34 research outputs found

    The Scalable Plasma Ion Composition and Electron Density (SPICED) Model for Earth's Inner Magnetosphere

    Get PDF
    The plasma mass loading of the terrestrial equatorial inner magnetosphere is a key determinant of the characteristics and propagation of ULF waves. Electron number density is also an important factor for other types of waves such as chorus, hiss and EMIC waves. In this paper, we use Van Allen Probe data from September 2012 to February 2019 to create average models of electron densities and average ion mass in the plasmasphere and plasmatrough, near the Earth’s magnetic equator. These models are combined to provide an estimate of the most probable plasma mass density in the equatorial region. We then use machine learning to form a set of models which are parameterized by the SuperMAG ring current index (SMR) based on the design of the average models. The resulting set of models are capable of predicting the average ion mass, electron density and plasma mass density in the range 2 < L < 5.9 and over all MLT sectors during a range of conditions where -75 < SMR < + 27 nT

    Multi-instrument observations of the effects of a solar wind pressure pulse on the high latitude ionosphere : a detailed case study of a geomagnetic sudden impulse

    Get PDF
    Funding: ARF was supported by an STFC studentship, Science Foundation Ireland Grant 18/FRL/6199, and an Irish Research Council Government of Ireland Postdoctoral Fellowship GOIPD/2022/782. ML, TKY, and SEM acknowledge support from the Science and Technology Facilities Council, UKRI, grant no. ST/W00089X/1. JAC is supported by Royal Society grant DHF\R1\211068. HKS was supported by an STFC studentship. TE was supported by a Leverhulme Trust Early Career Fellowship (ECF-2019-155), the University of Leicester and the University of Glasgow. SJW was supported by NERC studentship NE/L002493/1. MKJ was supported by STFC Grant ST/W00089X/1. JML was supported by the Irish Research Council. LJP was supported by AFOSR MURI Award 26-0201-51-62.The effects of a solar wind pressure pulse on the terrestrial magnetosphere have been observed in detail across multiple datasets. The communication of these effects into the magnetosphere is known as a positive geomagnetic sudden impulse (+SI), and are observed across latitudes and different phenomena to characterise the propagation of +SI effects through the magnetosphere. A superposition of AlfvĂŠn and compressional propagation modes are observed in magnetometer signatures, with the dominance of these signatures varying with latitude. For the first time, collocated lobe reconnection convection vortices and region 0 field aligned currents are observed preceding the +SI onset, and an enhancement of these signatures is observed as a result of +SI effects. Finally, cusp auroral emission is observed collocated with the convection and current signatures. For the first time, simultaneous observations across multiple phenomena are presented to confirm models of +SI propagation presented previously.Publisher PDFPeer reviewe

    Interferometric Study of Ionospheric Plasma Irregularities in Regions of Phase Scintillations and HF Backscatter

    Get PDF
    We investigate the nature of small-scale irregularities observed in the cusp by the Twin Rockets to Investigate Cusp Electrodynamics-2 (TRICE-2) in regions of enhanced phase scintillations and high-frequency coherent radar backscatter. We take advantage of the fact that the irregularities were detected by spatially separated probes, and present an interferometric analysis of both the observed electron density and electric field fluctuations. We provide evidence that fluctuations spanning a few decameters to about a meter have low phase velocity in the plasma reference frame and are nondispersive, confirming that decameter-scale irregularities follow the E × B velocity. Furthermore, we show that these “spatial” structures are intermittent and prominent outside of regions with strongest precipitation. The observations are then discussed in the context of possible mechanisms for irregularity creation.publishedVersio

    Regulation of Plasmodium falciparum Glideosome Associated Protein 45 (PfGAP45) Phosphorylation

    Get PDF
    The actomyosin motor complex of the glideosome provides the force needed by apicomplexan parasites such as Toxoplasma gondii (Tg) and Plasmodium falciparum (Pf) to invade their host cells and for gliding motility of their motile forms. Glideosome Associated Protein 45 (PfGAP45) is an essential component of the glideosome complex as it facilitates anchoring and effective functioning of the motor. Dissection of events that regulate PfGAP45 may provide insights into how the motor and the glideosome operate. We found that PfGAP45 is phosphorylated in response to Phospholipase C (PLC) and calcium signaling. It is phosphorylated by P. falciparum kinases Protein Kinase B (PfPKB) and Calcium Dependent Protein Kinase 1 (PfCDPK1), which are calcium dependent enzymes, at S89, S103 and S149. The Phospholipase C pathway influenced the phosphorylation of S103 and S149. The phosphorylation of PfGAP45 at these sites is differentially regulated during parasite development. The localization of PfGAP45 and its association may be independent of the phosphorylation of these sites. PfGAP45 regulation in response to calcium fits in well with the previously described role of calcium in host cell invasion by malaria parasite

    ULF waves with drift resonance and drift-bounce resonance energy sources as observed in artificially-induced HF radar backscatter

    Full text link
    HF radar backscatter which has been artificially-induced by a high power RF facility such as the EISCAT heater at Tromsø has been demonstrated to provide ionospheric electric field data of unprecedented temporal resolution and accuracy. Here such data are used to investigate ULF wave processes observed by the CUTLASS HF radars. Within a short period of time during a single four hour experiment three distinct wave types are observed with differing periods, and latitudinal and longitudinal phase evolution. Combining information from the three waves allows them to be divided into those with a large-scale nature, driven externally to the magnetosphere, and those with small azimuthal scale lengths, driven by wave-particle interactions. Furthermore, the nature of the wave-particle interactions for two distinct small-scale waves is revealed, with one wave interpreted as being driven by a drift resonance process and the other by a drift-bounce resonance interaction. Both of these mechanisms with m ≈ -35 and proton energies of 35–45 keV appear to be viable wave energy sources in the postnoon sector

    High-latitude HF Doppler observations of ULF waves: 2. Waves with small spatial scale sizes

    Full text link
    The DOPE (Doppler Pulsation Experiment) HF Doppler sounder located near Tromsø, Norway (geographic: 69.6°N 19.2°E; L = 6.3) is deployed to observe signatures, in the high-latitude ionosphere, of magnetospheric ULF waves. A type of wave has been identified which exhibits no simultaneous ground magnetic signature. They can be subdivided into two classes which occur in the dawn and dusk local time sectors respectively. They generally have frequencies greater than the resonance fundamentals of local field lines. It is suggested that these may be the signatures of high-m ULF waves where the ground magnetic signature has been strongly attenuated as a result of the scale size of the waves. The dawn population demonstrate similarities to a type of magnetospheric wave known as giant (Pg) pulsations which tend to be resonant at higher harmonics on magnetic field lines. In contrast, the waves occurring in the dusk sector are believed to be related to the storm-time Pc5s previously reported in VHF radar data. Dst measurements support these observations by indicating that the dawn and dusk classes of waves occur respectively during geomagnetically quiet and more active intervals

    Comprehensive survey of Pc4 and Pc5 band spectral content in Cluster magnetic field data

    Full text link
    In the first part of this study we present two case studies of pulsations that, with the help of ground-based data, are identified as field line resonances (FLRs). These pulsations occurred at frequencies which belong to a set of frequencies that has been suggested to be preferred in the terrestrial magnetosphere (CMS frequencies). We go on to show that for both events there is a significant signature at the same frequency in the time series of the compressional magnetic field observed by the conjugate Cluster satellites. We interpret these as signatures of the compressional mode driving the FLRs. In the second part we present a statistical study including one year's worth of Cluster magnetic field data. For each orbit between May 2004 and June 2005 we identified a three hour interval during which the satellites were located on closed magnetic field lines. We identified peaks in the spectrum between 1.0 and 15.0 mHz of the compressional, poloidal and toroidal components of the magnetic field. We use this database of spectral peaks observed on closed magnetic field lines to investigate whether peaks occur at a preferred set of frequencies which would be indicative for the Earth's magnetosphere behaving like a cavity/waveguide. We find no consistent preference for all CMS frequencies in our dataset, however we do find a preference for certain higher frequencies suggesting that higher harmonics of the cavity/waveguide are a persistent feature of the inner magnetosphere, and are detected by the Cluster spacecraft. This result could be explained by the polar orbit of the Cluster satellites

    Intermediate-m ULF waves generated by substorm injection: a case study

    Full text link
    A case study of SuperDARN observations of Pc5 AlfvÊn ULF wave activity generated in the immediate aftermath of a modest-intensity substorm expansion phase onset is presented. Observations from the Hankasalmi radar reveal that the wave had a period of 580 s and was characterized by an intermediate azimuthal wave number (m=13), with an eastwards phase propagation. It had a significant poloidal component and a rapid equatorward phase propagation (~62° per degree of latitude). The total equatorward phase variation over the wave signatures visible in the radar field-of-view exceeded the 180° associated with field line resonances. The wave activity is interpreted as being stimulated by recently-injected energetic particles. Specifically the wave is thought to arise from an eastward drifting cloud of energetic electrons in a similar fashion to recent theoretical suggestions (Mager and Klimushkin, 2008; Zolotukhina et al., 2008; Mager et al., 2009). The azimuthal wave number m is determined by the wave eigenfrequency and the drift velocity of the source particle population. To create such an intermediate-m wave, the injected particles must have rather high energies for a given L-shell, in comparison to previous observations of wave events with equatorward polarization. The wave period is somewhat longer than previous observations of equatorward-propagating events. This may well be a consequence of the wave occurring very shortly after the substorm expansion, on stretched near-midnight field lines characterised by longer eigenfrequencies than those involved in previous observations

    Substorm associated radar auroral surges: a statistical study and possible generation model

    Full text link
    Substorm-associated radar auroral surges (SARAS) are a short lived (15–90 minutes) and spatially localised (~5° of latitude) perturbation of the plasma convection pattern observed within the auroral E-region. The understanding of such phenomena has important ramifications for the investigation of the larger scale plasma convection and ultimately the coupling of the solar wind, magnetosphere and ionosphere system. A statistical investigation is undertaken of SARAS, observed by the Sweden And Britain Radar Experiment (SABRE), in order to provide a more extensive examination of the local time occurrence and propagation characteristics of the events. The statistical analysis has determined a local time occurrence of observations between 1420 MLT and 2200 MLT with a maximum occurrence centred around 1700 MLT. The propagation velocity of the SARAS feature through the SABRE field of view was found to be predominately L-shell aligned with a velocity centred around 1750 m s–1 and within the range 500 m s–1 and 3500 m s–1. This comprehensive examination of the SARAS provides the opportunity to discuss, qualitatively, a possible generation mechanism for SARAS based on a proposed model for the production of a similar phenomenon referred to as sub-auroral ion drifts (SAIDs). The results of the comparison suggests that SARAS may result from a similar geophysical mechanism to that which produces SAID events, but probably occurs at a different time in the evolution of the event
    corecore