2,656 research outputs found

    Impact of Macroeconomic Announcements on Implied Volatility Slope of SPX Options and VIX

    Get PDF
    Cataloged from PDF version of article.This paper examines the impact of macroeconomic announcements on the high-frequency behavior of the observed implied volatility skew of S&P 500 index options and VIX. We document that macroeconomic announcements affect VIX significantly and slope at a lesser extent. We also find evidence that good and bad announcements significantly and asymmetrically change implied volatility slope and VIX. 2014 Elsevier Inc. All rights reserved

    TI6AL4V Surface Modification by Hydroxyapatite Powder Mixed Electric Discharge Machining for Medical Application

    Get PDF
    Titanium surface modification by the Hydroxyapatite (HA) mixed Electric Discharge Machining (EDM) is an alternative and promising technique to enhance the biocompatibility and to promote the biological performance in bone, which is dependent on surface properties, such as surface roughness, chemistry, and wettability. HA powder is used for the first time with electrical discharge machining to improve osteoblastic cell activity on the developed surfaces for TI6AL4V. Different HA concentrations in deionized water were tested as an experimental variable during EDM. Abrasive polishing and electrical discharge machined control surfaces without powder addition also analyzed to compare the results. The surface characteristics of analyzed samples were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffractometry (XRD), white light interferometry, and contact angle measurements. The wettability tests suggest that the hydroxyapatite powder mixed EDM’ed surfaces shows highly hydrophilic characteristics compared the other surfaces, abrasive polished and EDM’ed without powder addition in the dielectric. The results from the MTT assay revealed that those surfaces modified using HA powder addition in distilled water dielectric liquid promoted the most significant cell attachment/growth. The results indicate that HA powder mixed EDM offers a promising method for the surface modification of biomaterials such as titanium alloys

    Advancements in Treatment for Sensorineural Hearing Loss: Implications for Rehabilitation Professionals

    Get PDF
    Rehabilitation professionals often work with individuals with sensorineural hearing loss. Sometimes the hearing loss is due to ototoxic medications that are prescribed as treatments for other conditions. An understanding of the types of ototoxic medications at the root of the sensorineural hearing loss combined with an understanding of the advancements in treatments will help the rehabilitation professional better serve consumers who fit this description

    Characterization of an embedded RF-MEMS switch

    Get PDF
    An RF-MEMS capacitive switch for mm-wave integrated circuits, embedded in the BEOL of 0.25μm BiCMOS process, has been characterized. First, a mechanical model based on Finite-Element-Method (FEM) was developed by taking the residual stress of the thin film membrane into account. The pull-in voltage and the capacitance values obtained with the mechanical model agree very well with the measured values. Moreover, S-parameters were extracted using Electromagnetic (EM) solver. The data observed in this way also agree well with the experimental ones measured up to 110GHz. The developed RF model was applied to a transmit/receive (T/R) antenna switch design. The results proved the feasibility of using the FEM model in circuit simulations for the development of RF-MEMS switch embedded, single-chip multi-band RF ICs

    TI6AL4V Surface Modification by Hydroxyapatite Powder Mixed Electric Discharge Machining for Medical Application

    Get PDF
    Titanium surface modification by the Hydroxyapatite (HA) mixed Electric Discharge Machining (EDM) is an alternative and promising technique to enhance the biocompatibility and to promote the biological performance in bone, which is dependent on surface properties, such as surface roughness, chemistry, and wettability. HA powder is used for the first time with electrical discharge machining to improve osteoblastic cell activity on the developed surfaces for TI6AL4V. Different HA concentrations in deionized water were tested as an experimental variable during EDM. Abrasive polishing and electrical discharge machined control surfaces without powder addition also analyzed to compare the results. The surface characteristics of analyzed samples were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffractometry (XRD), white light interferometry, and contact angle measurements. The wettability tests suggest that the hydroxyapatite powder mixed EDM’ed surfaces shows highly hydrophilic characteristics compared the other surfaces, abrasive polished and EDM’ed without powder addition in the dielectric. The results from the MTT assay revealed that those surfaces modified using HA powder addition in distilled water dielectric liquid promoted the most significant cell attachment/growth. The results indicate that HA powder mixed EDM offers a promising method for the surface modification of biomaterials such as titanium alloys

    Powder Mixed Electrical Discharge Machining and Biocompatibility: A State of the Art Review

    Get PDF
    Electrical Discharge Machining (EDM) is a well-known process for machining of difficult to cut materials. Along with adding the powder in dielectric liquid, change in properties of machining gap results in a variety of sparks forms and lead different mechanisms under specific operational conditions during machining. The discharge models significantly differ from conventional EDM and leave its characteristics surface features. Primary studies of Powder Mixed Electrical Discharge Machining (PMEDM) focused on the understanding of material removal rate, surface quality, and tool wear rate concerning the widespread of the operational conditions evolved in the process. Then, the interactions with the powder material during discharging and the resultant surface properties impel the researcher's interest to achieve functional surfaces. In this respect, PMEDM is a significant concern in recent years as an alternative and simple production technique to obtain functional surfaces for specific needs. Nowadays, among the specific needs, production of biocompatible surfaces with the use of the technique provides a challenging opportunity to the researchers to address osseointegration issues. The study presents an introduction and review of the research work in PMEDM. The studies concerning machining efficiency, surface integrity, and generation of functional surfaces are presented and discussed in the light of current research trends. Attempts made to improve biocompatible surfaces with the use of the process also included to clarify the future trends in PMEDM

    Ti6Al4V Surface Modification by Hydroxyapatite Powder Mixed Electrical Discharge Machining for Medical Application

    Get PDF
    Titanium surface modification by the Hydroxyapatite (HA) mixed Electrical Discharge Machining (EDM) is an alternative and promising technique to enhance the biocompatibility and to promote the biological performance in bone, which is dependent on surface properties, such as surface roughness, chemistry, and wettability. HA powder is used for the first time with electrical discharge machining to improve osteoblastic cell activity on the developed surfacesforTI6AL4V. Different HA concentrations in deionized water were tested as an experimental variable during EDM. Abrasive polishing and electrical discharge machined control surfaces without powder addition also analyzed to compare the results. The surface characteristics of analyzed samples were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffractometry (XRD), white light interferometry, and contact angle measurements. The wettability tests suggest that the hydroxyapatite powder mixed EDM’ed surfaces shows highly hydrophilic characteristics compared the other surfaces, abrasive polished and EDM’ed without powder addition in the dielectric. The results from the MTT assay revealed that those surfaces modified using HA powder addition in distilled water dielectric liquid promoted the most significant cell attachment/growth. The results indicate that HA powder mixed EDM offers a promising method for the surface modification of biomaterials such as titanium alloys

    High Intensity Interval Training (HIIT) as a Potential Countermeasure for Phenotypic Characteristics of Sarcopenia: A Scoping Review

    Get PDF
    Background: Sarcopenia is defined as a progressive and generalized loss of skeletal muscle quantity and function associated predominantly with aging. Physical activity appears the most promising intervention to attenuate sarcopenia, yet physical activity guidelines are rarely met. In recent years high intensity interval training (HIIT) has garnered interested in athletic populations, clinical populations, and general population alike. There is emerging evidence of the efficacy of HIIT in the young old (i.e. seventh decade of life), yet data concerning the oldest old (i.e., ninth decade of life onwards), and those diagnosed with sarcopenic are sparse. Objectives: In this scoping review of the literature, we aggregated information regarding HIIT as a potential intervention to attenuate phenotypic characteristics of sarcopenia. Eligibility Criteria: Original investigations concerning the impact of HIIT on muscle function, muscle quantity or quality, and physical performance in older individuals (mean age ≥60 years of age) were considered. Sources of Evidence: Five electronic databases (Medline, EMBASE, Web of Science, Scopus, and the Cochrane Central Register of Controlled Trials [CENTRAL]) were searched. Methods: A scoping review was conducted using the Arksey and O'Malley methodological framework (2005). Review selection and characterization were performed by two independent reviewers using pretested forms. Results: Authors reviewed 1,063 titles and abstracts for inclusion with 74 selected for full text review. Thirty-two studies were analyzed. Twenty-seven studies had a mean participant age in the 60s, two in the 70s, and three in the 80s. There were 20 studies which examined the effect of HIIT on muscle function, 22 which examined muscle quantity, and 12 which examined physical performance. HIIT was generally effective in Improving muscle function and physical performance compared to non-exercised controls, moderate intensity continuous training, or pre-HIIT (study design-dependent), with more ambiguity concerning muscle quantity. Conclusions: Most studies presented herein utilized outcome measures defined by the European Working Group on Sarcopenia in Older People (EWGSOP). However, there are too few studies investigating any form of HIIT in the oldest old (i.e., ≥80 years of age), or those already sarcopenic. Therefore, more intervention studies are needed in this population

    Sprint interval training (SIT) reduces serum epidermal growth factor (EGF), but not other inflammatory cytokines in trained older men

    Get PDF
    Purpose The present study aimed to investigate the effect of age on circulating pro- and anti-inflammatory cytokines and growth factors. A secondary aim was to investigate whether a novel sprint interval training (SIT) intervention (3 × 20 s ‘all out’ static sprints, twice a week for 8 weeks) would affect inflammatory markers in older men. Methods Nine older men [68 (1) years] and eleven younger men [28 (2) years] comprised the younger group. Aerobic fitness and inflammatory markers were taken at baseline for both groups and following the SIT intervention for the older group. Results Interleukin (IL)-8, vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein-1 (MCP-1) were unchanged for the older and younger groups at baseline (IL-8, p = 0.819; MCP-1, p = 0.248; VEGF, p = 0.264). Epidermal growth factor (EGF) was greater in the older group compared to the younger group at baseline [142 (20) pg mL−1 and 60 (12) pg mL−1, respectively, p = 0.001, Cohen's d = 1.64]. Following SIT, older men decreased EGF to 100 (12) pg mL−1 which was similar to that of young men who did not undergo training (p = 0.113, Cohen's d = 1.07). Conclusion Older aerobically trained men have greater serum EGF than younger aerobically trained men. A novel SIT intervention in older men can shift circulating EGF towards trained younger concentrations. As lower EGF has previously been associated with longevity in C. elegans, the manipulative effect of SIT on EGF in healthy ageing in the human may be of further interest
    corecore