39 research outputs found

    A Kinematic Perspective on the Formation Process of the Stellar Groups in the Rosette Nebula

    Full text link
    peer reviewedStellar kinematics is a powerful tool for understanding the formation process of stellar associations. Here, we present a kinematic study of the young stellar population in the Rosette nebula using recent Gaia data and high-resolution spectra. We first isolate member candidates using the published mid-infrared photometric data and the list of X-ray sources. A total of 403 stars with similar parallaxes and proper motions are finally selected as members. The spatial distribution of the members shows that this star-forming region is highly substructured. The young open cluster NGC 2244 in the center of the nebula has a pattern of radial expansion and rotation. We discuss its implication on the cluster formation, e.g., monolithic cold collapse or hierarchical assembly. On the other hand, we also investigate three groups located around the border of the H II bubble. The western group seems to be spatially correlated with the adjacent gas structure, but their kinematics is not associated with that of the gas. The southern group does not show any systematic motion relative to NGC 2244. These two groups might be spontaneously formed in filaments of a turbulent cloud. The eastern group is spatially and kinematically associated with the gas pillar receding away from NGC 2244. This group might be formed by feedback from massive stars in NGC 2244. Our results suggest that the stellar population in the Rosette Nebula may form through three different processes: the expansion of stellar clusters, hierarchical star formation in turbulent clouds, and feedback-driven star formation

    Episodic Accretion in Protostars -- An ALMA Survey of Molecular Jets in the Orion Molecular Cloud

    Full text link
    Protostellar outflows and jets are almost ubiquitous characteristics during the mass accretion phase, and encode the history of stellar accretion, complex-organic molecule (COM) formation, and planet formation. Episodic jets are likely connected to episodic accretion through the disk. Despite the importance, there is a lack of studies of a statistically significant sample of protostars via high-sensitivity and high-resolution observations. To explore episodic accretion mechanisms and the chronologies of episodic events, we investigated 42 fields containing protostars with ALMA observations of CO, SiO, and 1.3\,mm continuum emission. We detected SiO emission in 21 fields, where 19 sources are driving confirmed molecular jets with high abundances of SiO. Jet velocities, mass-loss rates, mass-accretion rates, and periods of accretion events are found to be dependent on the driving forces of the jet (e.g., bolometric luminosity, envelope mass). Next, velocities and mass-loss rates are positively correlated with the surrounding envelope mass, suggesting that the presence of high mass around protostars increases the ejection-accretion activity. We determine mean periods of ejection events of 20-175 years for our sample, which could be associated with perturbation zones of \sim 2-25\,au extent around the protostars. Also, mean ejection periods are anti-correlated with the envelope mass, where high-accretion rates may trigger more frequent ejection events. The observed periods of outburst/ejection are much shorter than the freeze-out time scale of the simplest COMs like CH3_3OH, suggesting that episodic events largely maintain the ice-gas balance inside and around the snowline.Comment: Submitted to Journal; 27 pages, 15 Figures and additional Appendix materia

    ALMA ACA and Nobeyama Observations of Two Orion Cores in Deuterated Molecular Lines

    Get PDF
    We mapped two molecular cloud cores in the Orion A cloud with the 7 m Array of the Atacama Compact Array (ACA) of the Atacama Large Millimeter/submillimeterArray (ALMA) and with the Nobeyama 45 m radio telescope. These cores have bright N2D+ emission in single-pointing observations with the Nobeyama 45 m radio telescope, have a relatively high deuterium fraction, and are thought to be close to the onset of star formation. One is a star-forming core, and the other is starless. These cores are located along filaments observed in N2H+ and show narrow line widths of 0.41 km s(-1) and 0.45 km s(-1) in N2D+, respectively, with the Nobeyama 45 m telescope. Both cores were detected with the ALMA ACA 7 m Array in the continuum and molecular lines at Band 6. The starless core G211 shows a clumpy structure with several sub-cores, which in turn show chemical differences. Also, the sub-cores in G211 have internal motions that are almost purely thermal. The starless sub-core G211D, in particular, shows a hint of the inverse P Cygni profile, suggesting infall motion. The star-forming core G210 shows an interesting spatial feature of two N2D+ peaks of similar intensity and radial velocity located symmetrically with respect to the single dust continuum peak. One interpretation is that the two N2D+ peaks represent an edge-on pseudo-disk. The CO outflow lobes, however, are not directed perpendicular to the line connecting both N2D+ peaks.Peer reviewe

    ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP) : Evidence for a Molecular Jet Launched at an Unprecedented Early Phase of Protostellar Evolution

    Get PDF
    Protostellar outflows and jets play a vital role in star formation as they carry away excess angular momentum from the inner disk surface, allowing the material to be transferred toward the central protostar. Theoretically, low-velocity and poorly collimated outflows appear from the beginning of the collapse at the first hydrostatic core (FHSC) stage. With growing protostellar core mass, high-density jets are launched, entraininf an outflow from the infalling envelope. Until now, molecular jets have been observed at high velocity (greater than or similar to 100 km s(-1)) in early Class 0 protostars. We, for the first time, detect a dense molecular jet in SiO emission with low velocity (similar to 4.2 km s(-1), deprojected similar to 24 km s(-1)) from source G208.89-20.04Walma (hereafter G208Walma) using ALMA Band 6 observations. This object has some characteristics of FHSCs, such as a small outflow/jet velocity, extended 1.3 mm continuum emission, and N2D+ line emission. Additional characteristics, however, are typical of early protostars: collimated outflow and SiO jet. The full extent of the outflow corresponds to a dynamical timescale of similar to 930(-100)(+200) yr. The spectral energy distribution also suggests a very young source having an upper limit of T-bol similar to 31 K and L-bol similar to 0.8 L-circle dot. We conclude that G208Walma is likely in the transition phase from FHSC to protostar, and the molecular jet has been launched within a few hundred years of initial collapse. Therefore, G208Walma may be the earliest object discovered in the protostellar phase with a molecular jet.Peer reviewe

    ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): How Do Dense Core Properties Affect the Multiplicity of Protostars?

    Get PDF
    During the transition phase from a prestellar to a protostellar cloud core, one or several protostars can form within a single gas core. The detailed physical processes of this transition, however, remain unclear. We present 1.3 mm dust continuum and molecular line observations with the Atacama Large Millimeter/submillimeter Array toward 43 protostellar cores in the Orion molecular cloud complex (λ Orionis, Orion B, and Orion A) with an angular resolution of ∼0.″35 (∼140 au). In total, we detect 13 binary/multiple systems. We derive an overall multiplicity frequency (MF) of 28% ± 4% and a companion star fraction (CSF) of 51% ± 6%, over a separation range of 300-8900 au. The median separation of companions is about 2100 au. The occurrence of stellar multiplicity may depend on the physical characteristics of the dense cores. Notably, those containing binary/multiple systems tend to show a higher gas density and Mach number than cores forming single stars. The integral-shaped filament of the Orion A giant molecular cloud (GMC), which has the highest gas density and hosts high-mass star formation in its central region (the Orion Nebula cluster), shows the highest MF and CSF among the Orion GMCs. In contrast, the λ Orionis GMC has a lower MF and CSF than the Orion B and Orion A GMCs, indicating that feedback from H ii regions may suppress the formation of multiple systems. We also find that the protostars comprising a binary/multiple system are usually at different evolutionary stages.T.L. acknowledges support from the National Natural Science Foundation of China (NSFC) through grants No. 12073061 and No. 12122307, the International Partnership Program of the Chinese Academy of Sciences (CAS) through grant No. 114231KYSB20200009, the Shanghai Pujiang Program (20PJ1415500), and science research grants from the China Manned Space Project with no. CMS-CSST-2021-B06. K.T. was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (grant No. 20H05645). D.J. and J.d.F. are supported by NRC Canada and by NSERC Discovery Grants. C.-F.L. acknowledge grants from the Ministry of Science and Technology of Taiwan (MoST 107-2119-M-001-040-MY3 and 110-2112-M-001-021-MY3) and Academia Sinica (Investigator Award AS-IA-108-M01). This research was carried out in part at the Jet Propulsion Laboratory, which is operated by the California Institute of Technology under a contract with the National Aeronautics and Space Administration (80NM0018D0004). J.-E.L. was supported by a National Research Foundation of Korea grant funded by the Korean government (MSIT) (grant No. 2021R1A2C1011718). J.H. acknowledges the support of NSFC projects 11873086 and U1631237. This work is sponsored (in part) by the CAS, through a grant to the CAS South America Center for Astronomy in Santiago, Chile. S.-L.Q. is supported by the NSFC with grant No. 12033005. S.Z. acknowledges the support of the China Postdoctoral Science Foundation through grant No. 2021M700248. L.B. gratefully acknowledges support by the ANID BASAL projects ACE210002 and FB210003. P.S. was supported by a Grant-in-Aid for Scientific Research (KAKENHI No. 18H01259) of JSPS. V.-M.P. acknowledges support by the grant PID2020-115892GB-I00 funded by MCIN/AEI/10.13039/501100011033

    Planck Galactic Cold Clumps at High Galactic Latitude-a Study with CO Lines

    Get PDF
    Gas at high Galactic latitude is a relatively little noticed component of the interstellar medium. In an effort to address this, 41 Planck Galactic Cold Clumps at high Galactic latitude (HGal; divide b divide > 25 degrees) were observed in (CO)-C-12, (CO)-C-13, and (CO)-O-18 J = 1-0 lines, using the Purple Mountain Observatory 13.7 m telescope. (CO)-C-12 (1-0) and (CO)-C-13 (1-0) emission was detected in all clumps, while (CO)-O-18 (1-0) emission was only seen in 16 clumps. The highest and average latitudes are 71.degrees 4 and 37.degrees 8, respectively. Fifty-one velocity components were obtained, and then each was identified as a single clump. Thirty-three clumps were further mapped at 1 ' resolution, and 54 dense cores were extracted. Among dense cores, the average excitation temperature T (ex) of (CO)-C-12 is 10.3 K. The average line widths of thermal and nonthermal velocity dispersions are 0.19 and 0.46 km s(-1), respectively, suggesting that these cores are dominated by turbulence. Distances of the HGal clumps given by Gaia dust reddening are about 120-360 pc. The ratio of X (13)/X (18) is significantly higher than that in the solar neighborhood, implying that HGal gas has a different star formation history compared to the gas in the Galactic disk. HGal cores with sizes from 0.01 to 0.1 pc show no notable Larson's relation, and the turbulence remains supersonic down to a scale of slightly below 0.1 pc. None of the HGal cores that bear masses from 0.01 to 1 M (circle dot) are gravitationally bound, and all appear to be confined by outer pressure.Peer reviewe

    Molecular Cloud Cores with a High Deuterium Fraction : Nobeyama Single-pointing Survey

    Get PDF
    We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments (lambda Orionis, Orion A, Orion B, the Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76-94 GHz using the Nobeyama 45 m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g., N(2)H(+)and c-C3H2) and deuterated molecules (e.g., N(2)D(+)and DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores (>1 kpc). For lambda Orionis, Orion A, and Orion B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high-D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major mechanism for the beginning of star formation as judged from observations with a beam size of 0.04 pc.Peer reviewe

    PLANCK COLD CLUMPS IN THE lambda ORIONIS COMPLEX. I. DISCOVERY OF AN EXTREMELY YOUNG CLASS 0 PROTOSTELLAR OBJECT AND A PROTO-BROWN DWARF CANDIDATE IN THE BRIGHT-RIMMED CLUMP PGCC G192.32-11.88

    Get PDF
    We are performing a series of observations with ground-based telescopes toward Planck Galactic cold clumps (PGCCs) in the lambda Orionis complex in order to systematically investigate the effects of stellar feedback. In the particular case of PGCC G192.32-11.88, we discovered an extremely young Class 0 protostellar object (G192N) and a proto-brown dwarf candidate (G192S). G192N and G192S are located in a gravitationally bound brightrimmed clump. The velocity and temperature gradients seen in line emission of CO isotopologues indicate that PGCC G192.32-11.88 is externally heated and compressed. G192N probably has the lowest bolometric luminosity (similar to 0.8 L-circle dot) and accretion rate (6.3 x 10(-7) M-circle dot yr(-1)) when compared with other young Class 0 sources (e.g., PACS Bright Red Sources) in the Orion complex. It has slightly larger internal luminosity (0.21 +/- 0.01 L-circle dot) and outflow velocity (similar to 14 km s(-1)) than the predictions of first hydrostatic cores (FHSCs). G192N might be among the youngest Class 0 sources, which are slightly more evolved than an FHSC. Considering its low internal luminosity (0.08 +/- 0.01 L-circle dot) and accretion rate (2.8 x 10(-8) M-circle dot yr(-1)), G192S is an ideal proto-brown dwarf candidate. The star formation efficiency (similar to 0.3%-0.4%) and core formation efficiency (similar to 1%) in PGCC G192.32-11.88 are significantly smaller than in other giant molecular clouds or filaments, indicating that the star formation therein is greatly suppressed owing to stellar feedback.Peer reviewe
    corecore