31,013 research outputs found

    Reliability study of refractory gate gallium arsenide MESFETS

    Get PDF
    Refractory gate MESFET's were fabricated as an alternative to aluminum gate devices, which have been found to be unreliable as RF power amplifiers. In order to determine the reliability of the new structures, statistics of failure and information about mechanisms of failure in refractory gate MESFET's are given. Test transistors were stressed under conditions of high temperature and forward gate current to enhance failure. Results of work at 150 C and 275 C are reported

    Universal local pair correlations of Lieb-Liniger bosons at quantum criticality

    Full text link
    The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion quantum criticality. We analytically calculate finite temperature local pair correlations for the strong coupling Bose gas at quantum criticality using the polylog function in the framework of the Yang-Yang thermodynamic equations. We show that the local pair correlation has the universal value g(2)(0)2p/(nε)g^{(2)}(0)\approx 2 p/(n\varepsilon) in the quantum critical regime, the TLL phase and the quasi-classical region, where pp is the pressure per unit length rescaled by the interaction energy ε=22mc2\varepsilon=\frac{\hbar^2}{2m} c^2 with interaction strength cc and linear density nn. This suggests the possibility to test finite temperature local pair correlations for the TLL in the relativistic dispersion regime and to probe quantum criticality with the local correlations beyond the TLL phase. Furthermore, thermodynamic properties at high temperatures are obtained by both high temperature and virial expansion of the Yang-Yang thermodynamic equation.Comment: 8 pages, 6 figures, additional text and reference

    Phosphorylation of conserved casein kinase sites regulates cAMP-response element-binding protein DNA binding in Drosophila

    Get PDF
    The Drosophila homolog of cAMP-response element-binding protein (CREB), dCREB2, exists with serine 231, equivalent to mammalian serine 133, in a predominantly phosphorylated state. Thus, unlike the mammalian protein, the primary regulation of dCREB2 may occur at a different step from serine 231 phosphorylation. Although bacterially expressed dCREB2 bound cAMP-response element sites, protein from Drosophila extracts was unable to do so unless treated with phosphatase. Phosphorylation of recombinant protein by casein kinase (CK) I or II, but not calcium-calmodulin kinase II or protein kinase A, inhibited DNA binding. Up to four conserved CK sites likely to be phosphorylated in vivo were responsible for this effect, and these sites were phosphorylated by a kinase present in Drosophila cell extracts that biochemically resembles CKII. We propose that the relative importance of different signaling pathways in regulating CREB activity may differ between Drosophila and mammals. In Drosophila, the dephosphorylation of CK sites appears to be the major regulatory step, while phosphorylation of serine 231 is necessary but secondary

    Absence of Anderson localization in certain random lattices

    Get PDF
    This is the final version of the article. Available from American Physical Society via the DOI in this record.We report on the transition between an Anderson localized regime and a conductive regime in a one-dimensional microwave scattering system with correlated disorder. We show experimentally that when long-range correlations are introduced, in the form of a power-law spectral density with power larger than 2, the localization length becomes much bigger than the sample size and the transmission peaks typical of an Anderson localized system merge into a pass band. As other forms of long-range correlations are known to have the opposite effect, i.e., to enhance localization, our results show that care is needed when discussing the effects of correlations, as different kinds of long-range correlations can give rise to very different behavior.J.B. acknowledge support from the Leverhulme Trust's Philip Leverhulme Prize. I.R.H. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1)

    Exactly solvable models and ultracold Fermi gases

    Full text link
    Exactly solvable models of ultracold Fermi gases are reviewed via their thermodynamic Bethe Ansatz solution. Analytical and numerical results are obtained for the thermodynamics and ground state properties of two- and three-component one-dimensional attractive fermions with population imbalance. New results for the universal finite temperature corrections are given for the two-component model. For the three-component model, numerical solution of the dressed energy equations confirm that the analytical expressions for the critical fields and the resulting phase diagrams at zero temperature are highly accurate in the strong coupling regime. The results provide a precise description of the quantum phases and universal thermodynamics which are applicable to experiments with cold fermionic atoms confined to one-dimensional tubes.Comment: based on an invited talk at Statphys24, Cairns (Australia) 2010. 16 pages, 6 figure

    Magnetic Excitations of Undoped Iron Oxypnictides

    Full text link
    We study the magnetic excitations of undoped iron oxypnictides using a three-dimensional Heisenberg model with single-ion anisotropy. Analytic forms of the spin wave dispersion, velocities, and structure factor are given. Aside from quantitative comparisons which can be made to inelastic neutron scattering experiments, we also give qualitative criteria which can distinguish various regimes of coupling strength. The magnetization reduction due to quantum zero point fluctuations shows clear dependence on the c-axis coupling.Comment: 4 pages, 5 figures, to appear in Frontiers of Physics in China: a special issue on Iron-based superconductor

    Prediction of mechanical properties of β-SiAlON ceramics based on BP neural network

    Get PDF
    β-Si6-ZAlZOZN8-Z (0<Z≤2) ceramics with rod-like grain morphology were prepared by gas pressure sintering, and their mechanical properties (i.e., bulk density, hardness, fracture toughness, and flexural strength) were evaluated. A model to predict the mechanical properties of β-SiAlON ceramics was established by back propagation (BP) neural network, and the relationships between process parameters (i.e., Z-value and temperature) and mechanical properties were investigated. Results show that the model had good prediction accuracy and maximum relative error lower than 8 %. The model could reflect the complex nonlinear relationship between the process parameters and the mechanical properties of β-SiAlON ceramics. The model can provide an effective reference for optimizing the design of β-SiAlON ceramics
    corecore