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Absence of Anderson localization in certain random lattices
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We report on the transition between an Anderson localized regime and a conductive regime in a one-dimensional
microwave scattering system with correlated disorder. We show experimentally that when long-range correlations
are introduced, in the form of a power-law spectral density with power larger than 2, the localization length
becomes much bigger than the sample size and the transmission peaks typical of an Anderson localized system
merge into a pass band. As other forms of long-range correlations are known to have the opposite effect, i.e., to
enhance localization, our results show that care is needed when discussing the effects of correlations, as different
kinds of long-range correlations can give rise to very different behavior.
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Wave transport in multiply scattering media is a complex
phenomenon. If the scattering is weak enough the interfer-
ence effects can be neglected and the wave transport can
be described in terms of a diffusion equation [1,2]. As
the scattering strength increases interference effects reduce
the diffusion coefficient, an effect known as weak localization
[3]. Once the scattering strength overcomes a certain threshold
the diffusion coefficient goes to zero, the system becomes
Anderson localized, and no macroscopic transport is possible
[4,5].

Anderson localization is quintessentially an interference
effect that can occur for any kind of wave and thus, although it
was originally proposed for electrons [6], it has been observed
for mechanical waves [7,8], Bose-Einstein condensates [9],
and electromagnetic waves [10]. It is well understood that
the dimensionality of the system plays a major role when
it comes to Anderson localization. For three-dimensional
systems, when the disorder increases, there is a phase transition
between a conductive phase, where all the eigenmodes are
extended, and an insulating phase, where the eigenmodes
become exponentially localized in regions of size ∼ξ (the
localization length) [11].

For one-dimensional (1D) systems, the scaling theory
of localization predicts that no such transition occurs, and
the localization length ξ is always finite [12]. Despite its
simplicity, the scaling theory of localization relies on several
hypotheses, one of which is that, if one could switch off
interference, the transport would be properly described by
a diffusion equation, i.e., that the scattering potential can be
described as white noise. Once correlations are introduced in
the scattering potential the picture becomes much less clear,
and it is possible to have frequency bands where the system
is localized coexisting with frequency bands where all the
eigenmodes are extended [13,14], discrete sets of extended
modes in an otherwise localized spectrum [15], enhanced
localization [16], or even fully extended Bloch modes in
randomlike potentials [17].

In this article, we study experimentally the case where the
scattering potential is described by colored noise instead of
white noise, i.e., when the power spectrum of the random
potential is not flat. We show that, as the disorder becomes
more colored, the localization length becomes longer, until
such point that it becomes significantly larger than the size of
the scattering medium and the system does not show Anderson

localization any more. The problem of Anderson localization
in correlated potentials has been the focus of a lot of theoretical
works (see, e.g., Refs. [13,18–21]), but so far there are only
few experimental verifications [14,16].

The case of a scattering potential characterized by a
power-law spectral density S(k) ∝ k−α , for some positive (and
real) α, was first discussed by de Moura and Lyra, who
used renormalization group techniques to show that when
α becomes larger than 2, a 1D system will show a band of
unlocalized states [22]. This result can be understood if we
consider that, for α � 1, the spectral density S(k) cannot be
normalized for an infinite system. For any system of finite
length L there is no problem, as the spectrum is effectively
cut off for k smaller than ∼1/L, but this means that the
proper normalization factor is now size-dependent, hence
making S (and thus the scattering properties) size-dependent.
Nevertheless, it was predicted that for 1 � α < 2 the system
is still localized, and the modes become extended only for
α � 2 [22,23], which is surprising if one considers that larger
values of α correspond to a scattering potential ever closer to
a sinusoid, and that a small amount of disorder in an otherwise
perfectly periodic potential is well known to enhance Anderson
localization [24]. Furthermore long-range correlations were
recently associated with strengthened localization [16].

As an experimental test bed, we generated spatially varying
1D scattering potentials in the form of refractive index profiles
by placing slabs of acrylic with variable thickness within a
3-m-long WR90 aluminum waveguide. The waveguide has
an operating bandwidth of 8.2–12.4 GHz (corresponding to a
wavelength range of 2.4–3.7 cm), and a removable top to allow
accurate placement of the acrylic scatterers. The waveguide
was marked at 2.5-cm intervals with one acrylic slab placed at
each position such that, for a purely periodic structure (i.e., if
all the slabs have the same thickness), the system would exhibit
a pass band centered at 10 GHz. A random sequence with
the desired spectral density can be obtained, as described in
Ref. [22], by first generating N uniformly distributed random
numbers φm in the range [0,2π ], and then using them to
compute the sequence d with elements
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N/2∑
m=1
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FIG. 1. (a) Schematic of the scattering potential: a set of slabs
with refractive index n = 1.594 with different thicknesses are
positioned at 2.5-cm intervals in the waveguide. The sequence of
thicknesses d ′ is obtained using Eq. (2) to discretize the random
sequence d [Eq. (1)]. (b) The sequence d is designed to be random
but also to have long-range correlations, in the form of a power-law
spectral density S(k) ∝ k−α . The black line shows an example for
α = 2. The discretization process leads to a sequence that has the
same power-law spectral density, albeit noisier (red line).

Since experimentally we can use only a discrete set of
(positive) thicknesses, the sequence d was shifted and rescaled
(which does not change the shape of the power spectrum) as

d ′(j ) =
⌈

2.5

(
d(j )

∨|d| + 1

)
+ 1

⌉
, (2)

where ∨|d| is the maximum value of the absolute value of
the sequence d, and �.� is the ceiling function, which returns
the smallest integer bigger than a given input (e.g., �3.14� =
4). This produces a sequence of integer numbers between 2
and 6 mm. As shown in Fig. 1, the power spectrum of the
discretized sequence still has the desired power-law behavior,
albeit noisier than the ideal one. It is worth noticing that in
our experiment it is the sequence of the scatterers’ thickness to
follow explicitly the desired distribution, but that the position-
dependent refractive index n(x) must have the same power
spectrum by construction.

After undertaking a standard through-reflect-line cali-
bration, the reflection from, and transmission through, the
waveguide was measured using an Anritsu VectorStar Vector
Network Analyzer. We repeated the measurements for systems
with α varying from 0 to 2.5 in steps of 0.5, and for 10
different realizations of the disorder for each value of α.
Figure 2 shows typical transmission spectra for each value
of α. For low values of α the transmission peaks due to
Anderson localization [25] are distinct and clearly visible,
while for higher values of α the peaks merge with each other
and the spectrum becomes smoother. While difficult to apply
to higher-dimensional systems, for 1D structures the Thouless
criterion offers a convenient way to discriminate between
localized and nonlocalized disordered systems: if the typical
distance �ω between the modes is larger than their typical

FIG. 2. Typical transmission spectra for different values of α. For
low values of α the peaks corresponding to single Anderson localized
modes are clearly visible, but as α increases the modes become wider
and start to merge into each other, forming a smooth transmission
band for large values of α.

width δω, then the system is localized. To test this criterion
we performed a multipeak fit to the transmission spectra and
calculated the ratio between the average �ω and the average
δω for each spectrum (see Appendix B). Figure 3 shows that,
consistent with the qualitative observation in Fig. 2, the system
becomes less and less localized as α increases, until it becomes
fully delocalized for a value of α between 2 and 2.5.

It is worth noting that our experimental system, like all
microwave and optical systems, suffers from losses. One
small source of loss is the absorption that arises from the
scatterers themselves, with a real part of their refractive index
of n = 1.594 ± 0.003, and an imaginary part of < 0.005 (see
Appendix A), which is negligible with respect to the other loss
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FIG. 3. Ratio of the mode separation �ω to the mode width δω

as a function of α. Performing a multipeak fit to the transmission
spectra we obtained the average spacing between the peaks and their
average width. The error bars represent the standard deviation of
the ratio �ω/δω over the different realization of the disorder. The
Thouless criterion for Anderson localization states that a 1D system
can be considered localized if this ratio is larger than 1 (dashed red
line), i.e., if the (localized) modes are spectrally separated. Once the
ratio becomes smaller than 1 we cannot talk about separated modes
anymore and the system becomes conductive again.

channels. Other sources include the inherent losses in the metal
of the waveguide (approximately 0.2 dB/m), and those arising
from the small, but unavoidable, gap between the guide and its
removable lid (∼50 μm). Therefore, we expect the resonances
due to Anderson localization to have a lower Q-factor and thus
be wider then expected for an ideal lossless system. As this
can increase δω, it is necessary to double-check our results
with a technique less susceptible to absorption and losses.
One of the archetypal properties that distinguish a diffusive
system from an Anderson localized system is how the total
transmission decreases with the sample thickness: linearly
for a diffusive system, and exponentially for a localized one
[26]. As absorption also leads to an exponential decay of the
transmission with thickness, it is of fundamental importance
to distinguish the two effects [26–28].

In a 1D geometry, such as the one in our experiment, ab-
sorption can be measured independently from localization by
measuring both the total transmission T and the total reflection
R and computing the absorption as A = 1 − (T + R). Once A

is carefully characterized, we can determine how much of the
exponential decrease of T with thickness cannot be explained
by absorption and use this to estimate the localization length.
To do so we measured T and R for samples containing between
1 and 118 scatterers, i.e., samples with total length L between
2.5 and 295 cm long, thus obtaining an A versus L curve for
each value of α. As the empty waveguide has finite losses,
we expect that A(0) = A0 > 0. Furthermore, for large L, we
expect the contribution of the transmitted intensity to T + R to
be negligible and the contribution of the reflected intensity to
saturate to some value R0, i.e., making the sample increasingly
long will not lead to a higher value of R since absorption will
prevent the fields that have penetrated far into the sample
from ever being reflected. Therefore, we can fit our absorption

FIG. 4. Values of the localization length ξ as a function of α. The
error bars represent the fit uncertainties for μ and b propagated to ξ .
The part of the exponential decay of T (L) that cannot be accounted
for by absorption gives us an estimate of the localization length ξ .
For low values of α the measured localization length is significantly
shorter than the total sample thickness (shown by the red dashed
line), but when α � 2, there is a crossver and the system stops being
localized.

curves to

A(L) = (1 − R0) + e−μL(A0 + R0 − 1),

where L is the sample length, and μ is the absorption
coefficient. For each value of α we repeat the experiment
10 times to average over the realizations of disorder and obtain
a value for μ. If no localization was occurring, a fit to T (L)
with the exponential function T (L) = T0e

−bL, where T0 is the
transmission coefficient of the empty waveguide, would yield
μ = b within the experimental error. As we obtain b > μ

for all the values of α and all the realizations of disorder,
we can deduce that absorption cannot explain the exponential
decay of T (L) alone. Therefore, we interpret ξ = 2

b−μ
as the

localization length of the system (see Appendix C). Figure 4
shows the obtained values of ξ as a function of α. This
shows that for values of α greater than approximately 2, the
localization length exceeds the sample size. This is consistent
with the results in Fig. 3. It is important to note that the
localization length we measure is averaged over the whole
spectral range and that some frequency bands delocalize faster
than others. As can be seen in Fig. 2, the modes at the center
of the band (in our case around 10 GHz) delocalize faster than
the modes at the band edge [22].

In conclusion, we have experimentally shown that corre-
lations in the disordered potential can make a 1D scattering
system nonlocalized. In particular, we have shown that this
happens when the scattering potential has a power-law spectral
density with a power � 2. As previous results have shown
that other kinds of long-range correlations can lead to an
enhanced Anderson localization [16] (i.e., exactly the opposite
effect), this proves that one needs to be very careful when
talking generically about short- or long-range correlations,
as different flavors of correlations can give very different
results.
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APPENDIX A: THE EXPERIMENTAL APPARATUS

The WR90 aluminum waveguide was machined to have
an operating bandwidth between 8.2 and 12.4 GHz. The
complex reflection and transmission amplitude coefficients
from/through the waveguide were measured using an Anritsu
VectorStar Ms4640B Vector Network Analyzer (VNA) after a
standard through/reflect/line waveguide calibration [29]. The
scattering slabs were laser-cut from extruded acrylic sheets of
different thickness. There was a small variation in the thickness
of each acrylic sheet across its surface resulting in a spread
of thickness for each scatterer type. The mean and standard
deviation for each type of scatterer where:

Scatterer nominal Measured thickness:

thickness (mm) Mean (mm) σ (mm)

2 2.05 0.01
3 2.89 0.02
4 3.74 0.01
5 5.07 0.01
6 5.63 0.01

To determine the complex refractive index of the acrylic
slabs we measured the complex reflection and transmission
amplitude coefficients from/through a single 5.63-mm-thick
slab within the waveguide and extracted the permittivity and
permeability of the acrylic using the Nicholson-Ross-Weir
algorithm [30,31], resulting in a real part of the refractive
index of Re(n) = 1.594 ± 0.003. The imaginary part of the

FIG. 5. Example of a multipeak fit for a transmission spectrum at
α = 0.5. The black dots are the experimental data points, colored thin
lines are the fitted peaks, and the thick red line is their sum (which
has to be compared to the experimental data).

refractive index was too small to be accurately measured by
this method (< 0.005), but the losses in the acrylic are much
smaller than those within the metal of the waveguide and can
therefore be neglected.

APPENDIX B: MULTIPEAK FIT

For each value of α we selected the 10 transmission spectra
(corresponding to the 10 realizations of the disorder) for the
longest sample, i.e., 118 scatterers. For each spectrum we first
estimated the number of peaks by looking at the local maxima,
and then fitted an equal number of Gaussian functions to the
spectrum, using the peaks’ height and width as fit parameters,
while their position was kept fixed to the point of the local
maxima. Figure 5 shows an example for α = 0.5. Shown are
the the data points, the 55 Gaussian functions used to fit it, and
their sum. From this fit we can extract the average distance
between neighboring peaks �ω and the average peak width

FIG. 6. Fits of T (L) (black points) and T (L) + R(L) (blue points) to obtain, respectively, b and μ, for the various vales of α.
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δω. Repeating this for all 10 realizations of the disorder we
can then estimate the variance for these two values.

It is important to notice that this method to fit the
transmission spectra is bound to underestimate the number
of Gaussian functions needed, as it only considers the modes
that form a local maximum in the spectrum. Therefore, both
�ω and δω are overestimated. This is confirmed by the fact
that χ2 for each fit is always significantly larger than the
number of degrees of freedom, which would be the expected
value for an ideal fit. This introduces a systematic error that is
difficult to estimate. Apart from this systematic error the results
obtained are both numerically stable and repeatable, and the
qualitative picture that emerges is consistent with theory [22].
An alternative approach would be to use as many modes as
there are scatterers (which is roughly the number of modes we
expect to contribute for a 1D system [25]), but any fit with over
300 free parameters is bound to be numerically unstable and
thus would not provide more reliable results than the method
we used here.

APPENDIX C: ESTIMATE OF ξ

For the reasons explained above, the multipeak fit of
T (ω) provides a qualitative description of the transition

between an Anderson localized regime to a conductive one
when increasing α, but not a quantitative one. To measure
directly the (spectrally averaged) localization length ξ we
look at how the total transmission T , and the sum between
the total transmission and total reflection T + R, change
with the length of the sample. For a nonabsorbing system,
T + R should always be equal to 1 independently from
the transport regime, so any change can be attributed to
losses. If we assume that the losses are uniform along the
waveguide, we can fit T + R to (T + R)(L) = 1 − A(L) =
1 − [(1 − R0) + e−μL(A0 + R0 − 1)], where A0 is the total
absorption of the empty waveguide and μ the absorption
coefficient. To do an ensemble average, we averaged both
T (L) and (T + R)(L) over the 10 realizations we measured,
and perform the fits, as shown in Fig. 6.

To estimate ξ we look at how much of the exponential decay
of T (L), parametrized as T (L) = T0e

−bL, can be ascribed to
losses, and how much cannot. In a perfectly conductive regime,
losses are the only explanation for the exponential decay of T

with the sample length, but if the system is Anderson localized
T will decay faster than is predicted by the losses. Therefore,
we estimate the localization length as ξ = 2

b−μ
. The variance

on the parameter estimation on μ and b (in the least square
fitting) was used to obtain an uncertainty on the value of ξ .
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