164 research outputs found

    A petunia ethylene-responsive element binding factor, PhERF2, plays an important role in antiviral RNA silencing.

    Get PDF
    Virus-induced RNA silencing is involved in plant antiviral defense and requires key enzyme components, including RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonaute proteins (AGOs). However, the transcriptional regulation of these critical components is largely unknown. In petunia (Petunia hybrida), an ethylene-responsive element binding factor, PhERF2, is induced by Tobacco rattle virus (TRV) infection. Inclusion of a PhERF2 fragment in a TRV silencing construct containing reporter fragments of phytoene desaturase (PDS) or chalcone synthase (CHS) substantially impaired silencing efficiency of both the PDS and CHS reporters. Silencing was also impaired in PhERF2- RNAi lines, where TRV-PhPDS infection did not show the expected silencing phenotype (photobleaching). In contrast, photobleaching in response to infiltration with the TRV-PhPDS construct was enhanced in plants overexpressing PhERF2 Transcript abundance of the RNA silencing-related genes RDR2, RDR6, DCL2, and AGO2 was lower in PhERF2-silenced plants but higher in PhERF2-overexpressing plants. Moreover, PhERF2-silenced lines showed higher susceptibility to Cucumber mosaic virus (CMV) than wild-type (WT) plants, while plants overexpressing PhERF2 exhibited increased resistance. Interestingly, growth and development of PhERF2-RNAi lines were substantially slower, whereas the overexpressing lines were more vigorous than the controls. Taken together, our results indicate that PhERF2 functions as a positive regulator in antiviral RNA silencing

    Thermal Control of Electronics for Nuclear Robots via Phase Change Materials

    Get PDF
    AbstractAn effective thermal control is highly desired due to the increased heat generated from tight integration of electrical components. It is more difficult when the electronics are operating in high temperature, narrow space and strong nuclear radiation. In this paper, motor drivers of nuclear robots were taken as a case to study the thermal control methods and their effects on keeping the safe operation of electronics. Phase change materials (PCM) was found could lower the temperature by 20 oC and stabilize below 70 oC for more than 78min, which was 14 times longer than non-protective mode. Besides, the effect of heat sink on thermal conductivity enhancement was discussed

    Bending fault evaluation for the HP-IP rotor system of the nuclear steam turbine based on the dynamic model

    Get PDF
    With considering the unbalance mass-fluid film bearings-rotor elements, a dynamics model for the nuclear half-speed 1000 MW saturated steam turbine with No. Dongfang HN1089 is constructed. By solving of the Reynolds Equation and the dynamics model, the oil pressure distribution and dynamic coefficients of the fluid film bearings, and the unbalance response of the rotor, are obtained. The method for evaluating the bending fault based on the dynamics model is proposed, in which the bending parameter is transformed as the unbalance mass. A case on the bending fault evaluation for HN1089 is carried out. The results show that the response sensitivity of HN1089 on the unbalance mass is about 1/6 that of the thermal power units with the same capacity (1000 MW); and it is difficult to decrease the excited response from the bending fault even to add the maximum unbalance mass. In actual, the removing stress in the partial zone and turning method are applied to deal with the HP-IP rotor bending fault, and the response of the repaired rotor is 0.033 m by the actual field test. The results show the model and the method for evaluating the bending fault are accurate and reasonable, which will provide the important theoretical guide for fast and accurately dealing with such bending fault in the steam turbine rotor system

    Changes in global climate heterogeneity under the 21st century global warming

    Get PDF
    Publisher Copyright: © 2021 The Author(s)Variations in climate types are commonly used to describe changes in natural vegetation cover in response to global climate change. However, few attempts have been made to quantify the heterogeneous dynamics of climate types. In this study, based on the Coupled Model Intercomparison Project phase 5 (CMIP5) historical and representative concentration pathway (RCP) runs from 18 global climate models, we used Shannon's Diversity Index (SHDI) and Simpson's Diversity Index (SIDI) to characterise of global climate heterogeneity from a morphological perspective. Our results show that global climate heterogeneity calculated by the SHDI/SIDI indices decreased from 1901 to 2095 at a significance level of 0.01. As radiative forcing intensified from RCP 2.6 to 8.5, the SHDI/SIDI decreased significantly. Furthermore, we observed that the spatial distribution of global climate heterogeneity was significantly reduced, with a pronounced latitudinal trend. Sensitivity analysis indicated that the temperature increase played a more significant role in reducing global climate heterogeneity than precipitation under the three warming scenarios, which is possibly attributed to anthropogenic forcing. Our findings suggest that the dynamics of global climate heterogeneity can be an effective means of quantifying global biodiversity loss.Peer reviewe

    Effects of Different Materials on the Tribological Performance of PVD TiN Films under Starved Lubrication Regime

    Get PDF
    Grit blasting is one simple but effective method to modify the morphology of material surface and can improve the tribological performance. In this study, a thick TiN film was prepared by arc ion plating on the steel disk treated with grit blasting, and the rough surface coated solid film was obtained. The tribological properties of solid film against different materials were evaluated under starved lubrication regime. The results showed that the friction coefficients of rough titanium nitride (TiN) films were lower than those of rough steel disks exclude alumina ball under starved lubrication, and the wear rates of TiN film were negligible due to the high hardness of TiN film and small contact area. For four kinds of balls including steel ball, silicon nitride, zirconia, and alumina, the wear scar diameter of steel ball is biggest, and the wear scar diameters of other balls are small. The hardness of steel ball is less than others, which results in the easy abrasion and increases the contact area to reduce the pressure. So the friction coefficient of TiN against steel is low and steady

    Observed Changes of Koppen Climate Zones Based on High-Resolution Data Sets in the Qinghai-Tibet Plateau

    Get PDF
    Emerging and disappearing climate zones are frequently used to diagnose and project climate change. However, little attempt has been made to quantify shifts of climate zones in Qinghai-Tibet Plateau (QTP) based on the high-resolution data sets. Our results show that highland climate was decreased substantially during 1961–2011 and were mainly replaced by boreal climate. We also found that the mean elevation of boreal and highland climate continues to rise, with obvious longitudinal geographical characteristics over the study period. Furthermore, we found that the climate spaces (a climate space defined as the volume of 10°C × 500 mm here) of both boreal and highland climate types tend to be warm and humid ones, which may provide more suitable climate conditions for species to maintain and promote diversity. Characterization of changes in QTP climate types deepens our understanding of regional climate and its biological impacts.Emerging and disappearing climate zones are frequently used to diagnose and project climate change. However, little attempt has been made to quantify shifts of climate zones in Qinghai-Tibet Plateau (QTP) based on the high-resolution data sets. Our results show that highland climate was decreased substantially during 1961-2011 and were mainly replaced by boreal climate. We also found that the mean elevation of boreal and highland climate continues to rise, with obvious longitudinal geographical characteristics over the study period. Furthermore, we found that the climate spaces (a climate space defined as the volume of 10 degrees C x 500 mm here) of both boreal and highland climate types tend to be warm and humid ones, which may provide more suitable climate conditions for species to maintain and promote diversity. Characterization of changes in QTP climate types deepens our understanding of regional climate and its biological impacts. Plain Language Summary Climate classification is the key to simplifying complex climate and helps to deepen the understanding of regional climate change. Based on the high-resolution data set (LZ0025), the sharp climatic gradient features and their potential biological impact on Qinghai-Tibet Plateau (QTP) was quantified. With the temperature increase, the spatial distribution of highland tundra climate was gradually replaced by boreal climate. More importantly, the contraction of highland climate and the expansion of boreal climate has obvious elevation characteristics. In addition, climate spaces of highland and boreal climate types tend to warm and humid ones, which may provide more climatic niches for different species and contribute to regional biodiversity.Peer reviewe

    From a Spatial Structure Perspective : Spatial-Temporal Variation of Climate Redistribution of China Based on the Köppen–Geiger Classification

    Get PDF
    https://doi.org/10.1029/2022GL099319Shifting climate zones are widely used to diagnose and predict regional climate change. However, few attempts have been made to measure the spatial redistribution of these climate zones from a spatial structure perspective. We investigated changes in spatial structure of Köppen climate landscape in China between 1963 and 2098 with a landscape aggregation index. Our results reveal an apparent signal from fragmentation to aggregation, accompanied by the intensification of areal dispersion between cold and warm climate types. Our attribution analysis indicates that anthropogenic forcings have a larger influence on changes of spatial structure than natural variation. We also found that topographical heterogeneity is likely to contribute to the regional spatial fragmentation, especially in the Qinghai-Tibet Plateau. However, we also found that the spatial fragmentation will be weakened around the mid-2040s. We argue that biodiversity is likely to be mediated by spatial structure of future climate landscapes in China.Peer reviewe

    Vegetation response to climate zone dynamics and its impacts on surface soil water content and albedo in China

    Get PDF
    Extensive research has focused on the response of vegetation to climate change, including potential mechanisms and resulting impacts. Although many studies have explored the relationship between vegetation and climate change in China, research on spatiotemporal distribution changes of climate regimes using natural vegetation as an indicator is still lacking. Further, limited information is available on the response of vegetation to shifts in China's regional climatic zones. In this study, we applied Mann-Kendall, and correlation analysis to examine the variabilities in temperature, precipitation, surface soil water, normalised difference vegetation index (NDVI), and albedo in China from 1982 to 2012. Our results indicate significant shifts in the distribution of Koppen-Geiger climate classes in China from 12.08% to 18.98% between 1983 and 2012 at a significance level of 0.05 (MK). The percentage areas in the arid and continental zones expanded at a rate of 0.004%/y and 0.12%/y, respectively, while the percentage area in the temperate and alpine zones decreased by -0.05%/y and - 0.07%/y. Sensitivity fitting results between simulated and observed changes identified temperature to be a dominant control on the dynamics of temperate (r(2)= 0.98) and alpine (r(2)= 0.968) zones, while precipitation was the dominant control on the changes of arid (r(2) = 0.856) and continental (r(2) = 0.815) zones. The response of the NDVI to albedo infers a more pronounced radiative response in temperate (r = -0.82, pPeer reviewe
    • …
    corecore