)

(8)

which means for every layer of the sphere of directions, the term (θ1−θ0)
2× cos(θ0)+cos(θ1)

2 must be con-

sidered. We can reduce the computation complexity with the approximation (θ1−θ0)× cos(θ0)+cos(θ1)
2 =

sin(θ1)− sin(θ0). If the total number of layers is L, we have L− 1 equations with L− 1 unknowns
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Fig. 2: The histogram of 5×105 cosine-weighted sampling of upper hemisphere

(subscript as the index):





sin(θ1)×θ1 = (sin(θ2)− sin(θ1))∗ (θ2−θ1)

(sin(θ2)− sin(θ1))∗ (θ2−θ1) = (sin(θ3)− sin(θ2))∗ (θ3−θ2)

.

.

(sin(θL−2)− sin(θL−3))∗ (θL−2−θL−3) = (sin(θL−1)− sin(θL−2))∗ (θL−1−θL−2)

(sin(θL−1)− sin(θL−2))∗ (θL−1−θL−2) = (1− sin(θL−1))∗ (π/2−θL−1)

(9)

There is no simple analytical solution to the above equation set. However, the Newton-Raphson

Method for Nonlinear Systems of Equations gives fairly good and fast estimation of the roots. Details

can be found from Numerical Recipes (C++) 3rd Edition (2007). Figure 3 shows the resultant cosine-

weighted discrete ordinate directions. . Figure 4 is the histogram of 431464 cosine-weighted discrete

ordinates in the upper sphere. It samples very well to the histogram of the cosine-weighted directions

that are obtained by the random pulling method (Figure 4).
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(a) 110 directions with region oversam-
pling

(b) 216 directions (c) 528 directions

Fig. 3: The 3D spherical distribution of directions for cosine-weighted 110, 216 and 528 ordinates

Fig. 4: The histogram of 431464 cosine-weighted directions in the upper sphere
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ABSTRACT

Physically-based radiative transfer modeling is the key to re-
mote sensing of forest ecosystems. To scale spectral informa-
tion from the leaf to the sensor level, the canopy architecture
of a forest, illumination conditions and the viewing geometry
have to be taken into account. Therefore, a new airborne im-
age simulation approach is being developed for the 3D radia-
tive transfer model DART to model individual viewing angles
for each pixel of a scene. A first comparison to actual imaging
spectrometer data showed promising results, mainly because
the atmosphere simulation could be improved compared to
previous versions of the DART model.

Index Terms— Radiative transfer modeling, Airborne
image simulation, Airborne imaging spectroscopy

1. INTRODUCTION

Scaling spectral information from the leaf to the sensor level
is one of the main challenges in the remote sensing of forest
ecosystems. The estimation of biochemical constituents of
leaves or needles from remotely sensed data is of high inter-
est, but not trivial due to atmospheric influences and the struc-
tural complexity of natural forests [1, 2]. The reflectance of a
forest canopy is not only determined by the leaf optical prop-
erties but also by factors like canopy structure, illumination
conditions and viewing geometry [3, 4, 5]. Their influence is
especially large for natural forests growing on steep slopes.
Thus, a sophisticated radiative transfer model is needed to
scale leaf or needle optical properties to at-sensor radiance.

The DART model (Discrete Anisotropic Radiative Trans-
fer [6]) is one of the most complete coupled canopy-atmosphere
3D radiative transfer models. It was initially designed to sim-
ulate spaceborne remote sensing images of natural landscapes
[7]. The physically based 3D model allows to simulate vir-
tually any illumination or viewing angle, but was limited
to parallel incoming and outgoing rays. This simplification
was acceptable for simulating spaceborne sensors, but not
made for airborne sun-earth-sensor constellations having a

much larger angular variation within a scene. Since DART
is predestined to simulate high-dimensional airborne imaging
spectrometer data, a new module is being implemented to
simulate airborne pushbroom scanners and frame cameras.
We present here first results of the new airborne imaging
simulation in comparison to previous modeling results and
real measurements of the state-of-the-art airborne imaging
spectrometer APEX (Airborne Prism EXperiment [8]).

2. STUDY AREA AND DATA

The study area covers 300 m x 300 m and is located at the
Laegern, a temperate mixed forest in Switzerland. It is a
highly diverse forest dominated by beech and Norway spruce
trees, which is characterized by steep, rugged terrain, a het-
erogeneous spectral background and a complex canopy archi-
tecture. Airborne and terrestrial laser scanning as well as leaf
optical properties measurements were combined with in situ
data of plant area index and leaf angle distribution to fully
describe the test site (see [9] for more details).

Imaging spectrometer data was acquired on June 16th,
2012 at 10:26 UTC at a solar illumination angle of 27.1◦ in
zenith and 147.4◦ in azimuth (defined from north clockwise).
The study area was measured under clear sky conditions and
covered by a single flight line. The average flight altitude was
4526 m above sea level resulting in a ground pixel size of 2
m. The airborne imaging spectrometer APEX was used being
a state-of-the-art pushbroom scanner system with a spectral
sampling interval varying between 2.5 nm and 13.9 nm and
a full width at half maximum between 3.4 nm and 14.3 nm,
depending on wavelength. The viewing angle at scene center
was 6.76◦ in zenith and 331.8◦ in azimuth. The exact viewing
angles of each pixel are shown in Figure 1.

Traceable radiometric calibration of the APEX data in-
cluded compensation for spatial coregistration effects of the
VNIR and SWIR detector, dark current and keystone correc-
tion. The uncertainty of calibrated radiance values was ly-
ing within 0.5% and 3% in the range of 400 to 1900 nm, as
estimated by a calibration model. APEX data was georefer-
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Fig. 1. Specific viewing angle of each pixel, as derived from the APEX acquisition of the scene.

enced to the Swiss national grid CH1903+ and orthorectified
using nearest neighbor resampling in PARGE [10]. The geo-
correction was based on the digital terrain model DHM25 of
the Swiss Federal Office of Topography (Swisstopo, Switzer-
land).

3. METHODS

A forest scene of 300 m x 300 m was parameterized in DART
following a voxel-based forest reconstruction approach de-
scribed in [9]. In the DART model, a vegetation volume is
modeled as a turbid medium parameterized by leaf optical
properties, leaf angle distribution, and a plant area index. The
final DART scene, which was used for the radiative trans-
fer simulations, consisted of the canopy background (terrain
model, background optical properties) and a 3D voxel grid,
which was filled by turbid media according to airborne laser
scanning and in situ measurements. The voxel size was 2 m x
2 m x 2 m, matching the resolution of the APEX data.

The DART atmosphere was parameterized based on stan-
dard gas and aerosol models of MODTRAN and in situ mea-
surements of AERONET [11, 12]. The main principle of at-
mosphere radiative transfer modeling in DART is described in
[13]. It is based on voxels of the bottom, mid, and high atmo-
sphere, being filled by gases and aerosols. To model the inter-
actions of radiation (scattering, absorption) with the gases and
aerosols, specific phase functions are modeled in DART. Re-
cently, the vertical distribution of gases and aerosols as well
as the Henyey-Greenstein coefficients that define the aerosol
phase function were improved according to the MODTRAN
atmosphere model, which can be seen as a standard for ra-

diative transfer modeling within the atmosphere. Compared
to results simulated with previous DART versions (v5.4.3 and
earlier), an improved accuracy of the atmosphere simulation
is expected.

Furthermore, a new module is under development to sim-
ulate radiance and reflectance values as measured by passive
optical airborne imaging systems. However, the so called air-
borne image simulation is not limited to sensors mounted on
an airplane. It refers to any situation, where the distance be-
tween the sensor and the measured target is not large enough
to neglect angular variations in viewing geometry by assum-
ing parallel outgoing rays along a single viewing direction.

Instead of one universal viewing direction, a specific az-
imuth and zenith angle can be defined for each pixel (x,y) of
the scene. The ray tracing is then calculated along specific
virtual directions, whose vector can change according to the
position of the scattering element and the sensor. The concept
of virtual directions as additional outputs to discretized direc-
tions over the 2-π upper hemisphere was introduced in [14].
It is an efficient way to track rays along arbitrary directions
without further contributing to the ray tracing along the fixed,
discretized paths.

For a first evaluation of the newly implemented DART
functionalities, airborne image simulations were carried out
at four selected bands (533, 570, 680, 780 nm) and compared
to APEX data and simulations of DART version 5.4.3 along a
single view direction. The images were simulated according
to the APEX acquisition of the scene and orthorectified for
best comparability. The viewing angles were defined accord-
ing to the azimuth and zenith angles shown in Figure 1.
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Fig. 2. Images of at-sensor radiance and corresponding relative differences at 570 nm, as simulated by DART version 5.4.3
(DART543), the new airborne image simulation (DARTairborne), and measured by APEX (APEX).

4. RESULTS AND DISCUSSION

We present here the first results of the new airborne image
simulation. The simulated and measured at-sensor radiance
images at 570 nm and the relative difference images are
shown in Figure 2. The new simulation leads to lower radi-
ance values over the whole scene, but especially in shadowed
areas. The values can be up to 40% lower and are therefore
closer to the values measured by APEX. Generally, the dy-
namic range is slightly lower in the newly simulated image,
because a simplified orthorectification algorithm was used.
To calculate an orthorectified image for the airborne image
simulation is much more difficult than for a simple directional
image, which is why a more sophisticated algorithm is still
under development.

Lower radiance values can be observed in all bands of the
visible, whereas higher values can be observed in the near
infrared. This can be explained by an improved atmosphere
modeling using the new airborne image simulation. On one
hand, the aerosol phase functions and vertical distribution of

gases and aerosols were improved. On the other hand, the at-
mosphere flux tracking is more accurate if the correct viewing
angles are simulated. This effect is especially strong, when
at-sensor radiance is simulated.

Since vegetation is absorbing most of the radiation in
the visible range, a lower atmospheric path radiance leads to
lower at-sensor radiance. The opposite can be observed in
the near infrared, because vegetation is strongly scattering.
Even though the atmosphere simulation was improved, at-
mospheric effects are still slightly smaller in the APEX data.
The average difference to the APEX image is 4.27, 4.37,
2.08, -25.73 mW m−2 nm−1 sr−1 at 533, 570, 680, 780 nm
respectively, whereas it was 9.26, 8.59, 9.14, -37.12 mW m−2

nm−1 sr−1 with DART version 5.4.3.
A pixel-wise comparison with the APEX data shows that

there are still major differences at all simulated bands. In the
visible, some of the larger differences occur due to local shifts
between the images. This is because the projection of mod-
eled (DART) and measured (APEX) data is not exactly the
same. More distinct patterns of under- and overestimation
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can be observed in the near infrared, which are mainly due to
small-scale structural effects. These effects were discussed in
detail in [9].

5. CONCLUSION AND OUTLOOK

We presented here first results of a new airborne image simu-
lation within the 3D radiative transfer model DART. The new
module allows to define specific viewing angles for each pixel
(x,y), instead of assuming parallel outgoing rays along a sin-
gle viewing direction. A temperate mixed forest scene was
simulated according to the measurement of the airborne imag-
ing spectrometer APEX. Compared to the APEX data and
simulations of the previous DART release, modeling results
could be improved by introducing the airborne image simula-
tion as well as new phase functions and vertical distributions
of aerosols and gases. Both, the DART as well as the APEX
orthorectification should be improved for future comparisons.
Finally, a larger scene has to be modeled to further study the
influence of angular variations from near to far range.
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