155 research outputs found

    Performance evaluation of video streaming on LTE with coexistence of Wi-Fi signal

    Get PDF
    The continuous growth in mobile data traffic and limited license wireless spectrum have led to dramatically increase the demand of the radio spectrum. It is widespread the concern about the coexistence of long term evolution (LTE) and Wi-Fi in the unlicensed band. There are several techniques have been proposed to enable the coexistence of LTE and Wi-Fi in the unlicensed band, but these works are targeted on the impact of the LTE to the Wi-Fi network performance. An experiment is carried out in this work to evaluate the impact of Wi-Fi signal on the video streaming in the LTE network. The experimental test comprised of the national instrument (NI) universal software radio peripheral (USRP) 2953R that is controlled by the LabVIEW Communication LTE application framework. Extensiveexperiments are carried out under two scenarios, i.e. (1) Coexistence of LTE and Wi-Fi signal, (2) LTE signal only. Performance evaluations are carried out with different Modulation and coding schemes (MCS) values and different mode of operations, i.e. frequency division duplex (FDD) and time division duplex (TDD) mode. The results illustrated that the interference from Wi-Fi signal caused the performance degradation of the LTE network in throughput and the power received by user equipment (UE)

    Enhanced exponential rule scheduling algorithm for real-time traffic in LTE network

    Get PDF
    Nowadays, mobile communication is growing rapidly and become an everyday commodity. The vast deployment of real-time services in Long Term Evolution (LTE) network demands for the scheduling techniques that support the Quality of Service (QoS) requirements. LTE is designed and implemented to fulfill the users’ QoS. However, 3GPP does not define the specific scheduling technique for resource distribution which leads to vast research and development of the scheduling techniques. In this context, a review of the recent scheduling algorithm is reported in the literature. These schedulers in the literature cause high Packet Loss Rate (PLR), low fairness, and high delay. To cope with these disadvantages, we propose an enhanced EXPRULE (eEXPRULE) scheduler to improve the radio resource utilization in the LTE network. Extensive simulation works are carried out and the proposed scheduler provides a significant performance improvement for video application without sacrificing the VoIP performance. The eEXPRULE scheduler increases video throughput, spectrum efficiency, and fairness by 50%, 13%, and 11%, respectively, and reduces the video PLR by 11%

    The X-ray Emission from the Nucleus of the Dwarf Elliptical Galaxy NGC 3226

    Get PDF
    We present the first high resolution X-ray image of the dwarf elliptical galaxy NGC 3226. The data were obtained during an observation of the nearby Seyfert Galaxy NGC 3227 using the Chandra X-ray Observatory. We detect a point X-ray source spatially consistent with the optical nucleus of NGC 3226 and a recently-detected, compact, flat-spectrum, radio source. The X-ray spectrum can be measured up to ~10 keV and is consistent with a power law with a photon index 1.7 <~ Gamma <~ 2.2, or thermal bremmstrahlung emission with 4 <~ kT <~ 10 keV. In both cases the luminosity in the 2--10 keV band ~10^{40} h_{75}^{-1} erg/s. We find marginal evidence that the nucleus varies within the observation. These characteristics support evidence from other wavebands that NGC 3226 harbors a low-luminosity, active nucleus. We also comment on two previously-unknown, fainter X-ray sources <~ 15 arcsec from the nucleus of NGC 3226. Their proximity to the nucleus (with projected distances <~ 1.3/h_{75} kpc) suggests both are within NGC 3226, and thus have luminosities (~few x 10^{38} -- few x 10^{39} erg/s) consistent with black-hole binary systems.Comment: Accepted for publication in ApJ. Figures in colo

    An extended scheme for fitting X-ray data with accretion disk spectra in the strong gravity regime

    Full text link
    Accreting black holes are believed to emit X-rays which then mediate information about strong gravity in the vicinity of the emission region. We report on a set of new routines for the Xspec package for analysing X-ray spectra of black-hole accretion disks. The new computational tool significantly extends the capabilities of the currently available fitting procedures that include the effects of strong gravity, and allows one to systematically explore the constraints on more model parameters than previously possible (for example black-hole angular momentum). Moreover, axial symmetry of the disk intrinsic emissivity is not assumed, although it can be imposed to speed up the computations. The new routines can be used also as a stand-alone and flexible code with the capability of handling time-resolved spectra in the regime of strong gravity. We have used the new code to analyse the mean X-ray spectrum from the long XMM--Newton 2001 campaign of the Seyfert 1 galaxy MCG--6-30-15. Consistent with previous findings, we obtained a good fit to the broad Fe K line profile for a radial line intrinsic emissivity law in the disk which is not a simple power law, and for near maximal value of black hole angular momentum. However, equally good fits can be obtained also for small values of the black hole angular momentum. The code has been developed with the aim of allowing precise modelling of relativistic effects. Although we find that current data cannot constrain the parameters of black-hole/accretion disk system well, the approach allows, for a given source or situation, detailed investigations of what features of the data future studies should be focused on in order to achieve the goal of uniquely isolating the parameters of such systems.Comment: Accepted for publication in ApJ S

    On the dependence of the iron K-line profiles with luminosity in Active Galactic Nuclei

    Get PDF
    We present evidence for changes in the strength and profile of the iron K-alpha line in Active Galactic Nuclei (AGN), based on X-ray observations with ASCA. There is a clear decrease in the strength of the line with increasing luminosity. This relation is is not due solely to radio power, as it persists when only radio-quiet AGN are considered and therefore cannot be fully explained by relativistic beaming. In addition to the change in strength, the line profile also appears to be different in higher luminosity sources. We discuss these results in terms of a model where the accretion disk becomes ionized as a function of the accretion rate.Comment: 16 pages, 3 figures. LaTeX with encapsulated postscript. To appear in the Astrophysical Journal Letters. Also available via http://lheawww.gsfc.nasa.gov/~nandra/pubs/felum/abstract.htm

    On the Origin of Broad Fe K alpha and Hi H alpha Lines in AGN

    Full text link
    We examine the properties of the Fe emission lines that arise near 6.4 keV in the ASCA spectra of AGN. Our emphasis is on the Seyfert 1 galaxies where broad and apparently complex Fe K alpha emission is observed. We consider various origins for the line but focus on the pros and cons for line emitting accretion disk models. We develop a simple model of an illuminated disk capable of producing both X-ray and optical lines from a disk. The model is able to reproduce the observed Fe K alpha FWHM ratio as well as the radii of maximum emissivity implied by the profile redshifts. The overall profile shapes however do not fit well the predictions of our disk illumination model nor do we derive always consistent disk inclinations for the two lines. We conclude that the evidence for and against an accretion disk origin for the Fe K alpha emission is equal at best. The bulk of the data requires a very disparate set of line fits which shed little light on a coherent physical model. We briefly consider alternatives to disk emission models and show that a simple bicone model can reproduce the FE line profiles equally well.Comment: 29 pages, 6 tables, 6 figures. Submitted for publication in the Astrophysical Journal part

    Iron K line Variability in the Low-Luminosity AGN NGC 4579

    Get PDF
    We present results of new ASCA observations of the low-luminosity AGN (LLAGN) NGC 4579 obtained on 1998 December 18 and 28, and we report on detection of variability of an iron K emission line. The X-ray luminosities in the 2--10 keV band for the two observations are nearly identical (LX \approx 2×1041\times10^{41} ergs/s), but they are \sim35% larger than that measured in 1995 July by Terashima et al. An Fe K emission line is detected at 6.39±0.096.39\pm0.09 keV (source rest frame) which is lower than the line energy 6.730.12+0.136.73^{+0.13}_{-0.12} keV in the 1995 observation. If we fit the Fe lines with a blend of two Gaussians centered at 6.39 keV and 6.73 keV, the intensity of the 6.7 keV line decreases, while the intensity of the 6.4 keV line increases, within an interval of 3.5 yr. This variability rules out thermal plasmas in the host galaxy as the origin of the ionized Fe line in this LLAGN. The detection and variability of the 6.4 keV line indicates that cold matter subtends a large solid angle viewed from the nucleus and that it is located within 1\sim1 pc from the nucleus. It could be identified with an optically thick standard accretion disk. If this is the case, a standard accretion disk is present at the Eddington ratio of LBol/LEddington2×103L_{\rm Bol}/L_{\rm Eddington} \sim 2\times10^{-3}. A broad disk-line profile is not clearly seen and the structure of the innermost part of accretion disk remains unclear.Comment: 9 pages, 3 figures, To appear in the Astrophyscal Jounal Letter

    Traces of past activity in the Galactic Centre

    Full text link
    The Milky Way centre hosts a supermassive Black Hole (BH) with a mass of ~4*10^6 M_Sun. Sgr A*, its electromagnetic counterpart, currently appears as an extremely weak source with a luminosity L~10^-9 L_Edd. The lowest known Eddington ratio BH. However, it was not always so; traces of "glorious" active periods can be found in the surrounding medium. We review here our current view of the X-ray emission from the Galactic Center (GC) and its environment, and the expected signatures (e.g. X-ray reflection) of a past flare. We discuss the history of Sgr A*'s past activity and its impact on the surrounding medium. The structure of the Central Molecular Zone (CMZ) has not changed significantly since the last active phase of Sgr A*. This relic torus provides us with the opportunity to image the structure of an AGN torus in exquisite detail.Comment: Invited refereed review. Chapter of the book: "Cosmic ray induced phenomenology in star forming environments" (eds. Olaf Reimer and Diego F. Torres

    Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)

    Get PDF
    Focusing of light in the diffusive regime inside scattering media has long been considered impossible. Recently, this limitation has been overcome with time reversal of ultrasound-encoded light (TRUE), but the resolution of this approach is fundamentally limited by the large number of optical modes within the ultrasound focus. Here, we introduce a new approach, time reversal of variance-encoded light (TROVE), which demixes these spatial modes by variance encoding to break the resolution barrier imposed by the ultrasound. By encoding individual spatial modes inside the scattering sample with unique variances, we effectively uncouple the system resolution from the size of the ultrasound focus. This enables us to demonstrate optical focusing and imaging with diffuse light at an unprecedented, speckle-scale lateral resolution of ~5 µm

    Hitomi Constraints on the 3.5 keV Line in the Perseus Galaxy Cluster

    Get PDF
    High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentified E=3.5 keV emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus cluster. The emission line expected for Perseus based on the XMM-Newton signal from the large cluster sample under the dark matter decay scenario is too faint to be detectable in the Hitomi data. However, the previously reported 3.5 keV flux from Perseus was anomalously high compared to the sample-based prediction. We find no unidentified line at the reported high flux level. Taking into account the XMM measurement uncertainties for this region, the inconsistency with Hitomi is at a 99% significance for a broad dark-matter line and at 99.7% for a narrow line from the gas. We do not find anomalously high fluxes of the nearby faint K line or the Ar satellite line that were proposed as explanations for the earlier 3.5 keV detections. We do find a hint of a broad excess near the energies of high-n transitions of Sxvi (E=3.44 keV rest-frame) -- a possible signature of charge exchange in the molecular nebula and another proposed explanation for the unidentified line. While its energy is consistent with XMM pn detections, it is unlikely to explain the MOS signal. A confirmation of this interesting feature has to wait for a more sensitive observation with a future calorimeter experiment
    corecore