458 research outputs found

    Intravascular ADP and soluble nucleotidases contribute to acute prothrombotic state during vigorous exercise in humans

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund and is available from the specified link - Copyright @ 2007 The Physiological Society .Extracellular ATP and ADP trigger vasodilatatory and prothrombotic signalling events in the vasculature. Here, we tested the hypothesis that nucleotide turnover is activated in the bloodstream of exercising humans thus contributing to the enhanced platelet reactivity and haemostasis. Right atrial, arterial and venous blood samples were collected from endurance-trained athletes at rest, during submaximal and maximal cycle ergometer exercise, and after early recovery. ATP-specific bioluminescent assay, together with high-performance liquid chromatographic analysis, revealed that plasma ATP and ADP concentrations increased up to 2.5-fold during maximal exercise. Subsequent flow cytometric analysis showed that plasma from exercising subjects significantly up-regulated the surface expression of P-selectin in human platelets and these prothrombotic effects were diminished after scavenging plasma nucleotides with exogenous apyrase. Next, using thin layer chromatographic assays with [gamma-P-32]ATP and H-3/C-14-labelled nucleotides, we showed that two soluble nucleotide-inactivating enzymes, nucleotide pyrophosphatase/phosphodiesterase and nucleoside triphosphate diphosphohydrolase, constitutively circulate in human bloodstream. Strikingly, serum nucleotide pyrophosphatase and hydrolase activities rose during maximal exercise by 20-25 and 80-100%, respectively, and then declined after 30 min recovery. Likewise, soluble nucleotidases were transiently up-regulated in the venous blood of sedentary subjects during exhaustive exercise. Human serum also contains 5'-nucleotidase, adenylate kinase and nucleoside diphosphate (NDP) kinase; however, these activities remain unchanged during exercise. In conclusion, intravascular ADP significantly augments platelet activity during strenuous exercise and these prothrombotic responses are counteracted by concurrent release of soluble nucleotide-inactivating enzymes. These findings provide a novel insight into the mechanisms underlying the enhanced risk of occlusive thrombus formation under exercising conditions

    Adenosine metabolism in the vascular system

    Get PDF
    The concept of extracellular purinergic signaling was first proposed by Geoffrey Burnstock in the early 1970s. Since then, extracellular ATP and its metabolites ADP and adenosine have attracted an enormous amount of attention in terms of their involvement in a wide range of immunomodulatory, thromboregulatory, angiogenic, vasoactive and other pathophysiological activities in different organs and tissues, including the vascular system. In addition to significant progress in understanding the properties of nucleotide- and adenosine-selective receptors, recent studies have begun to uncover the complexity of regulatory mechanisms governing the duration and magnitude of the purinergic signaling cascade. This knowledge has led to the development of new paradigms in understanding the entire purinome by taking into account the multitude of signaling and metabolic pathways involved in biological effects of ATP and adenosine and compartmentalization of the adenosine system. Along with the "canonical route" of ATP breakdown to adenosine via sequential ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) and ecto-5'-nucleotidase/CD73 activities, it has now become clear that purine metabolism is the result of concerted effort between ATP release, its metabolism through redundant nucleotide-inactivating and counteracting ATP-regenerating ectoenzymatic pathways, as well as cellular nucleoside uptake and phosphorylation of adenosine to ATP through complex phosphotransfer reactions. In this review I provide an overview of key enzymes involved in adenosine metabolic network, with special emphasis on the emerging roles of purine-converting ectoenzymes as novel targets for cancer and vascular therapies

    Temperature-dependent release of ATP from human erythrocytes: Mechanism for the control of local tissue perfusion

    Get PDF
    Copyright @ 2012 The AuthorsThis article has been made available through the Brunel Open Access Publishing Fund.Human limb muscle and skin blood flow increases significantly with elevations in temperature, possibly through physiological processes that involve temperature-sensitive regulatory mechanisms. Here we tested the hypothesis that the release of the vasodilator ATP from human erythrocytes is sensitive to physiological increases in temperature both in vitro and in vivo, and examined potential channel/transporters involved. To investigate the source of ATP release, whole blood, red blood cells (RBCs), plasma and serum were heated in vitro to 33, 36, 39 and 42°C. In vitro heating augmented plasma or ‘bathing solution’ ATP in whole blood and RBC samples, but not in either isolated plasma or serum samples. Heat-induced ATP release was blocked by niflumic acid and glibenclamide, but was not affected by inhibitors of nucleoside transport or anion exchange. Heating blood to 42°C enhanced (P < 0.05) membrane protein abundance of cystic fibrosis transmembrane conductance regulator (CFTR) in RBCs. In a parallel in vivo study in humans exposed to whole-body heating at rest and during exercise, increases in muscle temperature from 35 to 40°C correlated strongly with elevations in arterial plasma ATP (r2 = 0.91; P = 0.0001), but not with femoral venous plasma ATP (r2 = 0.61; P = 0.14). In vitro, however, the increase in ATP release from RBCs was similar in arterial and venous samples heated to 39°C. Our findings demonstrate that erythrocyte ATP release is sensitive to physiological increases in temperature, possibly via activation of CFTR-like channels, and suggest that temperature-dependent release of ATP from erythrocytes might be an important mechanism regulating human limb muscle and skin perfusion in conditions that alter blood and tissue temperature.This article is made available through the Brunel Open Access Publishing Fund

    Deregulation of ocular nucleotide homeostasis in patients with diabetic retinopathy

    Get PDF
    Clear signaling roles for ATP and adenosine have been established in all tissues, including the eye. The magnitude of signaling responses is governed by networks of enzymes; however, little is known about the regulatory mechanisms of purinergic signaling in the eye. By employing thin-layer chromatographic assays with 3H-labeled substrates, this study aimed to evaluate the role of nucleotide homeostasis in the pathogenesis of vitreoretinal diseases in humans. We have identified soluble enzymes ecto-5'-nucleotidase/CD73, adenylate kinase-1, and nucleoside diphosphate kinase in the vitreous fluid that control active cycling between proinflammatory ATP and anti-inflammatory adenosine. Strikingly, patients with proliferative form of diabetic retinopathy (DR) had higher adenylate kinase activity and ATP concentration, when compared to non-proliferative DR eyes and non-diabetic controls operated for rhegmatogenous retinal detachment, macular hole, and pucker. The non-parametric correlation analysis revealed positive correlations between intravitreal adenylate kinase and concentrations of ATP, ADP, and other angiogenic (angiopoietins-1 and -2), profibrotic (transforming growth factor-similar to 1), and proteolytic (matrix metalloproteinase-9) factors but not erythropoietin and VEGF. Immunohistochemical staining of postmortem human retina additionally revealed selective expression of ecto-5'-nucleotidase/ CD73 on the rod-and-cone-containing photoreceptor cells. Collectively, these findings provide novel insights into the regulatory mechanisms that influence purinergic signaling in diseased eye and open up new possibilities in the development of enzyme-targeted therapeutic approaches for prevention and treatment of DR.Peer reviewe

    ATP and Adenosine Metabolism in Cancer: Exploitation for Therapeutic Gain

    Get PDF
    Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network

    Alteration of Extracellular Nucleotide Metabolism in Pseudoxanthoma Elasticum

    Get PDF
    Pseudoxanthoma elasticum (PXE) is a rare genetic condition primarily caused by hepatic ABCC6 transporter dysfunction. Most clinical manifestations of PXE are due to premature calcification of elastic fibers. However, the vascular impact of PXE is pleiotropic and remains ill defined. ABCC6 expression has recently been associated with cellular nucleotide export. We studied the impact of ABCC6 deficiency on blood levels of adenosine triphosphate and related metabolites and on soluble nucleotidase activities in PXE patients and Abcc6 mice. In addition, we investigated the expression of genes encoding ectocellular purinergic signaling proteins in mouse liver and aorta. Plasma adenosine triphosphate and pyrophosphate levels were significantly reduced in PXE patients and in Abcc6 mice, whereas adenosine concentration was not modified. Moreover, 5\u27-nucleotidase/CD73 activity was increased in the serum of PXE patients and Abcc6 mice. Consistent with alterations of purinergic signaling, the expression of genes involved in purine and phosphate transport/metabolism was dramatically modified in Abcc6 mouse aorta, with much less impact on the liver. ABCC6 deficiency causes impaired vascular homeostasis and tissue perfusion. Our findings suggest that these alterations are linked to changes in extracellular nucleotide metabolism that are remote from the liver. This opens new perspectives for the understanding of PXE pathophysiology

    Soluble and membrane-bound adenylate kinase and nucleotidases augment ATP-mediated inflammation in diabetic retinopathy eyes with vitreous hemorrhage

    Get PDF
    ATP and adenosine are important signaling molecules involved in vascular remodeling, retinal function, and neurovascular coupling in the eye. Current knowledge on enzymatic pathways governing the duration and magnitude of ocular purinergic signaling is incompletely understood. By employing sensitive analytical assays, this study dissected ocular purine homeostasis as a complex and coordinated network. Along with previously characterized ecto-5-nucleotidase/CD73 and adenylate kinase activities, other enzymes have been identified in vitreous fluids, including nucleoside triphosphate diphosphohydrolase (NTPDase), adenosine deaminase, and alkaline phosphatase. Strikingly, activities of soluble adenylate kinase, adenosine deaminase, ecto-5-nucleotidase/CD73, and alkaline phosphatase, as well as intravitreal concentrations of ATP and ADP, were concurrently upregulated in patients suffering from diabetic retinopathy (DR) with non-clearing vitreous hemorrhage (VH), when compared to DR eyes without VH and control eyes operated due to macular hole or pucker. Additional histochemical analysis revealed selective distribution of key ecto-nucleotidases (NTPDase1/CD39, NTPDase2, ecto-5-nucleotidase/CD73, and alkaline phosphatase) in the human sensory neuroretina and optic nerve head, and also in pathological neofibrovascular tissues surgically excised from patients with advanced proliferative DR. Collectively, these data provide evidence for specific hemorrhage-related shifts in purine homeostasis in DR eyes from the generation of anti-inflammatory adenosine towards a pro-inflammatory and pro-angiogenic ATP-regenerating phenotype. In the future, identifying the exact mechanisms by which a broad spectrum of soluble and membrane-bound enzymes coordinately regulates ocular purine levels and the further translation of purine-converting enzymes as potential therapeutic targets in the treatment of proliferative DR and other vitreoretinal diseases will be an area of intense interest.Key messagesNTPDase, alkaline phosphatase, and adenosine deaminase circulate in human vitreous.Purinergic enzymes are up-regulated in diabetic eyes with vitreous hemorrhage.Soluble adenylate kinase maintains high ATP levels in diabetic retinopathy eyes.Ecto-nucleotidases are co-expressed in the human retina and optic nerve head.Alkaline phosphatase is expressed on neovascular tissues excised from diabetic eyes.Peer reviewe

    Fluorescent Probes for Ecto-5′-nucleotidase (CD73)

    Get PDF
    Ecto-5′-nucleotidase (CD73) catalyzes the hydrolysis of AMP to anti-inflammatory, immunosuppressive adenosine. It is expressed on vascular endothelial, epithelial, and also numerous cancer cells where it strongly contributes to an immunosuppressive microenvironment. In the present study we designed and synthesized fluorescent-labeled CD73 inhibitors with low nanomolar affinity and high selectivity based on N6-benzyl-α,β-methylene-ADP (PSB-12379) as a lead structure. Fluorescein was attached to the benzyl residue via different linkers resulting in PSB-19416 (14b, Ki12.6 nM) and PSB-18332 (14a, Ki2.98 nM) as fluorescent high-affinity probes for CD73. These compounds are anticipated to become useful tools for biological studies, drug screening, and diagnostic applications

    Nucleotide homeostasis and purinergic nociceptive signaling in rat meninges in migraine-like conditions

    Get PDF
    © 2016, Springer Science+Business Media Dordrecht.Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca2+ transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,β-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain
    corecore