270 research outputs found

    Quantum logic as superbraids of entangled qubit world lines

    Full text link
    Presented is a topological representation of quantum logic that views entangled qubit spacetime histories (or qubit world lines) as a generalized braid, referred to as a superbraid. The crossing of world lines is purely quantum in nature, most conveniently expressed analytically with ladder-operator-based quantum gates. At a crossing, independent world lines can become entangled. Complicated superbraids are systematically reduced by recursively applying novel quantum skein relations. If the superbraid is closed (e.g. representing quantum circuits with closed-loop feedback, quantum lattice gas algorithms, loop or vacuum diagrams in quantum field theory), then one can decompose the resulting superlink into an entangled superposition of classical links. In turn, for each member link, one can compute a link invariant, e.g. the Jones polynomial. Thus, a superlink possesses a unique link invariant expressed as an entangled superposition of classical link invariants.Comment: 4 page

    Superfluid turbulence from quantum Kelvin wave to classical Kolmogorov cascades

    Full text link
    A novel unitary quantum lattice gas algorithm is used to simulate quantum turbulence of a BEC described by the Gross-Pitaevskii equation on grids up to 5760^3. For the first time, an accurate power law scaling for the quantum Kelvin wave cascade is determined: k^{-3}. The incompressible kinetic energy spectrum exhibits very distinct power law spectra in 3 ranges of k-space: a classical Kolmogorov k^{-5/3} spectrum at scales much greater than the individual quantum vortex cores, and a quantum Kelvin wave cascade spectrum k^{-3} on scales of order the vortex cores. In the semiclassical regime between these two spectra there is a pronounced steeper spectral decay, with non-universal exponent. The Kelvin k^{-3} spectrum is very robust, even on small grids, while the Kolmogorov k^{-5/3} spectrum becomes more and more apparent as the grids increase from 2048^3 grids to 5760^3.Comment: 4 pages, 2 figure

    Corn Fiber as a Biomass Feedstock for Production of Succinic Acid

    Get PDF
    The selection of an economical carbon source is a fundamental parameter to establish a successful industrial succinic acid (SA) bioprocess. In this work, corn fiber (CF), a renewable and an inexpensive source of carbohydrates, was successfully used for bioproduction of SA. Optimized liquid hot water (LHW) pretreatment followed by enzymatic hydrolysis were used to obtain corn fiber hydrolysate (CFH). Results in batch fermentation with Actinobacillus succinogenes showed that a control solution mimicking CFH produced 28.7 g/L of SA with a yield of 0.67 g SA/g sugars, while fermentation of CFH produced 27.8 g/L of SA with a yield of 0.61 g SA/g sugars. It was found that culture pH was a critical factor affecting SA production. In sodium acetate buffered media, SA was the major end-product with lower levels of acetic acid (AA) and formic acid (FA). When unbuffered media was used, lactic acid (LA) and ethanol were also detected

    Relativistic quantum mechanics of a Dirac oscillator

    Get PDF
    The Dirac oscillator is an exactly soluble model recently introduced in the context of many particle models in relativistic quantum mechanics. The model has been also considered as an interaction term for modelling quark confinement in quantum chromodynamics. These considerations should be enough for demonstrating that the Dirac oscillator can be an excellent example in relativistic quantum mechanics. In this paper we offer a solution to the problem and discuss some of its properties. We also discuss a physical picture for the Dirac oscillator's non-standard interaction, showing how it arises on describing the behaviour of a neutral particle carrying an anomalous magnetic moment and moving inside an uniformly charged sphere.Comment: 19 pages, 1 figur

    Recent Budget of Hydroclimatology and Hydrosedimentology of the Congo River in Central Africa

    Get PDF
    Although the Congo Basin is still one of the least studied river basins in the world, this paper attempts to provide a multidisciplinary but non-exhaustive synthesis on the general hydrology of the Congo River by highlighting some points of interest and some particular results obtained over a century of surveys and scientific studies. The Congo River is especially marked by its hydrological regularity only interrupted by the wet decade of 1960, which is its major anomaly over nearly 120 years of daily observations. Its interannual flow is 40,500 m3 s−1. This great flow regularity should not hide important spatial variations. As an example, we can cite the Ubangi basin, which is the most northern and the most affected by a reduction in flow, which has been a cause for concern since 1970 and constitutes a serious hindrance for river navigation. With regard to material fluxes, nearly 88 × 106 tonnes of material are exported annually from the Congo Basin to the Atlantic Ocean, composed of 33.6 × 106 tonnes of TSS, 38.1 × 106 tonnes of TDS and 16.2 × 106 tonnes of DOC. In this ancient flat basin, the absence of mountains chains and the extent of its coverage by dense rainforest explains that chemical weathering (10.6 t km−2 year−1 of TDS) slightly predominates physical erosion (9.3 t km−2 year−1 of TSS), followed by organic production (4.5 t km−2 year−1 of DOC). As the interannual mean discharges are similar, it can be assumed that these interannual averages of material fluxes, calculated over the longest period (2006–2017) of monthly monitoring of its sedimentology and bio-physical-chemistry, are therefore representative of the flow record available since 1902 (with the exception of the wet decade of 1960). Spatial heterogeneity within the Congo Basin has made it possible to establish an original hydrological classification of right bank tributaries, which takes into account vegetation cover and lithology to explain their hydrological regimes. Those of the BatĂ©kĂ© plateau present a hydroclimatic paradox with hydrological regimes that are among the most stable on the planet, but also with some of the most pristine waters as a result of the intense drainage of an immense sandy-sandstone aquifer. This aquifer contributes to the regularity of the Congo River flows, as does the buffer role of the mysterious “Cuvette Centrale”. As the study of this last one sector can only be done indirectly, this paper presents its first hydrological regime calculated by inter-gauging station water balance. Without neglecting the indispensable in situ work, the contributions of remote sensing and numerical modelling should be increasingly used to try to circumvent the dramatic lack of field data that persists in this basin

    Identification of Kelvin waves: numerical challenges

    Full text link
    Kelvin waves are expected to play an essential role in the energy dissipation for quantized vortices. However, the identification of these helical distortions is not straightforward, especially in case of vortex tangle. Here we review several numerical methods that have been used to identify Kelvin waves within the vortex filament model. We test their validity using several examples and estimate whether these methods are accurate enough to verify the correct Kelvin spectrum. We also illustrate how the correlation dimension is related to different Kelvin spectra and remind that the 3D energy spectrum E(k) takes the form 1/k in the high-k region, even in the presence of Kelvin waves.Comment: 6 pages, 5 figures. The final publication is available at http://www.springerlink.co

    An approach to highly polluted wastewater management for zero liquid discharge: The case of landfill leachate

    Get PDF
    This work aims to bring the treatment of highly polluted wastewater to the concept of zero liquid discharge, using landfill leachate as a representative example. Achieving this goal involves removing pollution due to organic matter and/or heavy metals and recovering the nutrients contained in the effluent. Thus, the sequential combination of thermally activated persulfate and the Fenton reagent is proposed to eliminate the high concentration of organic matter. This avoids the need of pH adjustment to meet the Fenton process operation criteria and minimizes the amount of persulfate and, consequently, the conductivity in the treated effluent. Furthermore, this solution is particularly attractive in systems with excess energy, such as urban solid waste facilities where biogas is generated. Nutrient recovery (N in the case of landfill leachate) is carried out through precipitation in the form of struvite. Finally, if necessary, a further nanofiltration stage is proposed to minimize the conductivity of the treated effluent, making it suitable for on-site use. Under the optimized operating conditions (Flow rate: 0.5 L h−1, residence time 60 minutes, 0.3 and 0.7 times the stoichiometric amount of persulfate (12 g/g COD0) and H2O2 (2.12/g COD0), respectively, a H2O2/Fe2+ ratio of 50/1 and 85°C), a 90% removal of COD is achieved, along with 99% and 95% recovery of the nitrogen content in the effluent and reclaimed water, respectively, confirming the feasibility of this solution as an approach to a more sustainable waste managementPID2019–106884GB-I0

    Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor

    Get PDF
    The relative contributions of overstory and understory plant transpiration and soil evaporation to total evapotranspiration (ET) in a semiarid savanna woodland were determined from stable isotope measurements of atmospheric water vapor. The savanna overstory was dominated by the deeply rooted, woody legume Prosopis velutina ("mesquite"), and the understory was dominated by a perennial C-4 grass, Sporobolus wrightii. "Keeling plots" (turbulent mixing relationships) were generated from isotope ratios (deltaD and delta(18)O) of atmospheric water vapor collected within the tree (3-14 m) and understory (0.1-1 m) canopies during peak (July) and post-monsoon (September) periods of 2001. The unique regression intercepts from upper and lower profiles were used to partition the ET flux from the understory layer separately from that of the whole ecosystem. Although ET partitioning was problematic during the first sampling period in July, our results in September provided support to the validity of this method for measuring and understanding the dynamic behavior of water balance components in this semiarid savanna woodland. During the post-monsoon period (22nd September), transpiration accounted for 85% of ecosystem ET. Transpiration by the grass layer accounted for 50% of the understory ET over the same period. The total ecosystem ET estimated by eddy covariance (EC) on 22nd September was 3.5 mm per day. Based on partitioning by the isotope method, 2.5 mm, per day (70%) was from tree transpiration and 0.5 mm per day (15%) was from transpiration by the grass layer. Independent estimates of overstory and understory ET partitioning from distributed understory EC measurements were remarkably consistent with our isotope approach. (C) 2003 Elsevier B.V. All rights reserved
    • 

    corecore