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Abstract

Background: Antimicrobial resistance (AMR) is among the gravest threats to human health and food security
worldwide. The use of antimicrobials in livestock production can lead to emergence of AMR, which can have direct
effects on humans through spread of zoonotic disease. Pigs pose a particular risk as they are a source of zoonotic
diseases and receive more antimicrobials than most other livestock. Here we use a large-scale genomic approach to
characterise AMR in Streptococcus suis, a commensal found in most pigs, but which can also cause serious disease
in both pigs and humans.

Results: We obtained replicated measures of Minimum Inhibitory Concentration (MIC) for 16 antibiotics, across a
panel of 678 isolates, from the major pig-producing regions of the world. For several drugs, there was no natural
separation into ‘resistant’ and ‘susceptible’, highlighting the need to treat MIC as a quantitative trait. We found
differences in MICs between countries, consistent with their patterns of antimicrobial usage. AMR levels were high
even for drugs not used to treat S. suis, with many multidrug-resistant isolates. Similar levels of resistance were
found in pigs and humans from regions associated with zoonotic transmission. We next used whole genome
sequences for each isolate to identify 43 candidate resistance determinants, 22 of which were novel in S. suis. The
presence of these determinants explained most of the variation in MIC. But there were also interesting
complications, including epistatic interactions, where known resistance alleles had no effect in some genetic
backgrounds. Beta-lactam resistance involved many core genome variants of small effect, appearing in a
characteristic order.

Conclusions: We present a large dataset allowing the analysis of the multiple contributing factors to AMR in S. suis.
The high levels of AMR in S. suis that we observe are reflected by antibiotic usage patterns but our results confirm
the potential for genomic data to aid in the fight against AMR.
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Background
The ability of bacterial pathogens to evolve resistance to
antimicrobials is one of the gravest threats to human
health and food security worldwide. Antimicrobial resist-
ance (AMR) to a given drug can be quantified via the
minimum inhibitory concentration (MIC), i.e. the mini-
mum concentration of the drug that is sufficient to in-
hibit growth of a bacterial culture. While, for practical
use, bacterial isolates are often categorised as either sus-
ceptible or resistant, MIC is a continuously varying trait
(measured discontinuously). In this study, we investigate
how AMR genes, variants and ecology explain antibiotic
phenotype in the bacterium Streptococcus suis, treating
MIC phenotype as a quantitative trait.
S. suis primarily exists as a commensal in pigs, colonis-

ing the nasopharynx, gut and vagina, but it also causes
systemic and respiratory disease, particularly in young
pigs [1]. S. suis is also a serious zoonotic disease, being
the leading cause of adult bacterial meningitis in
Vietnam [2]. While some autogenous vaccines are used
in pig production, they are serotype-specific and give in-
consistent cross protection against heterogeneous S. suis
[3]. Antimicrobials therefore remain the standard treat-
ment for S. suis, and as such, S. suis is a leading driver of
antimicrobial usage in pig farms [4].
As well as being a serious problem in itself, S. suis also

has unique benefits as a model for studying AMR. By
weight, more pork is consumed globally than any other
meat [5, 6], and S. suis is found in most, if not all, pigs
[7]. Furthermore, antibiotic consumption is higher in
pigs (172 mg per population corrected unit) than any
other livestock (e.g. cattle (45 mg) and chicken (148 mg))
[8]. As a result, most S. suis lineages will experience an-
tibiotics. These include not only antibiotics administered
directly against S. suis, whether as a therapeutic, prophy-
laxis or metaphylaxis, but also, and perhaps more com-
monly, in response to many other bacterial infections
and in limited countries as growth promoters [9, 10].
The strong selection pressure caused by widespread

use of antimicrobials in pig farming is expected to give
rise to AMR in S. suis. Consistent with this, several
phenotypic studies show high MICs for each of the
major classes of antibiotics in one or more S. suis collec-
tions [11–15]. In addition, there have been demonstra-
tions of individual resistance determinants affecting MIC
in S. suis [16–18], and also some mining of S. suis gen-
ome collections for known resistance determinants [19–
21]. However, to our knowledge, no study has combined
complete genomic and phenotypic information in large
numbers of isolates, collected from a diverse range of
populations.
To this end, we obtained replicated measures of MIC

for 16 antibiotics, each widely used in pigs, for six differ-
ent S. suis collections, comprising 678 isolates. These

collections were chosen to include the three main pig-
producing regions of the globe—namely the Americas,
South East Asia and Europe—and targeted both human
and pig hosts, as well as a range of years, serotypes and
clinical phenotypes [22–24]. We obtained whole genome
sequences for each of our isolates, allowing us to com-
pare phenotype and genotype on an unprecedented
scale.

Results
Measurement of MIC for 16 antibiotics in S. suis
We scored 678 isolates of Streptococcus suis for repli-
cated measures of Minimum Inhibitory Concentration
(MIC) for 16 antibiotics (Additional file 1: Table S1).
Four of these are beta-lactams (amoxicillin, cefquinome,
ceftiofur and penicillin), which are typically used to treat
S. suis infection in pigs. The other antibiotics are all
widely used in the pig industry, but found in different
drug classes. They comprise macrolide-lincosamide-
streptogramin B (MLSB: erythromycin, lincomycin,
tilmicosin and tylosin), tetracyclines (doxycycline and
tetracycline) and fluoroquinolones (enrofloxacin and
marbofloxacin), plus one each of an aminoglycoside
(spectinomycin), a pleuromutilin (tiamulin), trimetho-
prim (TMP) and a phenicol (florfenicol). Results, shown
in the left-hand plot of Fig. 1, reveal wide variation
among our isolates in MIC for most of the antibiotics.
For a few antibiotics, especially the MLSB and tetracy-
clines, the MIC values are clearly bimodal, suggesting a
meaningful division between ‘resistant’ and ‘wild-type’
isolates. However, for most antibiotics, the distributions
are either roughly lognormal (fluoroquinolones and phe-
nicols) or positively skewed (spectinomycin, pleuromuti-
lin, TMP and beta-lactams). It is striking that the
distributions for the beta-lactams are not clearly dissimi-
lar from any of the other antibiotic classes, despite their
being the most common treatment against S. suis. Given
these distributions, and the general lack of defined clin-
ical breakpoints for these antibiotics in S. suis [25], we
treated MIC as a quantitative trait in our subsequent
analyses.

Ecological and genomic predictors of MIC
Our S. suis isolates were collected at different times, and
from different countries, hosts and body sites, including
sites associated with respiratory and systemic disease.
Isolates were also genetically heterogeneous, and differed
in their serotype; including serotypes with a known dis-
ease association (see ‘Methods’ and Additional file 1:
Table S1). We first used linear models, to ask whether
MIC levels varied systematically with these ecological
and genomic factors.
S. suis is highly recombining, such that no single

genealogy describes its diversity [22]. As such, to
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characterise genomic diversity in our sample, we identi-
fied 30 BAPs clusters of similar strains (see ‘Methods’).
Figure S1 shows a core genome phylogeny with these
clusters highlighted (Additional file 2: Figure S1) [26–
28]. The resulting clusters were a highly significant pre-
dictor of MIC (p < 10−15; Table 1 (A)) showing that gen-
omically similar isolates tend to have similar MIC
values. To account for this genetic structure, ‘cluster’
was included as a random effect in subsequent analyses.
A model including all potential predictors showed that

country of isolation was also a highly significant pre-
dictor of MIC. In addition, there were weaker effects of
year of collection (with a slight trend for increasing MIC
over time); for serotype (with non-disease-associated

serotypes tending to have higher MIC); and for host dis-
ease status (with non-clinical isolates having higher
MIC) (Table 1 (B)).
Separate analyses for each antibiotic, showed that the

effect of country was driven by consistently higher MIC
in the samples from Canadian pigs. As shown in Fig. 2A
(left-hand panel), this applied to 15/16 antibiotics, and
also applied to various models (Table 1 (C)), and subsets
of the data (Additional file 2: Figure S2). For example,
the effect is seen consistently in systemic pathogens, re-
spiratory pathogens and non-clinical isolates (Additional
file 2: Figure S2). By contrast, the other predictors (year,
serotype and clinical status) had effects that were less
consistent or robust (Table 1 (D–F)). The difference in

Fig. 1. Candidate AMR determinants explain most of the variation in MIC. Histograms of log transformed MIC measures for each of our 16
different antibiotics, across our panel of 678 S. suis isolates. Antibiotics are coloured by their class (Beta: beta-lactams; MLSB: macrolide-
lincosamide-streptogramin B; Tetra: tetracyclines; Fluoro: fluoroquinolones; Amino: aminoglycoside; Pleuro: pleuromutilin; TMP: trimethoprim and
Phen: phenicol). In the 16 square panels, the left-hand histograms (labelled 0) show the MIC values for isolates that carry no determinant for that
antibiotic class, while the right-hand histograms (labelled 1+) show the MIC values for isolates carrying one or more such determinant. If all
resistance determinants perfectly explain MIC, then we expect to see histogram distributions on the bottom left (low MIC, no determinant) and
the top right (high MIC, presence of candidate determinant(s)). For the first antimicrobial in each class, we show the number of candidate AMR
determinants in square brackets, along with the number of isolates where candidate determinants are absent or present. r2 values show the
proportion of the variance explained in a standard ANOVA by the presence of one or more candidate determinant
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the MIC values between Canada and the UK is consist-
ent with higher antimicrobial usage reported in Canada
[29, 30].
Predictions for Vietnam are more difficult, as there is

a lack of official records of antibiotic usage, although it
is likely that usage is both higher than in the EU and fo-
cussed on different drugs [31]. However, as shown in
Fig. 2B (left-hand panel), we saw no such signal in the
MIC data, even when we restricted the comparison to
the genetic cluster BAPS4 that includes all of our Viet-
namese sample (see ‘Methods’). The clearest pattern is
for lower MIC for the MLSB class in the Vietnamese iso-
lates (pink points in Fig. 2B left-hand panel). As shown
in Fig. 2C (left-hand panel), we also found no robust dif-
ferences between Vietnamese isolates sampled from
humans and pigs. This is consistent with pigs being a
reservoir for this zoonotic disease, and the lack of evi-
dence of genomic adaptation to human hosts [22].

Table 1 Ecological and genomic predictors of MIC
Analysis #strains Fixed effects Df F p

(a) 678 Antibiotic 15 1404.125 < 10−15

genetic cluster 29 40.644 < 10−15

(b) 450 Antibiotic 15 972.3107 < 10−4

Year 1 6.6078 0.0102

Serotype 1 6.6261 0.0101

Disease status 2 2.9760 0.0511

Country 3 92.5155 < 10−4

(c) 678 Antibiotic 15 1457.4043 < 10−4

Country 3 139.5902 < 10−4

(d) 557 Antibiotic 15 1144.3846 < 10−4

Disease status 2 9.9619 < 10−4

(e) 542 Antibiotic 15 1131.6347 < 10−4

Serotype 1 8.7216 0.0032

(f) 652 Antibiotic 15 1350.8781 < 10−4

Year 1 0.1591 0.69

Fig. 2. Differences in MICs between subsets of the data. Each row compares two subsets of the isolates: A the 423 isolates from UK pigs, and the
205 isolates from Canadian pigs. B the 50 isolates from Vietnam (all of which are from the genetic cluster ‘BAPS4’: Additional file 2, Figure S1), and
the 112 BAPS4 isolates from the UK and Canada. C the 22 Vietnamese isolates from pigs, and the 28 Vietnamese isolates from people. Left-hand
panels compare the mean log MICs for each antibiotic. Consistent deviations from the dotted 1:1 line suggest consistently higher or lower MICs
in that subset of the data (so the rightward shift in panel A shows that MICs are consistently higher in Canada). Right-hand panels show the
proportion of isolates that carry each of the 43 candidate AMR determinants. Each point or bar is coloured according to its drug class, according
to the colour scheme in Fig. 1
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Identification of candidate AMR determinants within S.
suis genomes
Using a candidate locus approach, we next identified
known and putative determinants of AMR that were
present in our sampled genomes. We considered both
the presence/absence of whole genes, and sequence vari-
ants within genes. In total, we detected 43 determinants:
10 completely novel variants of known resistance genes,
12 known resistance genes detected in S. suis for the first
time, and 21 previously reported in S. suis (Table 2 and
Additional file 1: Table S1). Our candidates come from
three sources: the antimicrobial resistance database
CARD [40], previously published S. suis variants not
present in the CARD database [36, 38, 39] and novel
variants detected using a subset of our data (see
‘Methods’).
Of the 10 novel determinants, six are variants in genes

previously associated with resistance in other bacteria
(including a promoter variant). In particular, we discov-
ered four novel haplotypes within the loop region of the
central transpeptidase domains of the pbp2B and pbp2X
genes and within the signal peptide region of the mraY
gene (encoding the enzyme, acetylmuramoyl-
pentapeptide-transferase, essential to cell wall biosyn-
thesis) that were associated with variation in beta-lactam
MIC (Table 2). In particular, we noted a PBP2X muta-
tion at the conserved location T551, similar to that
found in S. pneumoniae (T550), group B streptococci
(T555) and S. pyogenes (T553) PBP2X proteins [41] indi-
cative of a shared overall mechanism mediating beta-
lactam resistance across the genus. Polymorphisms in
mraY have also been identified in a genome-wide associ-
ation study of beta-lactam resistance in S. pneumoniae
[42]. In addition to these four beta-lactam haplotypes,
two variants – a variant of the chromosomal dihydrofo-
late reductase gene dhfr and its promoter – were associ-
ated with reduced susceptibility against trimethoprim
(Table 2). Furthermore, all of these six variants were in-
dependently associated with changes in MIC in at least
seven different genetic clusters (Additional file 2: Table
S2) implying that the association between these variants
and MIC is either directly causal or compensatory to the
causal variant [43].
The remaining four novel variants were whole genes

with homologies to known resistance genes: three lo-
cated on mobile genetic elements (MGEs) and one
chromosomal (Table 2). Three novel aminoglycoside re-
sistance genes, carried by isolates with high spectino-
mycin MIC, were identified based on aminoglycoside
resistance determinant protein homologies. Although
previously undescribed, we found homologues in other
bacteria using a blastn search of the non-redundant
database in GenBank (Table 2). We also characterised a
chromosomally-encoded vgaC homologue (37% protein

homology to vgaC), encoding an ABC-F ATP-binding
cassette ribosomal protection protein, that we designate
vgaF. This gene has arisen in 13 different BAPS clusters,
each time associated with reduced susceptibility to tia-
mulin (Additional file 2: Table S2).
The 12 previously known AMR genes detected in S.

suis for the first time are mobile genetic element
(MGE)-linked genes that confer resistance to aminogly-
cosides (2/12), MLSB (2/12), tetracyclines (5/12), TMP
(2/12) and phenicol (1/12). Based on the CARD and
NCBI databases, these genes are associated with other
gram-positive and gram-negative bacteria (Table 2).
Overall, most of our candidate determinants (28/43)

were found in fewer than 5% of the isolates, but ermB
(which confers resistance to the MLSB class) and tetO
(which confers resistance to tetracyclines) were present
in a majority of the isolates (Table 2). Only about a
quarter of isolates carry a candidate determinant for the
beta-lactams highlighting the continuing susceptibility to
these first line treatment drugs in S. suis.
Nevertheless, as shown in Fig. 3, many isolates carried

multiple determinants, and multidrug resistance was
widespread. Around 40% of isolates carried resistance
determinants to three or more classes of drug (275/678),
and over 10% carried resistance determinants to five
classes (81/678); this is more than carried no determi-
nants at all (59/678).

Candidate AMR determinants explain most of the
variation in MIC
We next investigated how well our candidate variants
explain the variation we observe in MIC (see Additional
file 2: Figures S3-S9 for detailed plots). The right-hand
panel of Fig. 1 compares the distribution of MIC values
for isolates carrying one or more of the candidate AMR
determinants for that antibiotic class (denoted ‘1+’), to
the MIC of the remaining isolates, which carry no such
determinant (denoted ‘0’).
The proportion of the variation in MIC explained by

our variants varied between antibiotics. Explanatory
power was strongest (r2 > 0.75) for antibiotics where the
distributions of MIC were most clearly bimodal (MLSB
and tetracyclines). By contrast, we found no association
between our variants and MIC for the fluoroquinolones
and phenicol, where the distribution of MIC values was
roughly lognormal, consistent with our isolates repre-
senting a ‘wild-type’ population. For the remaining anti-
biotics, our determinants had intermediate explanatory
power (Fig. 1), but there were very few isolates with high
MIC that did not carry a candidate determinant. This
suggests that we have detected most of the causal vari-
ants in our dataset, removing the need to perform add-
itional genome-wide associations.
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We next asked whether the variable presence of our
candidate determinants in different ecological settings
would explain the significant ecological predictors of
MIC in our linear models (Table 1). Consistent with this
hypothesis, the typical MIC level in each genetic cluster
was highly correlated with the frequency of determinants
in that cluster (Additional file 2: Figure S10).
Differences between countries were explained in the

same way. The higher MIC in Canada than the UK was
due to consistently higher frequencies of the same deter-
minants (Fig. 2A right-hand panel)—with the exception
of trimethoprim (see below). By contrast, tetracycline re-
sistance throughout the BAPS4 cluster, though at similar
levels in all three countries, was conferred by different
determinants in Vietnam (Fig. 2B).

Ineffective variants and epistasis
While our data contained few isolates with high MIC
that did not carry a candidate determinant, there
were many isolates with low MIC despite carrying a
determinant (Fig. 1).
In some cases, this was due to previously identified

candidate genes that had no appreciable effect on
MIC in our data. For example, spectinomycin MIC
was unchanged by some determinants identified from
the CARD database (e.g. ant(6’)-Ib in Additional file
2: Figure S7). If we allow for the presence of these
non-functional genes, the r2 value for spectinomycin
increases from 0.37 (Fig. 1) to 0.69 (Additional file 2:
Figure S11a).

In other cases, as is well known, variants act against
only some of the antibiotics in a class. In MLSB, for ex-
ample, modification of the ribosomal target confers cross
resistance to macrolides and lincosamides, while mecha-
nisms such as efflux and enzymatic inactivation do not
[44]; so msrD acts against erythromycin, but not against
lincomycin, while linB inactivates lincomycin, but not
erythromycin (Additional file 2: Figure S4). Again, taking
this into account further increases predictive power
(Additional file 2: Figure S11a).
As well as these simple cases, there were some clear

examples of genetic interactions. For trimethoprim, two
candidate variants—in the protein DHFR102 and its pro-
moter (Table 2)—were found at higher frequency in the
UK than Canada (Fig. 2A, right-hand-panel), but in
Canada, the two variants were more often found to-
gether, leading to higher MIC overall (Fig. 2A; Add-
itional file 2: Figure S9).
Finally, we observed complex patterns for the second

most common determinant in our dataset, ermB. For the
334 isolates that carried only ermB (and no other candi-
date determinant to MLSB class drugs), MIC values were
clearly bimodal, with many carriers having very low MIC
(Additional file 2: Figures S4 and S12). Further analysis
revealed a small number of isolates with frameshift or
premature stop codons (4/326 isolates with complete se-
quences in our assemblies). While the remaining isolates
with low MIC carried rare amino acid variants at one of
four positions (T75X, N100S, R118H and V226I)—the
last three of which differentiate the ermB sequences

Fig. 3. High levels of multidrug resistance in S. suis. The upper panel shows the number of our 678 isolates that carry a given number of
candidate AMR determinants. The low panel shows the number of isolates that carry one or more AMR determinant for a given number of drug
classes. Results show that more isolates carry determinants against 5 drug classes than carry no determinant at all.
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found in Streptococcus pneumoniae from Clostridium
perfringens [45]. Nevertheless, no particular sequence
was always associated with low MIC, suggesting some
unidentified source of epistasis (see ‘Methods’ and Add-
itional file 2: Figure S12 for full details).

Resistance to beta-lactams
While beta-lactams are the major treatment class for S.
suis, it is notable that the explanatory power of our vari-
ants seems to be weaker for this drug class than for, e.g.
tetracyclines or MLSB.
In Streptococci, a typical route to beta-lactam resist-

ance involves variants in the pbp genes, and it is well
established that the joint action of many pbp variants is
necessary to explain substantial changes in MIC [46, 47].
Single-point mutations in pbp2x, for example, cause very
modest elevations in S. pneumoniae [46], group B
Streptococci [48], Streptococcus dysgalactiae subsp. equi-
similis [49] and Streptococcus pyogenes [41].
Like S. pneumoniae, S. suis has three key pbp genes,

pbp1A, pbp2b and pbp2x, and shares a similarly broad
MIC distribution (although with typically lower MIC
values) [47, 50, 51]. Our data also show that mutations
in pbp2x alone have small effects (Additional file 2: Fig-
ure S3), while genotypes carrying four or more variants
have the highest mean MIC (Additional file 2: Figure
S3). Our explanatory power increases greatly when we
predict beta-lactam MIC from the total number of can-
didate variants carried (Additional file 2: Figure S11b).

Although official breakpoints are lacking for many beta-
lactam antibiotics in S. suis, for penicillin, only the iso-
lates with the most variants reach clinical significance
(i.e. penicillin resistance ≥ 1 or log(0) MIC).
In S. pneumoniae, it has also been noted that muta-

tions conferring resistance to beta-lactams occur in a set
order, with amino acid changes in PBP2B and PBP2X
often acting as the first step [46, 52, 53]. Figure 4 shows
that our data also show this characteristic ‘nested’ pat-
tern (see also Additional file 2: Figure S13 [28];), with
PBP2X mutations largely occurring in backgrounds con-
taining PBP2B mutations and MraY mutations occurring
in backgrounds containing both PBP2B and PBP2X
mutations.
It is notable that mutations in MraY—which are gen-

erally last to occur, and never occur alone—might have a
compensatory effect. Altered PBPs, while conferring re-
sistance, might be less active transpeptidases than their
wild-type counterparts [54]. For example, the amido-
transferase enzyme encoded by murT enables cross-
linking of cell wall peptidoglycans by preparing lipid II
used by pneumococcal PBPs [55, 56]. Mutations in
MraY might therefore compensate for reduced enzym-
atic activity of altered PBPs.
Studies have shown that cefotaxime, a third-generation

cephalosporin like ceftiofur, selectively inactivates
PBP2X but not PBP2B [57]. Our results echo this pat-
tern because our PBP2B haplotype has a smaller change
on mean MIC of ceftiofur than penicillin (Additional file

Fig. 4. Beta-lactam resistance determinants have additive effects and appear in a consistent order. The left-hand panel shows that the candidate
determinants against the beta-lactam drug class often appear in a consistent order. For example, the mutation at site 551 of PBP2X tends to
appear in backgrounds that already carry mutations in PBP2B. The plot was generated according to the method and plotting convention of [28],
where each row represents an isolate, and those isolates that fit the nested pattern are shown in pink. Results show that 93.5% (634/678) of our
isolates fit the nested pattern. The right-hand plots show the log MIC values for these 634 isolates, comparing isolates carrying different numbers
of candidate determinants.
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2: Figure S3), and the explanatory effects of our PBP
haplotypes differ between the drugs (Fig. 1). Previous
variants in PBP2X thought to confer cefuroxime resist-
ance [38] and, while validated by our data, were only
found at very low frequency in our collection (Table 2).

Discussion
We have examined antimicrobial susceptibility of
Streptococcus suis to 16 antibiotics that are commonly
used in pigs. Replicated measures of MIC suggest that,
even when some isolates have very high MIC, there is
often no natural separation into ‘resistant’ and ‘suscep-
tible’ (Fig. 1). This highlights both the need for clinical
breakpoints in S. suis, and the need to evaluate AMR
with quantitative measurements of MIC. This is particu-
larly important for beta-lactam resistance, given its
multi-allelic nature (Fig. 4, Additional file 2: Figure S3),
and the phenomenon of ‘MIC creep’ that may eventually
lead to treatment failures (e.g. vancomycin resistance in
MRSA in some regions [58, 59]).
We have also shown that AMR levels differ systematic-

ally between countries. For example, compared to the
UK, Canada has consistently higher MICs, and frequen-
cies of the same candidate AMR determinants (Fig. 2,
Additional file 2: Figure S1). Differences in antimicrobial
usage are the most plausible explanation for this trend,
because usage is much higher in Canada than in the UK
[29, 30]. In particular, the ban on antibiotics used as
growth promoters came into effect in Canada only in
2018 versus 2006 in the UK. However, our results are
correlational and other factors could be explanatory, e.g.
different microbiome compositions in pigs from differ-
ent areas.
Next, we have identified 43 candidate resistance deter-

minants and shown that they explain the majority of the
observed variation in MIC for 11/16 antibiotics, and a
substantial fraction of the variation for a further 2/16
(Fig. 1).
While many of these variants were previously de-

scribed, and most were found at low frequency (Table 2;
Fig. 2), we detected three novel candidates that are com-
mon and associated with clinically relevant changes in
MIC: vgaF, DHFR102 and the dhfr promoter. A new
mechanism for tiamulin resistance, such as the vgaF,
could have implications for treatment success because
tiamulin is a common drug for treating infections in
livestock, including pigs [60]. High-level trimethoprim
resistance was associated with mutations in the pro-
moter regions of the dhfr gene. This is in contrast to the
folA (I100L), folP 1-2 codon insertion combination con-
ferring high-level resistance to trimethoprim/sulfameth-
oxazole (TMS) in S. pneumoniae [61]. While our MICs
were for trimethoprim, our observations suggest the evo-
lution of divergent mechanisms of resistance against

TMS between these species. If these resistance mecha-
nisms are functionally verified, they should be included
in routine AMR gene testing for S. suis.
While our candidate variants were explanatory, we

also found several complexities in the genotype-
phenotype map. These include epistatic interactions,
where the effects of some candidate genes vary with
their S. suis genetic background. Phenotypic reversion
(i.e. mutations in transcriptional regulators or elsewhere
in the genome, counteracting a resistance determinant)
can be common if resistance has a fitness cost [62]. In
addition, resistance genes have been shown to be tran-
scriptionally silenced [63]. These processes could explain
why we see many isolates carrying candidate determi-
nants but with low MIC (Fig. 1). This same pattern is
also common in other bacteria and up to 10% of S. aur-
eus isolates [64–68]. These complexities have conse-
quences for diagnostic investigation of AMR of S. suis
using whole genome sequences. While the predictive
power is quite high for many antibiotics, we should ex-
pect many type I errors (false positives). These results
also caution against using the presence of AMR determi-
nants as a measure of resistance more generally.
While susceptibility to penicillin in clinical cases of S.

suis remains high, we see substantial variation in beta-
lactam MIC (Fig. 1A). Consistent with studies in other
Streptococci, our results show incremental and ordered
changes in amino acids, first within PBP2A and then
PBP2X that lead to clinically relevant elevations in MICs.
Accurate predictions of genotype-phenotype have
already been developed in S. pneumoniae [47, 61, 69–
71], group B Streptococci [72] and S. pyogenes [41]. With
no effective treatment for S. suis other than antibiotics,
developing similar models and monitoring of these vari-
ants in S. suis populations should be a priority.
Two final aspects of our results highlight the fact that

while individual battles against AMR are effective, AMR
is not always a problem that can be tackled one disease
at a time.
First, we have found high levels of resistance in S. suis

even to antibiotics that are not typically used to treat
this infection, including high rates of multidrug resist-
ance (Fig. 3). This trend could be partly due to the co-
occurrence of resistance genes on MGEs. However,
determinants for beta-lactams (found in 190/678 iso-
lates)—which are the primary treatment—were less com-
mon than those for tetracyclines (574/678), MLSB (395/
678), trimethoprim (246/678) and tiamulin (193/678).
This pattern probably reflects a ‘bystander selection ef-
fect’, common in opportunistic pathogens that are part
of the healthy microbiota and frequently exposed to an-
tibiotics used as therapeutics or growth promoters (al-
though antimicrobial growth promoters are now banned
in the UK, Vietnam and Canada). However, we note that
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beta-lactams are prescribed at similar (if not higher fre-
quencies) than many other drug classes in pigs making
the pattern of fewer beta-lactam determinants particu-
larly surprising.
Second, many of the rarer AMR genes in our sample

were not previously known in S. suis, but are common
in other bacteria, both gram negative and gram positive
(Table 2). Together with the presence of non-typical
Streptococcal ermB in some isolates, this raises the pos-
sibility of S. suis acting as a reservoir for AMR determi-
nants in other bacteria. Indeed S. suis shares conserved
chromosomal insertion sites with many human patho-
gens, such as S. pyogenes, S. pneumoniae and S. agalac-
tiae [19]. Given that S. suis causes human clinical
disease, a direct exchange of AMR genes between S. suis
and other human pathogens is plausible. Our results
lend further support to a one health approach to tack-
ling AMR.

Conclusions
We present a comprehensive dataset comprising ge-
nomes, MIC and metadata allowing the first large-scale
analysis of the multiple contributing factors to AMR in
S. suis. Overall, the high levels of AMR that we observe
are reflected by antibiotic usage patterns in pigs. First, S.
suis is resistant to many classes of antibiotics that are
not typically used to treat S. suis infection. Second, MIC
and AMR determinant prevalence is significantly higher
in Canada than the UK where antibiotic usage is lower.
This indicates that the ongoing effort to reduce anti-
microbial use in livestock worldwide may be effective for
reducing AMR in S. suis. Our results also highlight some
interesting complications in the genotype to phenotype
map in S. suis but overall, the explanatory power we ob-
serve confirms the potential for genomic data to aid in
the fight against AMR.

Methods
Streptococcus suis isolates
We assembled a collection of 678 S. suis isolates, includ-
ing isolates from the UK (n = 423), Canada (n = 205)
and Vietnam (n = 50) (Additional file 1: Table S1).
In the UK, isolates came from three different collec-

tions. The first collection in 2009–2011 sampled non-
clinical and clinical isolates from pigs across England
and Wales (described in Weinert et al. [22]). The second
collection in 2013–2014 sampled non-clinical isolates
from five farms (described in Zou et al. [24]). The third
collection during 2013–2014 targeted clinical isolates
from pigs across England and Wales (described in Wile-
man et al. [23]). In pigs that showed clinical symptoms
consistent with S. suis infections (e.g. meningitis, septi-
caemia and arthritis), the site of isolation was classified
as ‘systemic’ if recovered from systemic sites. The site of

recovery was classified as ‘respiratory’ if derived from
lungs with gross lesions of pneumonia. S. suis isolates
from the tonsils or tracheo-bronchus of healthy pigs or
dead pigs without any typical signs of S. suis infections
were defined as ‘non-clinical’. Isolates that could not
confidently be assigned to these categories (e.g. a tonsil
isolate from a pig with systemic signs) were classified as
unknown. Altogether, the UK isolates were classified by
clinical status as ‘systemic’ (n = 94), ‘respiratory’ (n =
50), ‘non-clinical’ (n = 197) or ‘unknown’ (n = 82),
respectively.
The Canadian pig S. suis isolates from 1983 to 2016

were collected to target similar numbers of clinical and
non-clinical isolates and were also classified by clinical
status as ‘systemic’ (n = 81), ‘respiratory’ (n = 30), ‘non-
clinical’ (n = 55) or ‘unknown’ (n = 39).
The Vietnamese isolates were collected to sample re-

lated populations from human and pig (described in
Weinert et al. [22]). These comprised ‘systemic’ isolates
(n = 28) from human clinical cases of meningitis from
provinces in southern and central Vietnam, and ‘sys-
temic’ (n = 4) or ‘non-clinical’ isolates (n = 18) from
pigs, collected between 2000 and 2010. These isolates
were exclusively serotype 2 or serotype 14 and belong to
one genetic population (Additional file 1: Table S1).

Antimicrobial susceptibility testing
The minimum inhibitory concentrations (MIC) for a
range of antibiotics were determined by the micro-broth
dilution method, which was performed and the results
interpreted in accordance with CLSI Approved Stan-
dards, M100-S25 (2015), Vet01S 3rd Edition (2015) and
de Jong et al. [11, 73]. MIC measurements for some of
our isolates were previously published [11]. For the
remaining MIC measurements, the MICs were deter-
mined for sixteen different antimicrobial compounds,
representing nine antimicrobial classes at LGC, Ford-
ham, UK (formerly Quotient Bioresearch, Fordham,
UK), for the UK and the Canadian isolates. MIC testing
of antibiotics for the Vietnamese isolates was performed
at the Oxford University Clinical Research Unit, Ho Chi
Minh City, Vietnam, in collaboration with the Depart-
ment of Veterinary Medicine, University of Cambridge,
UK.

Whole genome sequencing, assembly and inference of
population structure
Genome DNA extractions and whole genome sequen-
cing of newly sequenced S. suis in this study were as pre-
viously described by Weinert et al. [22]. Briefly, single
colonies of strains were grown up in broth culture, DNA
was extracted using DNeasy kits (Qiagen), Illumina li-
brary preparations were performed as described by Quail
et al. [74] and the whole genomes sequenced on the
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HiSeq2000 according to the manufacturer’s instructions
(Illumina, San Diego, CA, USA) at the Welcome Trust
Sanger Institute, Cambridge, UK. Sequencing generated
125 bp paired end reads, which were assessed for quality
using Sickle [75] after the removal of adapter sequences.
Sequencing reads that passed the quality threshold

were put forward for de novo assembly generation using
Spades v.3.10.1 [76] utilising a variety of parameters con-
ditions. Our 678 isolates were combined with 401 add-
itional genomes given in Additional file 3: Table S3 [27]
to increase robustness of S. suis population structure es-
timation, although these isolates were unavailable for
MIC testing. Draft genomes were annotated using
Prokka v1.12-beta (v2.8.2) [77], and bacterial species as-
signment was performed by a combination of MLST as-
signment and FastQ Screen v.0.11.1 using a custom
database [78]. We mapped the Illumina reads back to
the de novo assembly to investigate polymorphic reads
in the samples (indicative of mixed cultures) using BWA
v.0.7.16a [79].
Genomes that exhibited poor sequencing quality (i.e.

poor assembly as indicated by a large number of contigs
(> 2.5% of the genome assembly in contigs less than 1
kb) an N50 value of less than 10 kb or a high number of
polymorphic reads (> 2000 SNPs)) or that which were
inconsistent with an S. suis species assignment were ex-
cluded from the analysis.
In order to group our S. suis isolates into different

genetic clusters, we used the programme hierBAPs in
R [80, 81]. First, we inferred core genes from our iso-
lates using Roary (v2.8.2) [82], aligned them using
MACSE [83] and stripped regions that could not be
aligned unambiguously due to high divergence, indels
or missing data. This conserved region of the core
genome was used as input in hierBAPS and to pro-
duce a consensus neighbour-joining phylogenetic tree
using the K80 model in the R package ape (Add-
itional file 2: Figure S1) [81, 84].

Known AMR determinant detection
ARIBA [85] identifies AMR determinants (or any se-
quence of interest) directly from paired sequencing reads
using a public or custom reference database and relies
on mapping the reads to reference sequence clusters
followed by the formation of local assemblies of the
mapped reads. The tool is further able to confirm the in-
tactness of resistance genes to identify known or novel
SNPs within a gene of interest.
The AMR determinants in S. suis were identified using

ARIBA v2.10.0 based on the public AMR database,
CARD [40], which was further supplemented with a cus-
tom database. The custom database contained gene se-
quences not present within the CARD database at the
time of testing. These were previously published S. suis

AMR genes, single-nucleotide polymorphisms (SNPs) in
genes known to confer antibiotic resistance and AMR
genes found in other bacteria. In addition, we investi-
gated whether there were additional novel resistance
variants in known resistance genes (described below).
The sequence identity threshold against a reference was
set at 90%. Only paired end sequence reads that passed
the quality control thresholds were used as input for
ARIBA. To identify genes falling under the 90% identity
threshold, we also performed blast searches of the draft
assemblies against the non-redundant NCBI protein or
nucleotide databases to identify variants or chimeric al-
leles of known resistance determinants that might not
be present in the CARD database. Examples of allelic
variants identified this way include tet, aad, ant and cat
(Table 2).

Novel AMR candidate determinant detection
We identified novel resistance determinants by a range
of methods. Candidate determinants that might encode
novel resistance mechanisms were identified by scanning
literature describing experimental studies and others
found by genome-wide association studies (GWAS) in
related bacterial species, for example, variants of pbps,
mraY, dhfr and folA [46, 86–88] along with their pro-
moter regions. To avoid over-fitting our generalised lin-
ear models, gene or promoters of interest in a ‘training’
subset of the collection (n = 205) were then extracted,
aligned and ranked from the highest to lowest MIC
values, using MUSCLE [89] in SEAVIEW [90]. Manual
sequence analysis was then performed to identify either
amino acid or nucleotide variations that associated with
high MIC.
Kinetic and structural studies have previously estab-

lished that beta-lactam resistance is conferred by substi-
tutions within PBPs in Streptococcus pneumoniae [46,
91] and other streptococci [49, 92, 93]. While mutations
are present throughout the entire PBPs, we noted statis-
tically significant mutations (Additional file 2: Table S2)
in altered PBP2B and PBP2X proteins in strains exhibit-
ing high penicillin (≥ 1 mg/L) and ceftiofur MICs (≥ 2
mg/L), respectively. In PBP2B, the residue variations
were present in loop regions, K479T/A, D512E/Q/K/A,
K513E/D and T515S, within the S. suis transpeptidase
domain (residues 351-681). In PBP2X, the mutations
were located at positions M437L, S445T, T467S, Y525F
and T551S, also in loop regions within its catalytic do-
main (residues 265–619). No statistically significant vari-
ations were found within PBP1A, although the variant
P405T was shared by some of the BAP clusters. As mul-
tiple amino acid variants were identified within PBP2X
and PBP2B, many of which were in the same genomic
region (Table 2), we grouped the variants in to haplo-
types. We did this by scoring haplotype presence if the
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isolate had all of the amino acid variants associated with
high MIC in a given gene.
In addition to allelic differences in PBP2B and PBP2X,

we also detected mutations in mraY. Found immediately
upstream of pbp2X, mraY encodes an acetylmuramoyl-
pentapeptide-transferase enzyme which is essential to
lipid cycle reactions in the peptidoglycan cell wall bio-
synthesis pathway. Residue substitutions were present at
A4S/T, M6I/L and G8S within the signal peptide regions
of the protein. These substitutions were in strong link-
age disequilibrium, such that they almost always oc-
curred in pairs. In particular, both A4S/T and G8S
occurred only in isolates also carrying M6I/L, while
M6I/L appeared alone in only a single isolate. As such,
we scored each isolate as carrying the mraY determinant
only if it carried two of these three amino acid substitu-
tions (either A4S/T and M6I/L, or G8S and M6I/L;
Table 2). This set of isolates differed significantly in their
MICs in both penicillin and ceftiofur across multiple
BAP groups (Additional file 2: Table S2).
Not all isolates with high tiamulin MICs possessed a

lsaE gene, suggesting an additional mechanism in S. suis
conferring resistance to pleuromutilins. Using the CARD
RGI (resistance gene identifier) protein homology
models, a vgaC homologue was identified as a candidate
gene associated with variation in tiamulin MIC. The
gene, designated as vgaF in this work, encodes an ABC-
F ATP-binding cassette ribosomal protection protein
and shares 37.14% homology to the reference. Located
within the chromosome, vgaF is found intact (~ 1386 bp)
in statistically significant numbers in isolates with MIC
≥ 8 mg/L (Additional file 2: Table S2) but is truncated
(< 750 bp) in others. Plasmid borne vga homologues in-
cluding vgaC are frequently detected in staphylococci
and have been shown to confer cross resistance to pleur-
omutilins, lincosamides and streptogramin A antibiotics.
A chromosome based vgaA gene variant, encoding an
ATP-binding cassette protein conferring resistance to
streptogramin A and related antibiotics in S. aureus, has
also been described [94].
An amino acid substitution (I102-L) was detected in

the dihydrofolate reductase (DHFR) gene, dhfr (counter-
part of folA in S. pneumoniae), in the majority of isolates
with trimethoprim MICs of 0.12 mg/L or greater. Similar
substitutions of isoleucine to leucine at position 100 in
S. pneumoniae [87, 95] and Streptococcus pyogenes [96]
is known to cause resistance to TMP. Additionally, we
also identified polymorphisms within the promoter re-
gion (0–30 bp upstream) of the dhfr gene, an A5G sub-
stitution and insertions, in isolates exhibiting MICs ≥ 1
mg/L.
Mutations such as 1–2 codon insertions within folP,

another core metabolic gene that is documented to con-
fer resistance to trimethoprim/sulfamethoxazole in S.

pneumoniae, were also examined. While insertions and
or deletions were absent, amino acid residue variations
were observed at position 198 (A198G) either alone (9/
678) or in combination with dhfr I102L (26/678 isolates)
in isolates exhibiting a wide range of trimethoprim
MICs; 0.03 mg/L–32 mg/mL. However, this data was not
statistically significant in the Binomial sign tests and
hence was excluded from further analysis.
All of these variants might be causal, compensatory or

linked to high MIC because of population structure. We
therefore examined our variants and showed that sus-
ceptible and resistance alleles were found repeatedly in
different BAP clusters, which were significant using bi-
nomial sign tests when defining a cut-off (Additional file
2: Table S2).
The pbp, mraY and vgaF genes were unable to be in-

cluded into the custom database in ARIBA because of
the sequence divergence. Therefore, we manually aligned
the genes in all 678 isolates using MUSCLE [89] in
SEAVIEW [90].
Similarly, analysis for known variants in gyrA and parC

were also performed by manually aligning the genes.
The tet(O/W/32/O) gene was scored by using blastn be-
cause ARIBA was unable to differentiate mosaic se-
quence patterns

Serotype inference from whole genomes
Serotypes were determined in silico using the Athey
et al. [97] serotype database, which we implemented in
ARIBA. Failed ARIBA runs and sequence non-matches
were designated as not available (NA).

Statistical analyses
All general linear models were fit in R v. 3.3 [98] using
the built-in function lm for models with solely fixed ef-
fects, or via Reduced Maximum Likelihood, using the
function lme from the package nlme v. 3.1-141 [99],
when BAPs cluster was included as a random effect. The
response MIC values were log transformed. Our data for
host and country is confounded because all of our hu-
man samples came from Vietnam (human S. suis has a
higher prevalence in South East Asia [37]). Therefore,
we coded ‘Country’ as separate populations—Canada,
UK, Vietnam-pig and Vietnam-human. We classified ‘se-
rotypes’ into either disease-associated or non-disease as-
sociated according to Wileman et al. [23].
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