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1. Introduction
Climate is regarded as a more important driver than habitat and topography to explain species spatial extents in 
the many species distribution models (Luoto et al., 2006; Pecl et al., 2017), especially at the large spatial extents. 
However, the current comprehensive evaluation of climate change impacts on biomes is not enough or limited due 
to the lack of available biological data. Different climate classifications are often used to evaluate the influence 
of climate change on biomes because of strong spatial overlap between climatic boundaries and biomes (Rohli 
et  al.,  2015). One of the commonly accepted climate classifications is Köppen-Geiger climate classification 
first introduced by Köppen (1936). By investigating the moving borders of climate zones, the measurement of 
novel emergence and disappearing climates has become the most common metric to quantify global and regional 
climate change (Cui et al., 2021; Garcia et al., 2014).

The availability of large amount of climate data sets enables to diagnose the changes of historical or future Köppen 
climate zones with their boundaries over China. Earlier research to quantify climate zone change focused on the 

Abstract Shifting climate zones are widely used to diagnose and predict regional climate change. 
However, few attempts have been made to measure the spatial redistribution of these climate zones from a 
spatial structure perspective. We investigated changes in spatial structure of Köppen climate landscape in 
China between 1963 and 2098 with a landscape aggregation index. Our results reveal an apparent signal from 
fragmentation to aggregation, accompanied by the intensification of areal dispersion between cold and warm 
climate types. Our attribution analysis indicates that anthropogenic forcings have a larger influence on changes 
of spatial structure than natural variation. We also found that topographical heterogeneity is likely to contribute 
to the regional spatial fragmentation, especially in the Qinghai-Tibet Plateau. However, we also found that 
the spatial fragmentation will be weakened around the mid-2040s. We argue that biodiversity is likely to be 
mediated by spatial structure of future climate landscapes in China.

Plain Language Summary Shifting climate zones are the most extensively tool for measuring the 
global and regional climate change, so understanding how they evolve is crucial to improving our ability to 
diagnose and predict climate change and its potential ecological influences. Previous studies have focused on 
the area-based shifts between different climate types. However, little attempts have been made to analyze the 
spatial structure of change in China, simultaneously, causing an apparent gap in the understanding of shifting 
climate zones. In this study, we investigate changes in the spatial structure of Köppen climate landscape in 
China between 1963 and 2098 and track its characteristics and driving forces. We reveal an apparent opposite 
signal from fragmentation to aggregation under SSP5-8.5 scenario. Our attribution analysis indicates that 
anthropogenic forcings have dominated the evolution of spatial structure over natural ones. Topographical 
heterogeneity is a well-known factor that exacerbates spatial fragmentation, especially in the Qinghai-Tibet 
Plateau. We argue that mitigation and adaptation of biodiversity will be regulated by the spatial structural 
changes of China's climate landscape, and will pose a challenge to biodiversity conservation in the future 
warming scenario.
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area-based shifts between different climate zones (Chan et al., 2016; Huang et al., 2019; Wu et al., 2021). These 
measurements are extremely important to assess and quantify regional climate change over China. However, 
due to the spatial heterogeneity of climate patterns at different scales, it should be measured in a variety of ways 
to close our cognitive gap of climate variability (Garcia et al., 2014). In particular, the geographic migration of 
species to cooler climates at higher latitudes and higher altitudes has become as one of the most important biolog-
ical responses (Pecl et al., 2017; Sunday et al., 2012). In the context of global warming, when heterogeneous 
climatic patches are aggregated or fragmented, not only the composition of the climate landscape, but the spatial 
structure will also change. This would strongly regulate the redistribution and adaptation of organisms. Moreo-
ver, current assumptions about large-scale geographic patterns of species diversity cannot fully interpret global 
and regional biodiversity patterns (Garcia et al., 2014; Rahbek et al., 2019). In this regard, the measurement of 
spatial structure can be an important complementary step to estimate the impacts of shifting climate zones on 
biodiversity.

Under the “patch-mosaic” framework, landscape metrics provide a useful tool to measure changes in the spatial 
structure of climate landscapes (Guan et al., 2020; McGarigal et al., 2002). Specifically, quantification in spatial 
structure can not only reflect regional expansion or contraction of climate types (area effects), but can also be 
used to identify changes that occur at the edges of climate zones that are relatively rich in biodiversity (edge 
effects) (Laurance, 2004; Maeda et al., 2022). Especially in the mountain regions, it brings starkly distinct climate 
types close to each other. As the juxtaposition of different climatic zones in mountains disappears, climate types 
tend to change homogeneously, which will disrupt the balance of climate diversity and species richness, resulting 
in a decline in biodiversity (Rahbek et al., 2019). From an impact perspective, understanding the spatial structure 
of China's climate landscape is crucial, and the estimation and projection of spatial fragmentation or aggregation 
trends can provide new insights into China's ecological conservation plans.

The goal of this study is to determine the spatial changes in terms of aggregation or fragmentation trends in 
China during 1963–2098 based on the Köppen climate classification. First, we used the observed and simulated 
data sets to identify the driving force and map Köppen major and sub-climate types. Then, we quantified the 
area-based standard deviation (SD) change in different Köppen climate types and their links to spatial aggrega-
tion changes. Thereafter, we explored the relationships between topographical variables and spatial aggregation 
changes. Finally, we performed a sensitivity analysis for spatial scales, as well as an analysis of model uncertainty 
in spatial aggregation. The results on climate landscape of China may provide a new perspective for the formula-
tion and management of biodiversity conservation plans in China.

2. Data and Method
2.1. Data Sets and Pre-Treatment

The observed ground temperature and precipitation data sets (1961–2014) at 0.5° × 0.5° grid scale level in China 
were collected from the National Meteorological Information Center of the China Meteorological Administration 
(Han et al., 2019). These data sets are generated from about 2400 national meteorological stations, cover most of 
the land surface in China, and are widely used in the climate research of China.

Temperature and precipitation data for the SSP5-8.5 scenario (2012–2100) were based on the simulations of 
13 models (Table S1 in Supporting Information S1) from the Coupled Model Intercomparison Project Phase 
6 (CMIP6) (Eyring et al., 2016). SSP5-8.5 was chosen as this scenario represents the most aggressive scenario 
in fossil fuel use assumed in global climate models, about 8.5Wm −2 relative to pre-industrial conditions at the 
end of this century. The emissions of SSP5-8.5 are not only consistent with the historical total cumulative CO2 
emissions, but under current and established policies, are the best match to the projected CO2 emissions in the 
21st century (Schwalm et al., 2020).

Historical (1961–2014) single-forcing datasets, including CanESM5-CanOE, CESM2, GFDL-CM4, 
GISS-E2-1-G, MRI-ESM2-0 and MIROC6, were also collected to identify the driving force on spatial struc-
tured changes. Specifically, natural-only run (NAT) is an experimental design that is enforced only by natural 
forcing factors, such as changes in solar irradiance and volcanic activity. In contrast, a well-mixed GHG-only 
run (GHG) is an experiment with strong anthropogenic influence, enforced only by fully mixed greenhouse gas 
changes. In addition, a combined historical (ALL) data set of all anthropogenic, natural forcing, and land-use 
changes was also used to perform the attribution analysis, consisting of the same models (Table S1 in Supporting 
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Information  S1). To maintain consistency of initialization conditions for each model, we chose the uniform 
ensemble member (r1i1p1f1) in this study (Mahlstein et al., 2013).

Since Köppen–Geiger scheme is sensitive to specific thresholds of temperature and precipitation, the following 
process was used to reduce biases of simulation data sets. Here, all model outputs were gridded to 0.5° × 0.5° reso-
lution using bilinear interpolation method. Then a multi-model mean was calculated to reduce the models' uncer-
tainty (Stroeve et al., 2012; Ukkola et al., 2020; You et al., 2021). Additionally, anomalies for the multi-model 
mean relative to the monthly means was estimated, which was then added to the monthly means of the “base 
period” of ground temperature and precipitation 0.5° × 0.5° grid data sets (V2.0) in the time period of 1970–1999 
to generate a new climatological temperature and precipitation data set, covering periods from 1961 until 2014 
(NAT/GHG/ALL) and from 2012 until 2100 (SSP5-8.5) (Feng et al., 2014; Mahlstein et al., 2013). Considering 
that the annual climate change will possibly include natural fluctuations of climate zones, a method of 5-year 
average mean was used to decrease the biases of short-term climate variability, although statistical trends are 
not highly sensitive to the length of the moving average period (Mahlstein et al., 2013) (Figure S1 in Supporting 
Information S1). It should be noted that the first and last two years (1961–1962 and 2099–2100) of the time series 
of the observed and model output will be smoothed out, and data cover period 1963–2098.

Additionally, multiple topographical variables were collected to explore the influence of topographical heteroge-
neity on spatial structure, including elevation, terrain ruggedness index, roughness and slope with a resolution of 
0.5° (Amatulli et al., 2018).

2.2. Köppen–Geiger Climate Classification

The Köppen–Geiger climate classification contains 5 major types and 30 subtypes (Table S2 in Supporting Infor-
mation S1) (Peel et al., 2007). The change of Köppen climate type is dependent on the monthly temperature and 
precipitation at the grid scale level over mainland China. The annual area percentage of specific climate was esti-
mated by the number of grid boxes. For major types, we considered all climate types, including tropical (A), arid 
(B), temperate (C), continental (D), and highland (E). For subtypes, since the year-to-year changes in monthly 
temperature and precipitation will contain large internal variability, we only consider the subtypes with an annual 
area percentage greater than 5% (total area >95%), including CWA, CFA, DWA, DWB, DWC, BSK, BWK and 
EF. In addition, we further calculated the cumulative annual changes for each climate types in 1963–2098 relative 
to the initial year 1963 (5-year average of 1961–1965). On this basis, the SD of the cumulative area change of 
major and sub-types was further calculated to characterize the mutual transformation characteristics of all climate 
types.

2.3. Landscape Aggregation Index

Quantifying spatial structure of climate zones is important for understanding climate change at a given scale 
in the context of rapid warming (Garcia et al., 2014). We used the Köppen-Geiger climate classification (Peel 
et  al.,  2007) to define climate heterogeneity on the patch scale level. Under the “Patch-Mosaic” paradigm 
(McGarigal & Cushman, 2005), a climate landscape is denoted as a collection of discrete climatic patches with 
different temperature and precipitation thresholds. Climatic patches refer to geographic areas with relatively 
stable hydro-thermal conditions and closed space (Guan et al., 2020; Pickett & Cadenasso, 1995). In Köppen 
climate landscape of China, all variations are included and quantified based on these climatic patches of different 
Köppen types. Generally, this paradigm has been verified to be rather effective, which provides a simplifying 
organizational outline to explore the potential regional climate change from the landscape perspective (Guan 
et al., 2020). In this study, we chose a landscape aggregation index (AI) to explore the spatial structured change 
in Köppen climate landscape of China (He et al., 2000). High/low values of AI represent more aggregated/disag-
gregated pattern of a landscape. The AI of climate type i in year k was determined as follows:

𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 = 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖∕max_𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖 (1)

where giik represents the number of like adjacencies between the grids of climate type i based on the single-count 
method in year k (In the single-count method, each grid adjacency is counted once and the order of grids is not 
preserved); max–giik is the maximum number of like adjacencies between the grids of climate type i based on 
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the single-count method in year k. For the year k, the AI of the total climate landscape pattern depending on the 
proportion of climate type (Pi) and giik is calculated as follows,

𝐴𝐴𝐴𝐴𝐿𝐿𝐿𝐿 =

[

𝐴𝐴
∑

𝑖𝑖=1

(

𝑔𝑔𝑖𝑖𝑖𝑖𝐿𝐿

max − 𝑔𝑔𝑖𝑖𝑖𝑖𝐿𝐿

)

× 𝑃𝑃𝑖𝑖𝐿𝐿

]

× 100 (2)

On the grid scale level, we further calculated the spatial distribution of AI to explore the relationship between 
topographical heterogeneity and spatial structured changes. Specifically, taking a moving window square with a 
slide length of three grid boxes as a small landscape, the calculated value at each small landscape will be returned 
to the center grid boxes. Each grid box over mainland China will be given a calculated AI value, excluding the 
three grid boxes at the outermost edge of the grid (null value).

2.4. Attribution and Uncertainty Analysis

To distinguish the influences of natural and anthropogenic forcings on the spatial structure of climate landscape, 
historical natural (NAT), strong anthropogenic (GHG) single-forcing experiments and mixed historical simu-
lations (ALL) were used for attribution analysis, similar to Yuan et  al.  (2019). In addition, a non-parametric 
Mann-Kendall (M-K) statistical test was applied to evaluate the statistical significance of temporal trends 
(Kendall, 1975; Mann, 1945). Compared to other tests, the M-K significance test is less susceptible to missing 
values and uneven distribution (Yue et al., 2002).

3. Results
3.1. Spatiotemporal Variability of Climate Types in China

Figure 1 show the climatological trends in temperature and precipitation based on observed (1971–2000) and 
projected (2021–2098) data sets. For temperature, during 1971–2000, most areas show an obvious upward trend 
(>0.05°C/yr), excluding Middle Reaches of Yangtze River (∼−0.01°C/yr). Especially in the time 2021–2050, the 
overall temperature increased significantly (>0.07°C/yr), at the significance level of 0.05 (M-K test). For precip-
itation, a slight increasing trend is detected in most parts of China during both observed and projected periods. 
In 1971–2000, the precipitation decreased weakly in the Central China and western Qinghai-Tibet Plateau, while 
the other regions show an increasing trend. In projected period 2071–2098, the increasing trend of precipitation 
dominates major parts of China under SSP5-8.5 scenario, while precipitation shows a downward trend in parts 
of South China.

Compared to precipitation (Figure  1n), the statistical distributions (Figure  1m) show a clear warming trend 
between 1971 and 2098. In general, the obvious changes in temperature and precipitation will reshape climate 
landscape patterns of China inevitably between 1963 and 2098. For major types (Figures 1c, 1g and 1k), the 
notable feature is the expansion and aggregation of continental climate (D), accompanied by the contraction and 
fragmentation of the highland climate (E) in the Qinghai-Tibet Plateau. For subtypes (Figures 1d, 1h, and 1l), 
the Qinghai-Tibet Plateau is still the main site for climate type shifts and changes in spatial structure between Ds 
(i.e., DWB, DWC) and EF.

3.2. Spatial Structured Changes in Climate Landscape

Analyzing changes in areas of the climate types is the basis for assessing changes in the spatial structure of 
climate landscape. Figures 2a and 2d clearly show an apparent dispersion among cumulative percentage of area 
changed for Köppen major and sub-types relative to initial year (1963), based on observed and projected data 
sets. For major types (Figure 2a), the expansion of continental climate type and contraction of highland climate 
type primarily causes dispersion between 1963 and 2098. Specifically, the area percentage of continental climate 
(D) increases from −0.86% to 9.97%, while the area of highland climate (E) reduces from 0.24% to −15.74%. 
For subtypes, the increase of Ds (i.e., DWA, DWC) climate types and decrease of EF causes a similar dispersion 
trend, compared to that of major types. Specifically, the area percentage of DWA, DWC respectively changed 
from −0.5% to 9.23% and 0.2%–3.8%, while that in DWB and EF reduced from −0.73% to −4.15% and 0.36% to 
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−17.05% by 2098. In general, the intensification of dispersion between warm and cold climate types is an obvious 
characteristic in Köppen climate landscape of China.

We further calculated the cumulative SD of the major and sub-types to explore the relationship between compo-
sition and structure of climate landscape quantitatively. Figures 2b and 2e show that there is a strong response of 
AI to the intensification of SD among major and sub-types. For major types, SD increased from 0.57% to 11.3% 
between 1963 and 2098 but AI decreased first and then increased clearly at the range of 87.3% to 86.0%. The 
inflection point appeared around 2046 and the fitting coefficient of polynomic fit was 0.435 at a significance 
level of 0.01 (t-test). For sub-types, a similar trend was detected as SD intensified with AI decreasing until around 
2,047 and then turning to rise at the range of 76.6%–74.4% by 2,098 (t-test, p < 0.01). In the future warming 
scenarios, the aggregation trend of subtypes is clearly weaker than that of major types, suggesting that an increase 
in the number of climate types will reduce the statistical aggregation degree in the climate landscape.

Figure 1. Observed and projected trends of (a, e, and i) temperature and (b, f, and j) precipitation, and (m, and n) statistical distributions of trends, as well as, spatial 
distribution of Köppen (c, j, and k) major and (d, h, and l) sub-types of China for the studied periods (1971–2000, 2021–2050, 2017–2098). Black points represent the 
significance level of 0.05 (M-K test).



Geophysical Research Letters

GUAN ET AL.

10.1029/2022GL099319

6 of 9

Figures 2c and 2f further depict temporal trends of AI in specific major and sub-types. In terms of major types, 
there is a clear difference in AI between the observed and simulated periods. In 1963–2012, the AI of arid 
(B), continental (D) and highland (E) types were significantly decreased at the rates of −0.02%/y, −0.21%/y 
and −0.1%/y (p < 0.01, MK). However, in 2014–2098, the AI of B and D is in an obvious increase at the rates 
of 0.05%/y and 0.1%/y, while AI of E decreased rapidly at the rate of −0.79%/y (p < 0.01, MK). In terms of 
sub-types, in 1963–2012, the AI of CWA (−0.08%/y), DWA (−0.16%/y), DWC (−0.33%/y), BWK (−0.09%/y) 
and ET (−0.15%/y) decreases, while the AI of CWA (0.09%/y), DWA (0.19%/y), DWC (0.34%/y) and BSK 
(0.07%/y) increase significantly (p < 0.01, MK). Overall, between 1963 and 2098, the highland climate type (EF) 
continued to shrink and fragment, while the warm continental zone (Ds) gradually expanded and aggregated.

3.3. Influence of Topographical Heterogeneity on Spatial Structure

Figures 3a and 3d shows that the spatial distribution of AI between the periods of 1971–2000 and 2071–2098 
have a clear topographical heterogeneity. Specifically, AI values in Qinghai-Tibet Plateau (∼20%) are consider-
ably lower than in other regions. As illustrated in Figures 3c and 3f, there is a clear decreasing trend of gridded 
AI at the range of 3000–4000 m, which is focused on Qinghai-Tibet Plateau. Figures 3e and 3f further reveals a 
similar spatial association between topographical variables and AI at the gridded level in China. Specifically, the 
gridded AI decreased apparently in the west of 100°E of China between the periods 1971–2000 and 2071–2098. 
Overall, topographical heterogeneity apparently contributed to regional spatial fragmentation of climate land-
scape, especially in the Qinghai-Tibet Plateau.

As temperatures rise, even higher-altitude regions cannot remain cold enough to maintain original climate in 
the future warming scenario. Some cold climates, like EF and ET, will be gradually replaced and dissociated 
by warmer climate types (Ds), leading to regional fragmentation of climate landscape. Meanwhile, topographic 
heterogeneity as well-known factor further exacerbates the spatial fragmentation trend, as it can encompass a 
remarkable volume of different climate types. In particular, many large mountains with high topographic hetero-
geneity are likely to form many fine-scale microclimates, providing more opportunities for species to mitigate the 
exposure of climate change. However, as temperatures continue to rise, the spatial structure will tend to aggregate 
due to enlargement of spatial distribution of warm climate types. When these original cold climates disappear, 
species endemic to high altitudes will be at risk of extinction.

Figure 2. Cumulative percentage area relative to 1963 in the Köppen (a) major and (d) sub-types, and (b), (e) polynomic fits between the standard deviation and AI 
based on observed and projected data sets between 1963 and 2098. (c and f) Temporal trends of AI in the specific Köppen major and sub-types. Red and blue points 
represent the periods of 1963–2012 and 2014–2098. The asterisk denotes a significance level of 0.01 (M-K test).
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3.4. Attribution and Uncertainty Analysis

Figures 4a and 4d show that the trends of ALL, GHG and Obs (−0.07%/yr) decreased significantly at the major 
and sub-types (M-K test, p < 0.01), while the trends of NAT are in a slight increase at the rates of 0.08%/yr and 
0.009%/yr for major and sub-types, respectively. Compared with the trends of NAT, the trends of ALL (−0.04%/
yr) and GHG (−0.03%/yr) under strong anthropogenic forcings are closer to observed trend (Obs) in 1963–2012. 
Although these simulations do exhibit quite a large uncertainty, attribution results still clearly reveal that anthro-
pogenic influences should be the driving force of spatial structured changes, rather than natural factors.

Figures 4b and 4e shows the changes of AI and uncertainty of multi-model mean between 1963 and 2098. For 
major types, the trends are first decreased and then increased around 2047. For sub-types, the AI trend is consist-
ent with that in major types, while the increasing trends are weaker (0.003%/yr) than changes of major types. 
In terms of uncertainty of simulation results in climate model, future uncertainty (cyan color) tends to increase, 
especially after the mid-century. Figure S2 in Supporting Information S1 further indicate the distribution of all 
models, and shows that the multi-model mean can effectively reduce the model error and simulate a consistent 
and robust AI changes.

Figures 4c and 4f further show the dynamics of AI between different spatial scales for major and sub-types. As 
the spatial resolution decreased from 0.1° to 2.0°, the spatial aggregation degree of spatial structure decreased 
obviously, while the downward trends tended to intensify between −0.03%/yr and −0.08%/yr for major types 
and between −0.03%/yr and −0.12%/yr for sub-types. In general, as the spatial resolution decreases, the spatial 

Figure 3. AI maps of subtypes in the time (a) 1971–2000 and (b) 2071–2098 based on observed and simulated data sets. Heat maps of (c and d) elevation, (e and h) 
TRI, (f and i) roughness, (g and j) slope with AI in the time 1971–2000 and 2071–2098.
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heterogeneity of climate landscape will reduce but the trends will strengthen. However, although there is currently 
an increasing demand for different models to provide more information at finer spatial resolution, the finer 
resolution data may detect more small-scale features, making the climate features disordered, requiring further 
extensive research.

4. Conclusion
The “patch-mosaic” model paradigm provides a simplified framework to assess China's climate change from a 
spatial structure perspective. Based on observed and projected climate data sets, the spatial structured changes 
in climate landscape patterns of China were quantified with a landscape AI. Our results show that spatial varia-
tions in temperature and precipitation may redistribute the Köppen climate distribution, especially in the future 
warming scenario. With the intensification of areal dispersion of different climate types, the climate landscape 
pattern first fragments and then turns to aggregate. We further found that topographical heterogeneity plays 
an important influence on spatial structure, lowered the regional aggregation, especially in the Qinghai-Tibet 
Plateau. In addition, our attribution analysis suggests that anthropogenic forcings have a larger impact on spatial 
structured changes in the climate landscape of China than natural ones. Although the discrepancies of climate 
models are obvious, most models still simulate a consistent and robust AI change. Characterizing climate land-
scape can provide a new perspective for the formulation and management of biodiversity conservation plans for 
future climate change in China.

Data Availability Statement
The observed and CMIP6 data sets used in this study are available via http://data.cma.cn/site/showSubject/id/46.
html (only available in Chinese), and https://esgf-node.llnl.gov/projects/cmip6/. The Coupled Model Intercom-
parison Project Phase 6 models used in this study are listed in Table S1 in Supporting Information S1. Specifically, 
our data archiving is available at Mendeley via https://doi.org/10.17632/dzp8hfxfmp.1.

Figure 4. Historical attribution analysis based on NAT, ALL and GHG in the Köppen (a) major and (d) sub-types; (b), (e) temporal dynamics from 1963 to 2098 based 
on observations and SSP5-8.5 simulations. The cyan color denotes ±1 s.d. (c), (f) box-charts and trends of different spatial resolutions based on observation during 
1963–2012. Abbreviations: ALL, historical simulation with all mixed forcings; NAT, historical simulation but with natural forcing only; GHG, historical simulation but 
with GHG forcing only; Obs, observation; R0.1-R2.0 represent the different horizonal resolution from 0.1° to 2.0°.

http://data.cma.cn/site/showSubject/id/46.html
http://data.cma.cn/site/showSubject/id/46.html
https://esgf-node.llnl.gov/projects/cmip6/
https://doi.org/10.17632/dzp8hfxfmp.1
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