10 research outputs found

    The emergence and diversification of a zoonotic pathogen from within the microbiota of intensively farmed pigs

    Get PDF
    The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.This work was primarily funded by an EU Horizon 2020 grant “PIGSs” (727966) and a ZELS BBSRC award “Myanmar Pigs Partnership (MPP)” (BB/L018934/1). G.G.R.M., E.L.M., and L.A.W. were supported by a Sir Henry Dale Fellowship to L.A.W. jointly funded by the Wellcome Trust and the Royal Society (109385/Z/15/Z). N.H. was supported by a Challenge grant from the Royal Society (CH16011) and an Isaac Newton Trust Research Grant [17.24(u)]. G.G.R.M. was also supported by a Research Fellowship at Newnham College. S.B. is supported by the Medical Research Council (MR/V032836/1). PIC North America provided part of the funds for the sequencing of the isolates from the USA. A.J.B. and M.M. were funded by Medical Research Council and Biotechnology and Biological Sciences Research Council studentships respectively, and M.M. was co-funded by the Raymond and Beverly Sackler Fund. We would like to acknowledge Susanna Williamson at the APHA for providing samples, Oscar Cabezón for sampling of the wild boar population in Spain, Mark O’Dea for access to sequence data from Australian isolates, the PIGSs and MPP consortiums for providing samples and helpful discussions, Julian Parkhill and John Welch for helpful discussions, and two anonymous reviewers for their valuable suggestions for improving the manuscript. This research was funded in whole or in part by the Wellcome Trust. For the purpose of Open Access, the author has applied a CC BY public copyright license to any Author Accepted Manuscript (AAM) version arising from this submission.info:eu-repo/semantics/publishedVersio

    International incidence of childhood cancer, 2001-10: A population-based registry study

    Get PDF

    The emergence and diversification of a zoonotic pathogen from within the microbiota of intensively farmed pigs

    Get PDF
    Altres ajuts: Biotechnology and Biological Sciences Research Council BB/L018934/1. Wellcome Trust and Royal Society 109385/Z/15/Z. Medical Research Council MR/V032836/1 i Royal Society CH16011There is growing concern that rapid growth in livestock production and major changes in farming practices are driving the emergence of pathogens capable of causing disease in both livestock and humans. However, most studies neglect livestock microbiota as a potential source of emerging pathogens. Here, we show how the global transport of live animals has facilitated the emergence of an important livestock and human zoonotic pathogen from a common member of the pig respiratory microbiota. Our results indicate that pathogenic lineages are likely to continue to emerge and diversify and recommend ways of controlling this. The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized

    International incidence of childhood cancer, 2001-10: a population-based registry study

    Get PDF
    Background Cancer is a major cause of death in children worldwide, and the recorded incidence tends to increase with time. Internationally comparable data on childhood cancer incidence in the past two decades are scarce. This study aimed to provide internationally comparable local data on the incidence of childhood cancer to promote research of causes and implementation of childhood cancer control. Methods This population-based registry study, devised by the International Agency for Research on Cancer in collaboration with the International Association of Cancer Registries, collected data on all malignancies and non-malignant neoplasms of the CNS diagnosed before age 20 years in populations covered by high-quality cancer registries with complete data for 2001-10. Incidence rates per million person-years for the 0-14 years and 0-19 years age groups were age-adjusted using the world standard population to provide age-standardised incidence rates (WSRs), using the age-specific incidence rates (ASR) for individual age groups (0-14 years, 5-9 years, 10-14 years, and 15-19 years). All rates were reported for 19 geographical areas or ethnicities by sex, age group, and cancer type. The regional WSRs for children aged 0-14 years were compared with comparable data obtained in the 1980s. Findings Of 532 invited cancer registries, 153 registries from 62 countries, departments, and territories met quality standards, and contributed data for the entire decade of 2001-10. 385 509 incident cases in children aged 0-19 years occurring in 2-6 billion person-years were included. The overall WSR was 140.6 per million person-years in children aged 0-14 years (based on 284 649 cases), and the most common cancers were leukaemia (WSR 46.4), followed by CNS tumours (WSR 28.2), and lymphomas (WSR 15.2). In children aged 15-19 years (based on 100 860 cases), the ASR was 185.3 per million person-years, the most common being lymphomas (ASR 41.8) and the group of epithelial tumours and melanoma (ASR 39.5). Incidence varied considerably between and within the described regions, and by cancer type, sex, age, and racial and ethnic group. Since the 1980s, the global WSR of registered cancers in children aged 0-14 years has increased from 124.0 (95% CI 123.3-124.7) to 140.6 (140.1-141.1) per million person-years. Interpretation This unique global source of childhood cancer incidence will be used for aetiological research and to inform public health policy, potentially contributing towards attaining several targets of the Sustainable Development Goals. The observed geographical, racial and ethnic, age, sex, and temporal variations require constant monitoring and research. Funding International Agency for Research on Cancer and the Union for International Cancer Control

    International incidence of childhood cancer, 2001–10: a population-based registry study

    No full text
    corecore