1,721 research outputs found

    Factors Dictating Carbene Formation at (PNP)Ir

    Get PDF
    The mechanistic subtleties involved with the interaction of an amido/bis(phosphine)-supported (PNP)Ir fragment with a series of linear and cyclic ethers have been investigated using density functional theory. Our analysis has revealed the factors dictating reaction direction toward either an iridium-supported carbene or a vinyl ether adduct. The (PNP)Ir structure will allow carbene formation only from accessible carbons α to the ethereal oxygen, such that d electron back-donation from the metal to the carbene ligand is possible. Should these conditions be unavailable, the main competing pathway to form vinyl ether can occur, but only if the (PNP)Ir framework does not sterically interfere with the reacting ether. In situations where steric hindrance prevents unimpeded access to both pathways, the reaction may progress to the initial C−H activation but no further. Our mechanistic analysis is density functional independent and whenever possible confirmed experimentally by trapping intermediate species experimentally. We have also highlighted an interesting systematic error present in the DFT analysis of reactions where steric environment alters considerably within a reaction

    Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms

    Get PDF
    Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm

    Fitness moderates glycemic responses to sitting and light activity breaks

    Get PDF
    Purpose: Regular engagement in sedentary behaviours can lead to major public health consequences. This study aimed to experimentally determine whether cardio-respiratory fitness modifies postprandial glycemia during prolonged sitting and investigated the potentially blunting influence this may have upon the benefits of interrupting postprandial sitting time with light activity breaks. Methods: Thirty–four adult volunteers (18female; 16male; mean±SD age: 40±9 years, BMI: 24.5±3 kg/m2) undertook two 7·5 hour experimental conditions in a randomized order: 1) Prolonged sitting; 2) Sitting interspersed with 5 minute light walking bouts every 30minutes. Blood samples were obtained while fasting and throughout the postprandial period following ingestion of two identical meals. Incremental Area Under the Curve (iAUC) was calculated for glucose and insulin throughout each experimental condition. Maximal exercise testing quantified VO2 peak as a measure of cardiorespiratory fitness (CRF) prior to experimental conditions. A repeated measures ANOVA investigated whether VO2 peak modified iAUC data between conditions. This trial is registered with ClinicalTrials.gov (Reg no.NCT0493309). Results: Interrupting prolonged sitting time with light walking breaks reduced blood glucose iAUC from 3.89 ± 0.7 to 2·51 ± 0.7 mmol·L-1·h (p = 0.015) and insulin iAUC from 241 ± 46 to 156 ± 24 mU·L-1·h (p = 0.013) after adjustment for VO2 peak and sex. A significant interaction between treatment response and VO2 peak was observed for glucose (p = 0.035), but not insulin (p = 0.062), whereby the treatment effect reduced with higher levels of fitness. Average blood glucose iAUC responses for a man at the 25th centile of CRF (42.5 mL∙kg-1∙min-1) within our cohort went from 5.80 to 2.98 mmol·L-1·h during the prolonged sitting and light walking breaks conditions respectively, whereas average responses for a man at the 75th centile of CRF (60.5 mL∙kg-1∙min-1) went from 1.99 to 1.78 mmol·L-1·h. Similar trends were observed for women. Conclusions: Individuals with low levels of CRF gained the most metabolic benefit from breaking prolonged sitting with regular bouts of light walking. Future interventions aimed at alleviating the deleterious impacts of sedentary behavior may be optimized by tailoring to cardio-respiratory fitness levels within the general population

    The History of Flow Chemistry at Eli Lilly and Company

    Get PDF
    Flow chemistry was initially used for speed to early phase material delivery in the development laboratories, scaling up chemical transformations that we would not or could not scale up batch for safety reasons. Some early examples included a Newman Kwart Rearrangement, Claisen rearrangement, hydroformylation, and thermal imidazole cyclization. Next, flow chemistry was used to enable safe scale up of hazardous chemistries to manufacturing plants. Examples included high pressure hydrogenation, aerobic oxidation, and Grignard formation reactions. More recently, flow chemistry was used in Small Volume Continuous (SVC) processes, where highly potent oncolytic molecules were produced by fully continuous processes at about 10 kg/day including reaction, extraction, distillation, and crystallization, using disposable equipment contained in fume hoods

    Experiences of running a stratified medicine adaptive platform trial: Challenges and lessons learned from 10 years of the FOCUS4 trial in metastatic colorectal cancer

    Get PDF
    BACKGROUND: Complex innovative design trials are becoming increasingly common and offer potential for improving patient outcomes in a faster time frame. FOCUS4 was the first molecularly stratified trial in metastatic colorectal cancer and it remains one of the first umbrella trial designs to be launched globally. Here, we aim to describe lessons learned from delivery of the trial over the last 10 years. METHODS: FOCUS4 was a Phase II/III molecularly stratified umbrella trial testing the safety and efficacy of targeted therapies in metastatic colorectal cancer. It used adaptive statistical methodology to decide which sub-trial should close early, and new therapies were added as protocol amendments. Patients with newly diagnosed metastatic colorectal cancer were registered, and central laboratory testing was used to stratify their tumour into molecular subtypes. Following 16 weeks of first-line therapy, patients with stable or responding disease were eligible for randomisation into either a molecularly stratified sub-trial (FOCUS4-B, C or D) or non-stratified FOCUS4-N. The primary outcome for all studies was progression-free survival comparing the intervention with active monitoring/placebo. At the close of the trial, feedback was elicited from all investigators through surveys and interviews and consolidated into a series of recommendations and lessons learned for the delivery of similar future trials. RESULTS: Between January 2014 and October 2020, 1434 patients were registered from 88 UK hospitals. Of the 20 drug combinations that were explored for inclusion in the platform trial, three molecularly targeted sub-trials were activated: FOCUS4-D (February 2014-March 2016) evaluated AZD8931 in the BRAF-PIK3CA-RAS wildtype subgroup; FOCUS4-B (February 2016-July 2018) evaluated aspirin in the PIK3CA mutant subgroup and FOCUS4-C (June 2017-October 2020) evaluated adavosertib in the RAS+TP53 double mutant subgroup. FOCUS4-N was active throughout and evaluated capecitabine monotherapy versus a treatment break. A total of 361 (25%) registered patients were randomised into a sub-trial. Feedback on the experiences of delivery of FOCUS4 could be grouped into three main areas of challenge: funding/infrastructure, biomarker testing procedures and trial design efficiencies within which 20 recommendations are summarised. CONCLUSION: Adaptive stratified medicine platform studies are feasible in common cancers but present challenges. Our stakeholder feedback has helped to inform how these trial designs can succeed and answer multiple questions efficiently, providing resource is adequate

    Heterozygous Vangl2(Looptail) mice reveal novel roles for the planar cell polarity pathway in adult lung homeostasis and repair

    Get PDF
    Lung diseases impose a huge economic and health burden worldwide. A key aspect of several adult lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), including emphysema, is aberrant tissue repair, which leads to an accumulation of damage and impaired respiratory function. Currently, there are few effective treatments available for these diseases and their incidence is rising. The planar cell polarity (PCP) pathway is critical for the embryonic development of many organs, including kidney and lung. We have previously shown that perturbation of the PCP pathway impairs tissue morphogenesis, which disrupts the number and shape of epithelial tubes formed within these organs during embryogenesis. However, very little is known about the role of the PCP pathway beyond birth, partly because of the perinatal lethality of many PCP mouse mutant lines. Here, we investigate heterozygous Looptail (Lp) mice, in which a single copy of the core PCP gene, Vangl2, is disrupted. We show that these mice are viable but display severe airspace enlargement and impaired adult lung function. Underlying these defects, we find that Vangl2Lp/+ lungs exhibit altered distribution of actin microfilaments and abnormal regulation of the actin-modifying protein cofilin. In addition, we show that Vangl2Lp/+ lungs exhibit many of the hallmarks of tissue damage, including an altered macrophage population, abnormal elastin deposition and elevated levels of the elastin-modifying enzyme, Mmp12, all of which are observed in emphysema. In vitro, disruption of VANGL2 impairs directed cell migration and reduces the rate of repair following scratch wounding of human alveolar epithelial cells. Moreover, using population data from a birth cohort of young adults, all aged 31, we found evidence of an interactive effect between VANGL2 and smoking on lung function. Finally, we show that PCP genes VANGL2 and SCRIB are significantly downregulated in lung tissue from patients with emphysema. Our data reveal an important novel role for the PCP pathway in adult lung homeostasis and repair and shed new light on the genetic factors which may modify destructive lung diseases such as emphysema.Peer reviewe

    Economic Outcomes of Patients Receiving Antiretroviral Therapy for HIV/AIDS in South Africa Are Sustained through Three Years on Treatment

    Get PDF
    BACKGROUND. Although the medical outcomes of antiretroviral therapy (ART) for HIV/AIDS are well described, less is known about how ART affects patients' economic activities and quality of life, especially after the first year on ART. We assessed symptom prevalence, general health, ability to perform normal activities, and employment status among adult antiretroviral therapy patients in South Africa over three full years following ART initiation. METHODOLOGY/PRINCIPAL FINDINGS. A cohort of 855 adult pre-ART patients and patients on ART for <6 months was enrolled and interviewed an average of 4.4 times each during routine clinic visits for up to three years after treatment initiation using an instrument designed for the study. The probability of pain in the previous week fell from 74% before ART initiation to 32% after three years on ART, fatigue from 66% to 12%, nausea from 28% to 4%, and skin problems from 55% to 10%. The probability of not feeling well physically yesterday fell from 46% to 23%. Before starting ART, 39% of subjects reported not being able to perform their normal activities sometime during the previous week; after three years, this proportion fell to 10%. Employment rose from 27% to 42% of the cohort. Improvement in all outcomes was sustained over 3 years and for some outcomes increased in the second and third year. CONCLUSIONS/SIGNIFICANCE. Improvements in adult ART patients' symptom prevalence, general health, ability to perform normal activities, and employment status were large and were sustained through the first three years on treatment. These results suggest that some of the positive economic and social externalities anticipated as a result of large-scale treatment provision, such as increases in workforce participation and productivity and the ability of patients to carry on normal lives, may indeed be accruing.South Africa Mission of the U.S. Agency for International Development (GHSA-00-00020-00, 674-A-00-09-00018-00, 674-A-00-02-00018); National Institute of Allergies and Infectious Diseases (PEPFAR 13, K01AI083097); APDA Advanced Center for Parkinson Research at UAB (NIH F30NS065661, NIH R01CA122930); National Institutes of Health Blueprint Core for Neuroscience Research (NS057098

    Extracellular DNA Promotes Efficient Extracellular Electron Transfer by Pyocyanin in Pseudomonas aeruginosa Biofilms

    Get PDF
    Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
    corecore