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Abstract

High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentified
»E 3.5 keV emission line reported in several low-resolution studies of various massive systems, such as galaxies

and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus
cluster. The emission line expected for Perseus based on the XMM-Newton signal from the large cluster sample
under the dark matter decay scenario is too faint to be detectable in the Hitomi data. However, the previously
reported 3.5 keV flux from Perseus was anomalously high compared to the sample-based prediction. We find no
unidentified line at the reported high flux level. Taking into account the XMM measurement uncertainties for this
region, the inconsistency with Hitomi is at a 99% significance for a broad dark matter line and at 99.7% for a
narrow line from the gas. We do not find anomalously high fluxes of the nearby faint K line or the Ar satellite line
that were proposed as explanations for the earlier 3.5 keV detections. We do find a hint of a broad excess near the
energies of high-n transitions of S XVI ( E 3.44 keV rest-frame)—a possible signature of charge exchange in the
molecular nebula and another proposed explanation for the unidentified line. While its energy is consistent with
XMM pn detections, it is unlikely to explain the MOS signal. A confirmation of this interesting feature has to wait
for a more sensitive observation with a future calorimeter experiment.

Key words: dark matter – galaxies: clusters: individual (A426) – galaxies: clusters: intracluster medium – X-rays:
galaxies: clusters

1. Introduction

The nature of dark matter (DM) is one of the fundamental
unsolved problems in physics and astronomy. Direct particle
searches in laboratories as well as searches for electromagnetic
signal from celestial objects have been conducted with no
unambiguous detection so far. X-ray observations of DM
concentrations, such as galaxies and clusters, provide a probe
for a particular DM candidate, a sterile neutrino, which is
predicted to decay and emit an X-ray line (Dodelson &
Widrow 1994; Abazajian et al. 2001). Early searches that
provided upper limits on line flux (and thus the particle decay
rate) as a function of line energy (which gives the particle
mass) are reviewed, e.g., in Abazajian et al. (2012) and
Boyarsky et al. (2012).

A possible detection was reported by Bulbul et al. (2014,
hereafter B14), who found an unidentified line at
»E 3.55 keV in the stacked spectrum of a large sample of

galaxy clusters using XMM-Newton EPIC MOS and pn. Within
their sample was the Perseus cluster (its central region), whose
signal was particularly strong. B14 also reported a detection
from Perseus with Chandra at the same energy. Boyarsky et al.
(2014) reported an XMM detection in the outer region of
Perseus. Urban et al. (2015) and Franse et al. (2016,
hereafter F16) detected the line in several regions of Perseus
with Suzaku; however, Tamura et al. (2015) did not detect it in
the same Suzaku data. The 3.5 keV line was also reported from
other objects, such as the Galactic Center (Boyarsky et al.
2015) and M31 (Boyarsky et al. 2014). Other sensitive searches
did not detect a significant line signal (e.g., from the Milky
Way halo, Sekiya et al. 2016; Draco dwarf, Ruchayskiy

et al. 2016; stacked Suzaku clusters, Bulbul et al. 2016). Some
of the nondetections were inconsistent with other detections
under the decaying DM hypothesis (in which the line flux must
be proportional to the projected DM mass), most significantly,
in a sample of galaxies (Anderson et al. 2015). We also note
here that the signal from Perseus reported by XMM, Chandra,
and Suzaku was higher than expected given the signal from the
rest of the cluster sample (B14). Astrophysical explanations of
the reported line, in addition to those considered by B14, have
also been proposed; a critical review can be found in F16. An
extensive review of the recent observations is given, e.g., by
Iakubovskyi (2015).
As recognized in all previous studies, the above line detections

were near the capability for CCD detectors—for a ∼100 eV
resolution, the line reported from clusters with a∼1 eV equivalent
width (EW) is a 1% bump above the continuum, easily affected
by errors in modeling the nearby atomic lines and in instrument
calibration. A confirmation with a much better spectral resolution
was considered essential. Hitomi, launched in 2016 February and
lost in March (Takahashi et al. 2014, 2016) after having returned a
groundbreaking spectrum of the Perseus cluster (Hitomi Colla-
boration 2016, hereafter H16), offered us such a possibility. We
present results from this data set below.
We use =h 0.7, W = 0.3m , and W =L 0.7 cosmology. The

cluster heliocentric redshift (average for member galaxies) is
0.0179 (Strubble & Rood 1999), and the redshift in the CMB
frame is 0.01737, which gives =d 75.4L Mpc and a scale of
21.2 kpc per 1′. We use the 68% ( s1 ) confidence level for
errors unless stated otherwise.

2. Data

The Perseus cluster was the first-light target for Hitomi,
observed early in the instrument activation phase with the Soft
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X-Ray Spectrometer (SXS; Kelley et al. 2016). SXS is an array
of 35 calorimeter pixels with a 4.9 eV FWHM energy
resolution (H16), covering a ¢ ´ ¢3 3 field of view (FOV) at
the focus of a Soft X-Ray Telescope (SXT; Soong et al. 2014;
Okajima et al. 2016). To maximize statistics, here we coadd the
230 ks Perseus data set used in H16 and a later 45 ks pointing
for a total exposure of 275 ks. The former data set is a
combination of observations 2 on 2016 February 24–25 and 3
on March 3–5, both pointed ∼1′ away from the cluster center,
while the latter (observation 4 on March 6–7) is on-center. The
earliest observation, observation 1, was pointed away from the
core and is not included.

For these observations, SXS was still protected from
possible contaminants by the closed gate valve (GV) window.
It includes a Be filter that absorbs soft X-ray photons. At
=E 3.5 keV, the GV window transmission is 1/4 of that in the

normal operation mode, yielding the number of photons
equivalent to about 70 ks of normal observations.

3. Analysis

To fully utilize the SXS high energy resolution, accurate
calibration of gain (the conversion from the amplitude of the
detected signal to photon energy) for each of its 35 pixels is
essential. Unfortunately, the individual pixel gains were
changing during the early part of the mission, and a
contemporaneous gain calibration for the SXS array as planned
for later operations was not available. The procedure that we
devised to calibrate the Perseus data is described in H16. For
some of the analysis in H16, an additional scale factor was
applied to force the bright 6.7 keV Fe Heα line from the cluster
to appear at the same energy in every pixel. This additional step
removes the true gas velocity gradient across the cluster along
with any residual gain errors. Since DM does not move with
the gas, this would also broaden a DM emission line. However,
as reported in H16, the gas velocity difference across the
Perseus core is around 150 km s−1, much less than the expected
width of the DM line that we will try to detect. We use the
energy-aligned data in this work, but have confirmed that our
results are essentially the same with or without this final
energy-scale alignment. We do not report the best-fit redshift
below because we simply recover the value used for energy
alignment.

We used the Be layer thickness (270±10 μm) calibrated
using Crab and G21.5–0.9 spectra taken after the Perseus
observation.78 This differs from the instrument response used
in H16 and results in a more reliable slope of the spectrum in
the 3–7 keV band.

The detector energy response (RMF) was generated using
the observed energy resolution of the individual pixels. Its
uncertainty is discussed in H16 and is negligible for this work.
We bin the spectrum by 2 eV (which is close to optimal
binning; Kaastra & Bleeker 2016) and fit using the C-statistic
(Cash 1979). The number of counts per 2 eV bin is around 200
in this band, i.e., the statistics is nearly a Gaussian distribution
with s = N . The instrumental background is negligible.

3.1. Systematic Uncertainties

The SXT has a 1 2 angular resolution (half-power diameter).
For our analysis of the spectrum from the whole ¢ ´ ¢3 3 FOV,

we do not attempt to account for PSF scattering in and out of
the FOV, and use the instrument response for an on-axis point
source. We estimate the effect of this simplification on the
model normalization to be ∼10%.
The uncertainty of the Be layer thickness in the GV window,
m10 m, corresponds to a ±2.5% uncertainty for the flux

at =E 3.5 keV.
A more insidious effect may be caused by uncertainty in

modeling the SXT effective area (Kurashima et al. 2016). The
SXT reflectivity around the Au M edges was measured on the
ground and combined with values from Henke et al. (1993) for
other energies. The ground measurements show ∼1% systema-
tic deviations from Henke, one of which is in the
3.43–3.68 keV interval above the Au M1 edge—at our energies
of interest. Given the finite accuracy of the ground measure-
ments, we consider the possibility that the Henke values are
more accurate. To quantify the effect of this uncertainty, below
we will derive some of the results using both the default area
curve (which uses the Hitomi mirror measured reflectivities)
and one in which the Henke values were used above the Au M1
edge. Similar deviations may be seen at other Au M edges, but
the next one (M2 at 3.15 keV) is well outside our interval of
interest and we will not consider it.

4. Results

4.1. The ICM Model

We fit the full-FOV Perseus spectrum with a BAPEC thermal
plasma model (AtomDB 3.0.3beta2; Foster et al. 2012) with
elemental abundances relative to Lodders (2003). We fix the
Galactic absorption at = ´N 1.38 10H

21 cm−2 (Kalberla
et al. 2005), which agrees with that derived in the X-ray by
Chandra (Schmidt et al. 2002) and XMM (Churazov
et al. 2003). A broadband SXS spectrum requires a power-
law component from the AGN in NGC 1275 (Fabian
et al. 2015). The SXS broadband effective area calibration is
not yet good enough for fitting multiple continuum components
reliably. Therefore, to derive a spectral shape for the AGN
component, we extracted the AGN spectrum from the off-
center Chandra Perseus observations (those where the point-
like AGN is not affected by pileup) and obtained a power-law
photon slope a = -1.8 (defined as µ aS EX ) and an absorp-
tion column (Galactic plus intrinsic) of ´3.3 1021 cm−2. We
included a component of this shape along with the thermal
model and fit the SXS spectrum in the 3–7 keV band, obtaining
a normalization for the AGN component of ´ -9.0 10 3

phot cm−2 s−1 keV−1 at E=1 keV. We fix it in the subsequent
fits and leave further discussion of the AGN spectrum for future
work. Its contribution to the 3–4 keV flux is 15%, and it does
not affect our results.
The 2.85–4.1 keV spectrum with the best-fit model is shown

in Figure 1. This energy interval is chosen to include all the
interesting lines but avoid the effective area uncertainty sharply
increasing at lower energies. The BAPEC model parameters for
a fit in this band are = kT 3.48 0.07 keV, an abundance of
0.54±0.03 solar, and the line of sight (los) velocity dispersion
of 179±16 km s−1 (which becomes 197±16 km s−1 without
the pixel energy alignment). The fit is formally good with
C-statistic of 603 (c = 6112 ) for 619 dof. If the power-law
component is omitted, the temperature changes to 3.70±0.07
keV and abundance to 0.48±0.02.78 heasarc.gsfc.nasa.gov/docs/hitomi/calib/hitomi_caldb_docs.html
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The parameters obtained from a fit in this narrow interval are
qualitatively similar to those from a broader 3–7 keV band with
the power-law slope fixed at −1.8, which gives

= kT 3.84 0.02 keV (though with a considerably higher
abundance, 0.68±0.01, now dominated by Fe lines). The
closeness of the best-fit temperatures, even though they are
statistically inconsistent, suggests that the shape of the effective
area curve over the 3–7 keV band is reasonably correct.
Importantly for this work, the continuum model at the energy
of interest (3.5 keV) differs by only 1% between the above fits.
We further checked its robustness by fitting a simple power law
in the interval 3.30–3.75 keV between the bright Ar and Ca
lines, excluding intervals with all the weak model lines
between, and obtained a continuum flux only 0.4% different
from our default BAPEC model. As a further check, we also
compared the best-fit normalization of our BAPEC model to that
from Chandra for the same region of the cluster, excluding the
AGN. Our normalization is ∼10% below Chandraʼs, which is
a good agreement, given the preliminary calibration and the
simplified accounting for the PSF.

As seen in Figure 1, lines from all elements are fit
surprisingly well with a simple single-temperature, single-
abundance model. Some possible faint lines (K XVIII Heα, Ar
XVII Heβ, K XIX Lyα) may show problems with line energies,
but none of these lines is a significant detection. Line
identifications and individual abundances will be addressed in
a future work.

4.2. Constraint on the Previously Reported 3.5 keV Line

The red and blue brackets in Figure 1 show 90% confidence
intervals for the 3.5 keV line energy for the most sensitive
measurement of B14, that of the XMM MOS stacked-cluster
sample, and for the XMM MOS spectum of the Perseus region
covered by Hitomi. For a quantitative comparison, we extracted
a MOS 1+2 spectrum from a circular region approximating
the SXS FOV (both offset and solid angle) in observations 2
and 3 that give most of the exposure, ignoring a small offset for
observation 4. We then modeled the 3.5 keV line in that
spectrum reproducing the procedure in B14. In particular, we fit
the MOS spectrum in the 2.4–6 keV band using a line-free
single-temperature APEC model and a set of Gaussian lines at
energies of the known atomic lines (with energies allowed to
vary slightly), in order to model the continuum and lines in as
model-independent a way as possible given a CCD detector.
The faint atomic lines near the energy of interest that could not
be directly detected by the CCD, namely, K XVIII Heα at 3.51
keV (rest-frame) and Ar XVII Heβ satellite at 3.62 keV, were
constrained in the fit using the bright lines of S XV Heα
(2.46 keV rest) and S XVI Lyα (2.62 keV), which are
good temperature diagnostics. The measured S XV and S XVI
fluxes are ( ) ´ -9.0 1.2 10 5 and ( ) ´ -2.15 0.05 10 4

phot s−1 cm−2, respectively. A ratio of these lines corresponds
to a temperature of 2.9 keV. We predicted the K line flux using
this temperature (which is the relevant one, since K and Ar are
likely to come from the same gas phase that dominates the S
lines) and the S line fluxes, assuming the same abundances. The
K XVIII is a triplet (3.47, 3.49, 3.51 keV) with a known flux ratio
for its components (1:0.5:2.3). This resulted in an estimate for
the K XVIII line at 3.51 keV of ´ -2.0 10 6 phot s−1 cm−2. We
then allowed this flux to vary during the fit in the range 0.1–3
times the estimated flux, capping at ´ -6 10 6 phot s−1 cm−2, to
account for possible temperature and abundance variations. The

Ar XVII satellite line is estimated from the measured Ar XVII
Heα line at 3.12 keV, ( ) ´ -6.0 0.3 10 5 phot s−1 cm−2, and
the Ar XVII resonant/satellite line ratio for the above-determined
temperature; the predicted Ar satellite line flux was ´ -2.1 10 7

phot s−1 cm−2, and we again allowed this flux to vary by factor
0.1–3 in the fit, capping at ´ -6.3 10 7 phot s−1 cm−2.
For the unidentified line, we obtained ( )=  ´f 9.0 2.9
-10 6 phot s−1 cm−2 and = -

+E 3.54 0.04
0.03 keV (similar for the

different assumed line widths from the interesting range). This
is very close to the flux shown in Figure 15 of B14, which
gives their Astro-H prediction, and is consistent with (but has a
much smaller error than) the difference between the whole-
Perseus flux and the one with the central = ¢r 1 region excised,
given in their Table 5.
We first check how the flux caps for the K XVIII and Ar XVII

satellite lines estimated for the MOS fit compare with the actual
fluxes of those lines in the SXS spectrum. None of the lines is
significantly detected; the flux of the possible blend of K XVIII
Heα and ClXVII Lyβ (at 3.45 keV observed) is
( ) ´ -4.6 2.6 10 6 phot s−1 cm−2

—under the K XVIII cap
used for the MOS fit. The Ar XVII satellite flux (3.556 keV
observed) is ( ) ´ -1.5 1.4 10 6 phot s−1 cm−2, consistent
with the cap. The above MOS flux of the 3.5 keV feature is
in excess of these caps, but even if these faint lines were
completely ignored in the MOS fit, neither of them approaches
the derived 3.5 keV flux, excluding one of the astrophysical
explanations proposed in B14.
The MOS fluxes of the S XV Heα and S XVI Lyα lines, used

to derive the K cap, are consistent with the Hitomi fluxes, once
the relatively small contribution of Si XIV Lyγ blending with S
XV Heα is added. The Ar XVII Heα MOS-derived flux is
consistent with the blend of this line and a~ ´2 stronger S XVI
Lyβ line, resolved in the Hitomi spectrum (Figure 1); this
blending was ignored in the MOS analysis (as in B14) and
resulted in a conservatively high cap on the Ar satellite line. A
more detailed comparison of the XMM and Hitomi line fluxes
will be given in a future paper.
We start checking the consistency of the MOS-derived

3.5 keV emission line with the SXS spectrum by adding a
Gaussian line with this flux at a range of energies to the SXS
model. We consider an astrophysical line broadened by
turbulence or a wider line expected from the DM decay. If
the astrophysical line comes from an element whose lines are
seen in this range, thermal broadening would correspond to 100
km s−1. Added in quadrature with turbulent broadening of 180
km s−1, this results in an intrinsic Gaussian s = 2.4 eV at these
energies (in addition to the instrumental s = 2.1 eV, or 4.9 eV
FWHM, modeled by the RMF). For a DM line, we try 1300
km s−1 (s = 15 eV), which is the los velocity dispersion of the
cluster galaxies (Kent & Sargent 1983). An arbitrary
intermediate case of 800 km s−1 corresponds to a lower
dispersion in the region of the cD galaxy projected onto the
cluster dispersion. The additional broadening for a putative DM
line caused by our energy alignment (Section 3) is negligible
for such widths, and it would not apply to the narrow line
originating in the gas.
Figure 2 shows the value of DC (which has the same

interpretation and normalization as cD 2) for the addition of a
line at the best-fit MOS flux, compared to the best-fit SXS line
flux at that energy (allowing for negative line flux to avoid
distorting the probability distribution, as advised by Protassov
et al. 2002). For the broad line, we also show DC for a
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reference model with zero line flux rather than the best-fit SXS
flux. B14ʼs most-restrictive 90% MOS energy interval for the
stacked sample is shown, since we are assuming that this is a
DM line and it has the same energy in all objects. For narrow
and broad lines, the best-fit XMM MOS flux value is
inconsistent with the SXS spectrum; the weakest constraint is
for the broad line and the discrepancy is at least D =C 12.
Using only observations 2+3 (excluding the better-centered,
but short observation 4) reduced DC for the broad line
compared to the zero-flux model by about 4, commensurate
with the reduction in the number of photons. The effective area
uncertainty described in Section 3.1 is illustrated by error bars
for the broad line; the alternative area curve reduces the model
values at these energies slightly, thereby reducing the
significance of the exclusion of the XMM flux to at least
D =C 9. Its effect on the narrower lines is weaker.

4.2.1. The Statistical Question

To interpret the aboveDC (or cD 2) in terms of a confidence
level for the line exclusion, we should note that the statistical
question we are asking—what is the confidence level of
excluding the previously detected line—is different from a
blind line search employed for detecting the line. If a spectral
line is detected in a blind search and it corresponds, e.g., to a
s3 deviation, one has to estimate the probability of a false
detection under the hypothesis of no line, caused by a positive

random fluctuation. Because a s+3 deviation appearing at any
spectral bin would be detected as a line, such a probability is
the probability of a s+3 deviation in one bin times the number
of bins where the line could be found within the searched
interval (the “look-elsewhere” effect; e.g., Gross &
Vitells 2010; this factor was applied in B14). However, here
we must estimate the probability of a null hypothesis in which
the line exists and we falsely reject it because of a random
negative deviation at the position of the line. While s-3
deviations can appear at any spectral bin, only one of them, that
happens in the bin with the line, would result in false rejection,
while all others would be dismissed as mere random deviations.
Thus, even though we do not know where within the XMM
interval the line is, the probability of false rejection is the
probability of a s-3 deviation in one bin—there is no look-
elsewhere effect in our statistical problem. A D =C 9 or
cD = 92 corresponds to the standard one-parameter

( )- - »1 1 0.997 2 99.9% confidence level. Because DC
is not constant across the interval in Figure 2, we can take its
minimum for a conservative limit for rejecting a certain
line flux.
The above DC gives only the Hitomi statistical constraint

and does not take into account the fact that the XMM SXS-FOV
detection itself is only s3 significant (and thus cannot be ruled
out with a s>3 significance). To answer a narrower question of
how inconsistent the Hitomi and XMM MOS results for the

Figure 1. SXS spectrum from the whole field of view, combining three pointings. Energy is in the observer frame; bins are 4 eV for clarity (2 eV bins were used for
fitting). Vertical error bars are s1 Poisson uncertainties in each bin; horizontal error bars denote the bins. Red curve is a best-fit BAPEC model with =kT 3.5 keV,
abundances of 0.54 solar (same for all elements), los velocity dispersion of 180 km s−1, and a power-law component as required by a fit in a broader band (see the
text). Prominent atomic lines seen in the model (identified using AtomDB) are marked, along with the interesting Ar XVII satellite line (B14) thatʼs too faint to be seen
in the model. Brackets show 90% confidence intervals on the unidentified 3.5 keV line energy for the most-restrictive XMMMOS stacked-clusters sample in B14 (red)
and for the XMM MOS Perseus spectrum from the region covered by the SXS (blue).
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same region are, we ran a simple Monte Carlo simulation with
the line energy and flux randomly drawn from the XMM one-
parameter intervals assuming Gaussian distributions and the
Hitomi line flux at that energy randomly drawn using the
Hitomi statistical uncertainty. For a broad (1300 km s−1) line,
the SXS line flux was below the XMM flux in 99.2% of the
trials for the default effective area, in 98.9% of the trials if we
use the alternative area curve, or in 97.2% of the trials if we
force the SXS line flux to be zero but use the same statistical
errors. For a narrow (180 km s−1) line, for which the Hitomi
error is smaller, the discrepancy is at 99.7% for all three cases.

4.3. Broader Search

Figure 3 shows the best-fit SXS flux for the additional line as
a function of energy, with upper and lower limits at D =C 9
( s3 for Gaussian distribution), for a narrow and broad line, as
well as the conservative s+3 limit selected from among the
different line widths in this range. The figure shows a wider
interval of possible interest that combines XMM MOS and pn
s3 line energy intervals. One notable feature is a broad
negative “dip” in residuals at »E 3.50 keV (observed) of
about 3%–4%, also noticeable in residuals in Figures 1 and 4.
The model lines with different widths overplotted in Figure 4
show that a broad line may be affected but not a narrow line, as
indeed seen in Figure 3. This deviation has a relatively low
statistical significance ( s~2.3 ). We have checked the SXS
spectra of Crab and G21.5–0.9 (Figure 4; details will be given
in forthcoming papers), both continuum sources well-fit with a
simple power-law model in the energy range of interest.
Neither source shows any comparable deviations at this energy.
The Crab spectrum (shown binned to 32 eV, which roughly
corresponds to the expected DM line width) has 1.5 times more
counts at these energies than the Perseus spectrum, and has
sufficient statistics to exclude any effective area artifact around

3.5 keV of much more than 1% (the size of the error bars). The
area systematic uncertainty (Section 3.1), shown in the lower
panel of Figure 4, is also a smaller (1%) effect. The fine
structure of the Au M1 edge (same panel), measured with high
energy resolution during ground calibration, occurs on energy
scales smaller than the “dip.”
We have also checked if this dip may be caused by some time-

dependent instrumental effect. For this, we divided the full
Perseus data set into the early and late subsets—observations 2
and 3+4, respectively, separated by a week (Section 2). Results
from these subsets for the broadened line, analogous to those
shown by the red line in Figure 3 for the full exposure, are shown
in Figure 5. The dip appears in the early subset but not in the late
one. However, the subsets are only s~2 apart at 3.5 keV, so the
statistics are insufficient to determine if this is a systematic time-
dependent change. The Crab observation (Figure 4) was
performed later than our late subset and thus does not help in
ruling out a transient instrumental artifact in earlier data;
however, we cannot think of a physical explanation for such
effect. Given the available data, we have to conclude that the dip
is most likely an unfortunate statistical fluctuation and base our
results on the whole data set in order to avoid statistical biases.

4.3.1. A Possible Excess at 3.44 keV (Rest-frame)

The only positive deviation in Figure 3 is a broad excess
above the best-fit thermal model at –=E 3.38 3.39 keV
(observed). The statistical significance of this feature is only

Figure 2. Difference of C-statistic between a model with a line with the best-fit
XMM MOS flux ( ´ -9 10 6 phot s−1 cm−2) and the best-fit SXS flux (shown in
Figure 3; flux is allowed to take negative values) as a function of line energy
within the B14 most-restrictive confidence interval for the line. Curves for
different line widths are shown (black: 180 km s−1, blue: 800 km s−1, red:
1300 km s−1). For the 1300 km s−1 case, we also show DC between models
with the XMM MOS line flux and zero line flux (red dashed line). Error bars
illustrate a systematic uncertainty of the SXT effective area described in
Section 3.1; its effect is most significant for the broad line and we do not show
other cases for clarity. Dotted line is at D =C 9, which corresponds to s3
exclusion for Gaussian errors.

Figure 3. Best-fit line flux (solid curves) and the flux limits for +C 9min ( s3 ;
shaded bands) for an additional emission line as a function of energy. We show
an interesting broad band encompassing XMM MOS and pn s3 intervals for
stacked-cluster samples from B14 (brackets at top). Black line with gray band
(labeled 180 km s−1) corresponds to a turbulent-broadened line; red line with
pink band (1300 km s−1) corresponds to a DM line. A magenta outline shows
the highest flux limit from those for different widths in the 180–1300 km s−1

interval. Red and black error bars illustrate the systematic uncertainty of the
effective area (Section 3.1), shown for the best-fit curve and the upper limit for
the broad line. This effect is negligible for the narrow line, so only one location
is shown. A line flux of ´ -5 10 6 phot s−1 cm−2 corresponds to EW 1 eV.
Blue cross shows the MOS detection for the SXS FOV with s1 one-parameter
uncertainties. Blue dashed line shows the expected flux based on the stacked-
cluster signal (Section 5). Also shown for reference is the “B14 best” interval
covered by Figure 2. The only interesting unmodeled positive deviation—
though a low-significance one—is near the energies of the high-n transitions of
S XVI, marked at top. The right vertical axis shows the approximate
corresponding sterile neutrino decay rate Γ.
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s1.5 and it would not be worth mentioning, if not for the fact
that it is located at the energy of the high-n to n=1 transitions
of S XVI. Excess flux in these transitions can be interpreted as a
signature of charge exchange between heavy nuclei coming in
contact with neutral gas—possibly the molecular nebula
observed in the Perseus core. These particular transitions were
proposed as a possible explanation for the 3.5 keV line in
clusters by Gu et al. (2015). A detection of charge exchange in
the ICM would be of great astrophysical importance, but it
should be confirmed with other elements (to be addressed in
future work) and eventually with a longer exposure.

5. Discussion

Our analysis of the Hitomi spectrum of the Perseus cluster
core reveals no unidentified emission line around the energy
reported by B14. It is inconsistent with the presence of a line at
the flux reported by B14 using XMM MOS (as rederived for the
approximate SXS FOV). Taking into account the uncertainties
of the XMM MOS measurement in this region, which itself is
only s3 significant, the inconsistency with Hitomi for a broad
line (that would be emitted by DM) is at the 99% confidence
level, and 99.7% for a narrow line from the ICM. The broad-
line exclusion level is 97% if we force the SXS line flux to be
zero, assuming in effect that the mild “dip” in the residuals
(Section 4.3) is not statistical as we concluded, but some
instrumental artifact present only in Perseus and not in other
SXS data. We note here that F16, using Suzaku data for a
similar Perseus region, reported a line flux and its uncertainty
similar to that from the XMM SXS-FOV measurement, but
given the lack of consensus between different Suzaku analyses
(cf. Tamura et al. 2015), we leave a comparison with Suzaku
for a later work.
We can exclude one of the 3.5 keV line astrophysical

explanations proposed by B14—namely, anomalously bright K
XVIII Heα or Ar XVII Heβ satellite lines. These lines are not
significantly detected in the SXS spectrum, their fluxes are
consistent with expectations and below the MOS 3.5 keV flux.
If we consider a slightly wider energy range (Figure 3), there is
a hint of a broad excess emission feature of the right amplitude
(though at very low statistical significance) at »E 3.44 keV
rest-frame, where charge exchange on S XVI has been predicted
(Gu et al. 2015). However, the energy of this feature is s2.6
(100 eV) away from the best-fit energy for the MOS SXS-FOV
detection, and even more inconsistent with the MOS stacked-
cluster sample, though it is consistent with the pn detections
(B14). If confirmed with better statistics, it is an interesting
feature in itself.
Given Hitomiʼs much greater spectral resolution, it is likely

that the inconsistency with XMM that we reported here is
attributable to a systematic error in the XMM result. Possible
causes will be examined in a future work, using the new
accurate knowledge of the fluxes of all the nearby atomic lines
from Hitomi, as well as Suzaku and Chandra spectra and
models. One possible reason, mentioned among the Caveats
in B14, is that with a CCD resolution, a spurious ∼1% dip in
the effective area curve is all that is needed to produce a false
line-like residual of the observed amplitude (see Figure 7
in B14). This is an obvious problem for detections in a single
object or in local objects, even when different instruments with
similar low-resolution detectors are used. Such systematic
effects can be minimized by stacking objects at different
redshifts. In the cluster sample of B14, the 3.5 keV rest-frame

Figure 4. Ratios of data to best-fit models in the interesting energy range.
Upper panel shows ratio of the same Perseus spectrum and model as in
Figure 1, but binned by 8 eV. A line at 3.57 keV (rest-frame) with a flux
derived by XMM in the SXS FOV (Section 4.2) is shown with curves of
different colors, which denote different los velocity dispersions (gray: 180
km s−1, blue: 800 km s−1, red: 1300 km s−1; see Section 4.2). Position of the
potentially interesting S XVI feature (Section 4.3.1) is marked. Two middle
panels show the residuals for power-law sources Crab and G21.5–0.9. The area
modification (Section 3.1) is not included. The Crab spectrum has sufficient
statistics to exclude a significant effective area artifact around 3.5 keV. Lower
panel shows the effective area curve (gray line shows the modification from
Section 3.1), including the fine structure above the Au M1 edge measured
during ground calibration.

Figure 5. Best-fit flux (curves) and s3 limits (shaded bands) for a 1300
km s−1 broadened line (similar to the red line and pink band in Figure 3),
derived separately for the early subset (“Obs 2,” black and gray) and later
subset (“Obs 3+4,” red and pink). The axes and the blue cross are the same as
in Figure 3. The “dip” around 3.5 keV is present in the early subset and not in
the late one, but the results are statistically consistent.
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energy spans a 1.2 keV interval of detector energies, which
should smear out any such instrument features. Thus, this
systematic error will be much smaller in the stacked-sample
signal.

As noted in B14 and subsequent works, the reported line in
Perseus, and especially in its core, was much brighter than
expected from the signal in the larger cluster sample, scaled by
mass under the decaying DM hypothesis. Assuming that the
high Perseus line flux is an artifact but the stacked-sample
signal is real, we can evaluate the corresponding expected flux
from the SXS FOV. To estimate the projected dark matter mass
within this region, we use a total mass profile from Simionescu
et al. (2011) and one from the Vikhlinin et al. (2006) M−T
scaling relation (the former was used in Urban et al. and the
latter in B14), correcting them for the 14% baryon fraction. The
projected DM mass within the SXS FOV is ( – ) ´6 8 1012 Me.
For the sterile neutrino decay rate derived in B14 for the full
cluster sample (G » ´ -2 10 28 s−1), we expect a 3.5 keV line
with ( – )= ´ -f 2.4 3.1 10 7 phot s−1 cm−2 (see, e.g., B14 for
the equations), 30 times below the flux we ruled out above.
This flux, shown by blue dashed line in Figure 3, is below the
statistical noise in the current observation.

The right vertical axis in Figure 3 shows the sterile neutrino
decay rate that corresponds to the line flux on the left axis,
using the median of the projected DM mass estimates. The
Hitomi s3 upper limits on Γ are, unfortunately, much higher
than many earlier constraints (see, e.g., B14). This is because of
the high X-ray brightness of the ICM in the Perseus core, the
short exposure (combined with the GV attenuation), and the
small SXS FOV.

Our results from this relatively short observation illustrate
the dramatic improvement in sensitivity for narrow features
from that of CCD detectors. However, as expected, the
improvement for a putative cluster DM line, which would
have a width of 30–35 eV (FWHM), is less significant. The
short Hitomi observation excluded the anomalously bright
signal reported from the Perseus core. However, to test the
much weaker stacked-sample detection (provided it withstands
the reevaluation of the systematic uncertainties after the Hitomi
result) will require the photon statistics comparable to that of
the CCD stacking studies, or looking at objects where the line
is easier to detect. Among clusters, such objects would be non-
cool-core systems, in which the line EW should be an order of
magnitude higher for the same line flux because of the lower
ICM background. A DM line would be narrower, giving a
calorimeter a greater leverage, in systems with low velocity
dispersion, such as dwarf spheroidals and the Milky Way. Of
course, distinguishing a DM line from an astrophysical one
would require resolving the line, which only a calorimeter
can do.
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