1	Vegetation response to climate zone dynamics and its impacts on surface
2	soil water content and albedo in China
3	Yanlong Guan ^{1,2,4} , Hongwei Lu ^{1,2*} , Chuang Yin ² , Yuxuan Xue ¹ , Yelin Jiang ⁶ , Yu
4	Kang ^{2,1} , Li He ^{3,2} , Janne Heiskanen ^{4,5}
5	¹ Key Laboratory of Water Cycle and Related Land Surface Process, Institute of
6	Geographic Science and Natural Resources Research, Chinese Academy of Science,
7	Beijing, China
8	² School of Renewable Energy, North China Electric Power University, Beijing,
9	China
10	³ State Key Laboratory of Hydraulic Engineering Simulation and Safety at Tianjin
11	University, Tianjin, China
12	⁴ Department of Geosciences and Geography, University of Helsinki, Finland
13	⁵ Institute for Atmospheric and Earth System Research, Faculty of Science, University
14	of Helsinki, Finland
15	⁶ Department of Civil and Environmental Engineering, University of Connecticut,
16	Storrs, CT, USA
17	Corresponding author: Hongwei Lu (<u>luhw@igsnrr.ac.cn)</u>

19 Abstract

Extensive research has focused on the response of vegetation to climate change, 20 21 including potential mechanisms and resulting impacts. Although many studies have 22 explored the relationship between vegetation and climate change in China, research on spatiotemporal distribution changes of climate regimes using natural vegetation as 23 an indicator is still lacking. Further, limited information is available on the response 24 of vegetation to shifts in China's regional climatic zones. In this study, we applied 25 Mann-Kendall, and correlation analysis to examine the variabilities in temperature, 26 precipitation, surface soil water, normalised difference vegetation index (NDVI), and 27 28 albedo in China from 1982 to 2012. Our results indicate significant shifts in the distribution of Köppen–Geiger climate classes in China from 12.08% to 18.98% 29 between 1983 and 2012 at a significance level of 0.05 (MK). The percentage areas in 30 31 the arid and continental zones expanded at a rate of 0.004%/y and 0.12%/y, respectively, while the percentage area in the temperate and alpine zones decreased by 32 -0.05%/y and -0.07%/y. Sensitivity fitting results between simulated and observed 33 changes identified temperature to be a dominant control on the dynamics of temperate 34 $(r^2=0.98)$ and alpine $(r^2=0.968)$ zones, while precipitation was the dominant control 35 on the changes of arid ($r^2=0.856$) and continental ($r^2=0.815$) zones. The response of 36 the NDVI to albedo infers a more pronounced radiative response in temperate (r = -37 0.82, p < 0.01) and alpine (r = -0.476, p < 0.05) compared to arid and continental 38 39 zones. Furthermore, we identified more pronounced monthly increasing trends in

NDVI and soil water, corresponding to weak changes in albedo during vegetation
growing periods. Our results suggest that climate zone shifting has considerable
impacts on the vegetation in China and will have larger ecological impacts through
radiative or non-radiative feedback mechanisms in future warming scenarios.

44 **Key words:** Climate zones; Temperature; Precipitation; NDVI; Albedo

45 **1 Introduction**

Research work (Carey et al., 2017; Fan and van den Dool, 2008; Shen et al., 2015; 46 Turco et al., 2017) has demonstrated that shifts in the climate system increase the 47 likelihood of widespread and irreversible impacts on global ecosystems, including 48 changes to vegetation greening/coverage (Abera et al., 2019; Erb et al., 2017; Fang et 49 50 al., 2004; Harris et al., 2016; Helmens et al., 2018; Huang et al., 2016; Li et al., 2018; 51 Piao et al., 2015; Richardson et al., 2013; Shen et al., 2015; Yang et al., 2018; Zhao, 2018). Vegetation supplies the materials and energy required to sustain life on Earth 52 53 through photosynthesis by converting water and carbon dioxide to oxygen and carbohydrates. The length of the growing season and vegetation productivity are 54 highly sensitive to changes in climate (Erasmi et al., 2017; Martin-Benito and 55 56 Pederson, 2015; Turco et al., 2017). Greening and browning are measured by the NDVI changes, which are commonly correlated to vegetation productivity and 57 biomass. These vegetation changes can alter the regional energy, carbon, and water 58 balance, resulting in atmospheric warming or cooling, depending on the relative 59

61

impacts of radiative (albedo) and non-radiative processes (such as evapotranspiration and surface roughness length) (Abera et al., 2019; Li et al., 2015).

62	Many studies have explored the response mechanisms between climate change and
63	vegetation processes at different scales. For example, in the context of global
64	warming, increased vegetation productivity in the Arctic was shown to reduce surface
65	albedo, resulting in positive temperature feedback (Pearson et al., 2013; Pithan and
66	Mauritsen, 2014). Conversely, analysis of NDVI and evapotranspiration in the
67	Tibetan Plateau inferred reduced surface warming in the growing season in response
68	to increased vegetation activity (Shen et al., 2015). Gottfried et al. (2012) and Pauli et
69	al. (2012) identified a link between ongoing continent-scale climate change and
70	changing mountain plant communities, with a particular increase in the number of
71	warm-adapted species due to thermophilization. Wu et al. (2015) applied NDVI and
72	climatic data to demonstrate that the time-lag effect between vegetation and primary
73	climate factors influences vegetation growth on a global scale.

The Köppen–Geiger classification (Peel et al., 2007; Rubel & Kottek, 2010) is often
used to describe highly heterogeneous climate zones with different climatic
conditions. It is one of the most widely accepted climate classification systems used to
describe vegetation distribution based solely on annual and monthly temperature and
precipitation patterns. The Köppen–Geiger criteria has been validated by a number of
studies through its strong links between climate and biome type (Engelbrecht and
Engelbrecht, 2016; Farmer and Cook, 2013; Rohli et al., 2015a), suggesting that its

dynamic characteristics still have significant research value in many fields of research
today. This connection between climate and biomes provides the possibility of
assessing the relationship between the empirical climate and natural vegetation (Guan
et al., 2020; Guetter and Kutzbach, 1990).

Considering the nature of the climate classification, the change in vegetation response 85 to climate should be presented simply and clearly. Garcia et al. (2014) reported that 86 changes in the regional distribution of climate can affect the availability and 87 distribution of climatically suitable areas for vegetation. The changes in specific 88 climate zones suitable for the vegetation types are likely to result in the expansion or 89 90 reduction of the distribution range of specific vegetation types. Rohli et al. (2015a) identified that the boundaries of the Köppen classes strongly overlapped with many 91 ecological factors, such as vegetation distribution. Williams et al. (2007) suggested 92 that novel and disappearing climates can lead to the disaggregation of vegetation 93 species assemblages. Wang and Overland, (2004) reported a decline in the Arctic 94 95 Tundra climate zone since the 1990s, accompanied by a marked increase in boreal and temperate groups. According to modelling results by Pearson et al. (2013), at least 96 half of the Arctic vegetation coverage is expected to shift by 2050, with woody 97 vegetation coverage expected to increase by 52% in response to specific climate 98 change. In some areas where the tundra is replaced by shrubs, the albedo in the 99 growing season will decrease. 100

Recent studies have shown that we can hypothesise that if shifts between climate 101 zones occur constantly, vegetation will substantially respond to shifting climate zones 102 and surface biophysical characteristics will change. Similar to changes in land cover, 103 shifts in heterogeneous climate zones are highly likely to affect vegetation structure 104 (e.g., canopy height), phenology, the seasonality of albedo, and even vegetation type 105 succession, which in turn directly affect regional surface energy balance and net 106 radiation partitioning (Richardson et al., 2013). However, the impacts of shifting 107 climate zones on vegetation have not yet been fully addressed in China. In this regard, 108 109 the combination of NDVI, soil water, and albedo variables can be effectively used to shed light on the impact of shifting climate zones on vegetation, further its surface 110 biophysical characteristics. Thus, further examination using relatively high-resolution 111 112 remote sensing observations and reanalysis data sets is needed, in the area that have undergone climate type shifts, to better understand the impact of temperature and 113 precipitation to specific climate zones, and to clarify the potential response of 114 115 vegetation to specific climate zones.

This study aims to determine the dynamic response of regional vegetation in China to
the shifting climatic regimes and its resulting impact on surface biophysical
characteristics from 1982 to 2012. In particular, we explored (1) the temporal shifts of
the Köppen climate regions, including total climate zones, and specific arid,
temperate, continental, and alpine climate regions; (2) the dominant drivers
(temperature or precipitation) of the dynamics of specific climate zones; and (3) the

response of vegetation to changes in the four climate zones and its influence on
surface soil water (SW) content and albedo. The exploration between vegetation
response and the climate types involved can better estimate the uniqueness of climate
change at a given scale, and may also inform our understanding of impacts of climate
change on biome.

2 Study area

128	China's climate is complex and diverse and is predominantly controlled by the
129	distribution of temperature (Figure 1a), precipitation (Figure 1b), and topography
130	(Figure 1c). The spatial distribution of temperature is primarily influenced by latitude
131	and altitude (e.g., from Qinghai to the Tibetan Plateau) and ranges from -12.4. to
132	25.07 °C. The total precipitation gradually decreases from a maximum of 1937.5 mm
133	in the southeast to a minimum of 8.3 mm in the northwest. During the warm season,
134	the southern and eastern regions of China experience high rainfall due to the influence
135	of the monsoon. In contrast, Northwest China experiences low precipitation due to its
136	distance from the ocean. During the cold seasons, continental circulation causes most
137	regions, particularly in the north and west, to be cold and dry. In general, China's
138	climate is geographically distinct and seasonally variable.
139	Given that climate is an important limiting factor in ecological processes, China's
140	large spatial climate variability promotes the heterogeneous distribution of vegetation
141	types and ecosystems (Figure 1d). China has a variety of land vegetation types,

including shrubs, swamps, broadleaf forests, meadows, coniferous forests, cultivated
vegetation, alpine vegetation, grasslands, mixed forests, and deserts. From individual
forms to spatial community distributions, vegetation is dependent on the temporal and
spatial distribution of regional hydrothermal conditions.

146 ------

147

Place Figure 1

148

149 **3 Data and methods**

150 3.1 Observed and reanalysis data

151 We utilised satellite-based vegetation data, climatic observational grid data, and

reanalysis data from 1982 to 2012, including NDVI, temperature, precipitation,

albedo, and surface volumetric SW (Table 1). To achieve a consistent spatial

resolution for the analysis, we applied the bilinear method to interpolate the remote

sensing and reanalysis data to regular $0.125^{\circ} \times 0.125^{\circ}$ grids. To further reduce the

impact of natural variability, a 5-year running mean was applied to all datasets to

157 mitigate possible short-term variations (Mahlstein et al., 2013).

158 NDVI is an effective measurement of the photosynthetically active radiation absorbed

by chlorophyll in the green leaves of vegetation canopies (Pinzon & Tucker, 2014).

160	Absorption in the visible spectral region and reflectance in the near infra-red region
161	increases with increasing chlorophyll content, leaf area index (LAI), and healthy leaf
162	structure, and thus greener and denser vegetation will result in relatively high NDVI
163	(approaching one). We used the GIMSS NDVI3g (v0) dataset generated from the
164	National Oceanic and Atmospheric Administration Advanced Very High Resolution
165	Radiometer (AVHRR) (Tucker et al., 2005; Pinzon & Tucker, 2014). The data range
166	from July 1982 to December 2011, has a resolution of 0.0833° and is carefully
167	harmonised from different AVHRR sensors. Negative influences, such as calibration
168	loss, volcanic eruptions, and orbital drift, were considered in data processing.
169	Albedo and volumetric soil water (SW) reanalysis data were obtained from the
170	European Centre for Medium-Range Weather Forecasts. The reanalysis data were
171	produced by combining weather forecast models with observations using data
172	assimilation, that is, the four-dimensional variational assimilation (4D-Var) method
173	(Dee et al., 2011). In general, this is an incremental and iterative method to minimise
174	a cost function to reduce the biases between observed values and the available short-
175	range forecasts (Flemming et al., 2015). These datasets have been produced and
176	archived on a reduced Gaussian grid, which has quasi-uniform spacing across the
177	globe. Specifically, reduced Gaussian grids have a series of evenly spaced data grids
178	along each latitude, which are spaced at quasi-regular intervals. Close to the equator,
179	there are many points along a latitude parallel, but near the pole, only a few points
180	along a latitude parallel. Furthermore, the datasets were interpolated to a regular grid

181	at a horizontal resolution of 0.125°. The default interpolation method is bilinear for
182	our continuous parameters (e.g., albedo and SW). For SW data, we used the surface
183	layer at a range of 0–7 cm, as surface soil moisture affected by temperature and
184	precipitation is sensitive to vegetation change (McColl et al., 2017). For albedo data,
185	in the short-wave radiation scheme, the surface reflection is handled by combining
186	direct and diffuse radiation. Over land, surface albedo is derived from the monthly
187	mean climatology of its visible and near-infrared direct and diffuse components built
188	from MODIS albedo over the years 2000-2003 (Park, 2010; Schaaf et al., 2002). It
189	can be used to assess potential environmental impacts from vegetation changes in
190	different climatic regions, such as impacts on the regional energy balance.
191	China's ground temperature and precipitation grid datasets (V2.0) at 0.5 $^\circ$ \times 0.5 $^\circ$
192	resolution were provided by the National Meteorological Information Center of the
193	China Meteorological Administration. The data cover most of China, excluding
194	Taiwan, with 2472 national-level meteorological observation stations. Topography
195	and vegetation type datasets were provided by the Geospatial Data Cloud
196	(http://www.gscloud.cn/) and Resource and Environmental Data Clouds Platform
197	from the Chinese Academy of Science (http://www.resdc.cn), respectively. These
198	datasets have been widely applied in regional climate change research in China (Ren
199	et al., 2015), and they provided accurate data for mapping the spatial distribution of
200	Köppen-Geiger climatic types in the present study. We also collected monthly
201	gridded precipitation and temperature datasets at 0.5 $^\circ \times 0.5$ $^\circ$ resolution from the

202 University of East Anglia Climatic Research Unit (CRU TS V.4.02) (Harris et al.,

203 2014) to generate the Köppen map. CRU TS V.4.02 provides a gridded time-series

204 dataset based on observations from more than 4,000 sites over land.

205 ------

Place Table 1

207

206

208 3.2 Köppen–Geiger climate classification

We used the Köppen–Geiger climate classification (Peel et al., 2007) to divide China 209 210 into five climatic categories: tropical (A), arid (B), temperate (C), continental (D), and alpine (E) (Table S1). Given that the annual shifts in these climate zones may produce 211 unrelated trends in the calculated results prior to the climate zoning analysis, we first 212 213 applied the 5-year running mean to eliminate biases in climate variability (Mahlstein et al., 2013). Then, we determined the cumulative percentage of area change of all 214 215 climatic zones during 1982–2012 relative to the spatial distribution in the first year (1982) (Huang et al., 2020). As each grid was assigned an initial climate category, 216 altered grids were included if they shifted to a new climate type. Percentage area of 217 specific climate was based on the number of grids of different climate types. To 218 219 validate the applicability of our results, we compared the maps over the period 1982-

2012 to the map generated by the Climatic Research Unit (CRU) monthly temperatureand precipitation (Figure S1-2).

222 3.3 Statistical analysis

One of the widely used non-parametric trend tests is the Mann-Kendall trend test 223 224 (Text S1) (Mann, 1945; Kendall, 1975), which has been widely used to assess the significance of trends in meteorological time series. The null hypothesis in the Mann-225 Kendall test is that the data are independent and randomly ordered. The results 226 elucidate the magnitude of the correlation and the direction of the relationship. The 227 value of the coefficient ranges from 1 to -1, indicating a positive correlation and a 228 negative correlation, respectively. Furthermore, we assume that the data are normally 229 230 distributed. The null hypothesis states that the population correlation coefficient is equal to zero, which indicates that there is no linear correlation between the 231 232 environmental variables. An alternative hypothesis was that it is not equal to zero. The t-test was used to determine whether the correlation coefficient was significantly 233 different from zero, indicating an association between the two variables. 234

235 3.4 Sensitivity analysis

We conducted a sensitivity analysis to evaluate the evolution of climate zones in response to temperature and precipitation. First, we separately maintained each monthly temperature or precipitation at the same value as the initial year (1982) to compute the simulated percentage area of each climate zone. Second, we compared the experimental results with the observed percentage area of each zone to identify the

relative influence of the two climatic factors (e.g., either temperature or precipitation). 241

Lastly, we utilised the coefficient of determination (r^2) and significance (p) value to 242

determine the sensitivity of each climate zone to temperature and precipitation. 243

4 Results 244

4.1 Spatiotemporal variability of temperature, precipitation, and vegetation 245

246	We observed that the linear trends of annual temperature and precipitation featured
247	clear spatial characteristics during 1982–2012 (Figure 2a-b). The highest rates of
248	temperature rise were located in the Qinghai–Tibet Plateau (0.07 °C/y), East Inner
249	Mongolia (0.05 °C/y), and the lower reaches of the Yangtze River (0.05 °C/y), while
250	negative trends were most prominent in Northeast China (-0.01 $^{\circ}C/y$). Negative trends
251	in precipitation were predominantly observed in the middle and lower reaches of the
252	Yangtze River (-25.2 mm/y), the Yunnan–Guizhou Plateau (-17.2 mm/y), and the
253	Northeast Plain (-15.3 mm/y). Meanwhile, large increases in precipitation were
254	observed in Northwest China, such as the Tianshan mountain region (6.3 mm/y) and
255	the Qinghai–Tibet Plateau (9.4 mm/y).
256	In addition, we observed that the correlation between temperature and precipitation

and NDVI between 1982 and 2012 has obvious regional characteristics. Overall, the 257

- temperature change (p < 0.05, MK) has a greater impact on vegetation growth than 258
- precipitation nationwide, especially in southern China and the Qinghai-Tibetan 259
- Plateau (Figure 2c), where NDVI is more sensitive to temperature changes. However, 260

NDVI in eastern Inner Mongolia and Tianshan area is more sensitive to precipitation
decrease, with a significance level of 0.05 (t-test).

263	The spatiotemporal changes in temperature and precipitation will alter the regional
264	climate zonation based on the Köppen-Geiger climate classification, and different
265	climatic zones are likely to have varying sensitivities to the changes. For example, the
266	rapid temperature increase in the Qinghai–Tibet Plateau is likely to result in a
267	shrinking of the alpine climate zone and an expansion of the continental climate zone,
268	triggering a rapid response to vegetation changes, including types and distribution.
269	Furthermore, the observed decrease in precipitation in the Northeast Plain is likely to
270	lead to the expansion of arid climate zones.
271	
272	Place Figure 2

4.2 Spatiotemporal variability in the climate zone

273

Figure 3 illustrates the spatial distribution of China's climate zones in 1982, 1990,

276 2000, and 2010. Table 2 compares the 1990, 2000, and 2010 results relative to the

baseline time (1982). The comparisons of 1982 to 1990 and 2000 to 2010 show that

the percentage areas of arid zones are, respectively, reduced by -1.1% and -1.74%, but

expanded from 1990 to 2000. In space, the largest changes in the percentage area of

arid zones were concentrated on the North China Plain and the Northeast Plains. 280 Many areas alternated between the continental and arid climates-particularly in the 281 northeast—in response to changes in precipitation, such as the marked precipitation 282 reduction from 1990 to 2005 (Figure 2b). The percentage area of the temperate zone 283 has expanded since 1982, with the highest increase (1.34%) observed from 1982 to 284 1990. Spatially, these changes occurred at the northern boundary of the temperate 285 zone. The boundary between the Qinling Mountain and the Huaihe River Line shifted 286 towards the north between 1982 and 1990, and gradually back towards the south 287 288 thereafter. The temporal trends in the percentage area of the continental zone are directly opposite to the trend in the arid zone, which expanded by 0.2% and 1.95% 289 from 1982 to 1990, and from 2000 to 2010, respectively, and reduced by -3.72% from 290 291 1990 to 2000. The total percentage area of the alpine zone has decreased consistently since 1982. Spatially, these changes occurred at the boundary between the alpine and 292 continental zones. The areal expansion of the temperate zone resulted in the alpine 293 294 zone in the Qinghai-Tibet Plateau shrinking, which has been predominantly replaced by the continental zone. In general, we observed clear fluctuations in the percentage 295 area of arid, temperate, and continental zones, and a continued decrease in the 296 percentage area of alpine zone since 1982. 297

298

299

Place Figure 3

300	

301 ------

302

200

Place Table 2

303 ------

Figure 4 indicates that the cumulative percentage of area change in all climate zones 304 significantly increased from 12.08% to 18.98% at a rate of 0.204%/y from 1983 to 305 2012 at a significance level of 0.05 (MK). However, we observed differences in the 306 percentage area change between each climate zone from 1982 to 2012 (Figure 5). In 307 general, the arid and continental zones expanded at rates of 0.004%/y and 0.12%/y, 308 respectively, while the percentage areas of temperate and alpine zones decreased by -309 310 0.05%/y and -0.07%/y at a significance level of 0.05, respectively. Moreover, we detected a signal over each climate zone in 2005, where the percentage areas of the 311 arid and temperate zones evidently decreased from 34.46% to 25.26% and 22.8% to 312 22.52%, respectively. The area of the continental and alpine zones increased from 313 26.01% to 34.1% and 16.58% to 17.32%, respectively. These change trends around 314 2005 should be attributed to the differential response of specific climate zones to 315 316 notable changes in temperature and precipitation.

317 ------

Place Figure 4 16

319	
320	
321	Place Figure 5
322	
323	4.3 Climate zone sensitivity to driving forces
324	Figure 6 and Table 3 show the linear fitting results of the sensitivity experiments
325	between observed and simulated percentage areas for specific climate zones in
326	different scenarios during 1982–2012. Where temperature is held constant, the
327	simulated change in the percentage area approximates the observed changes with r^2 of
328	0.855 and 0.815 ($p < 0.01$, t-test) in arid and continental zones, respectively. In this
329	case, the linear fitting coefficients between the simulated and observed changes are
330	0.646 and 0.514 ($p < 0.01$, t-test) in the temperate and alpine zones, respectively. On
331	the contrary, where precipitation is held constant, the linear fitting coefficients of
332	simulated to observed changes are 0.473 and 0.753 ($p < 0.01$, t-test) in arid and
333	continental zones, respectively. However, the correlation between the observed and
334	simulated percentage area was stronger with temperature change, with r^2 values of
335	0.98 and 0.968 ($p < 0.01$, t-test) in the temperate and alpine zones, respectively. In
336	general, through sensitivity analysis, precipitation seems to be the main driver in the
337	dynamics of arid and continental zones, while temperature dominates the area change

338	of temperate and alpine zones. However, considering the nature of the Köppen
339	scheme, temperature and precipitation essentially determine the changes in different
340	climate zones. Therefore, we cannot ignore the important role of non-dominant
341	factors in their respective climate zones. Particularly, in the continental zone the
342	fitting coefficients between the simulated and observed changes in different scenarios
343	are relatively close, with r^2 values of 0.815 and 0.753, respectively, indicating that
344	temperature change also plays an important role in the change process in specific
345	climate zone.
346	
347	Place Figure 6
348	

349 _____ Place Table 3 350 351 _____ 4.4 Response of vegetation to climate zone and links to surface soil water content andalbedo

354	Figure 7 shows the trends in the annual SW content, NDVI, albedo, and the
355	correlation between albedo and NDVI for the period 1982–2012. Spatial changes in
356	NDVI are related to surface moisture and albedo. We observed a decrease in surface
357	SW content in the Northeast Mountains area and South China (Figure 7a). In contrast,
358	we observed a gradual increase in soil moisture content in the middle and west of
359	Tibet, the Northeast plain, and the Huaihe River Basin. We observed an increase in
360	NDVI in the Northeast Plain, Huaihe River Basin, and the Tianshan Mountains
361	(Figure 7b), and a decrease in NDVI in the Northeast, Yangtze River, Pearl River, and
362	Yunnan–Guizhou Plateau. The albedo trends of the middle and lower reaches of the
363	Yangtze River Basin, the Northeast Mountains, Southern China, and the Western
364	border mountains are more pronounced than elsewhere (Figure 7c). Figure 7d
365	illustrates the correlation between the NDVI and albedo. Albedo and NDVI were
366	positively correlated in Central and Western China, particularly in the Northeast plain,
367	the Yarlung Zangbo River Basin, and in Eastern Inner Mongolia.

368

369

Place Figure 7

370

Figure 8 depicts the relationship between the percentage area of each climate zone and their dominant driving factors (precipitation or temperature based on the sensitivity experiments), NDVI, and SW anomalies during 1982–2012. In general, changes in the percentage area of each climate zone are clearly related to the dominant driving factor, while changes in NDVI are influenced directly by SW content affected by the climate zone.

The percentage area of the arid zone increased slightly prior to 2005, which was 377 consistent with changes in precipitation (Figure 8a). In contrast, the percentage area of 378 arid zones decreased after 2005, which is opposite to the observed precipitation trend. 379 With the rapid increase in precipitation, the percentage area of the arid zone and SW 380 tended to decrease. Temperature was the dominant control on the percentage area of 381 temperate zones. After 2005, the percentage area reduced from 27.91% to 26.52% in 382 response to a temperature decrease from 16.71 °C to 16.16 °C. Since 2005, the area 383 reduction of temperate climate has been concentrated on the North China Plain, where 384 precipitation and SW have increased rapidly. Due to the decrease in coverage of 385 temperate zones and the decrease in precipitation in the Yangtze River area, NDVI 386 decreased from 0.646 to 0.524 since 2005. The percentage area of the continental 387 zone increased from 23.36% to 27.20% in response to an increase in precipitation 388 from 472 mm to 572 mm, as the evolution of the continental zone is more sensitive to 389 changes in precipitation than changes in temperature. With the decrease in 390 precipitation and SW before 2005, the disappearing area was mainly in the Northeast 391

392	Plain, and the overall NDVI of the continental zone increased due to the increase in
393	the proportion of forest area. Since 2005, due to the rapid increase in precipitation, the
394	percentage area has also increased rapidly, particularly in the Northeast Plain and
395	Qinghai-Tibet Plateau, which decreased the overall SW and NDVI in the continental
396	zone. The percentage area of the alpine zone was negatively correlated with changes
397	in temperature and SW. Prior to 2005, the percentage area decreased from 21.9% to
398	20.9% in response to increasing temperature from –4.8 °C to –3.7 °C. However, the
399	percentage area expanded from 20.9% to 21.2% and the NDVI increased from 0.371
400	to 0.379 since 2005 in response to a temperature change from -3.7 °C to -4.3 °C.
401	Since 2005, the emerging area of the alpine zone has been concentrated between the
402	alpine zone and the continental zone where the vegetation status is usually more
403	productive than of that in the alpine zone.
404	
405	Place Figure 8
400	
406	
407	Figure 9 shows the response of annual NDVI variability to albedo from 1982 to 2012.
408	In general, there are evident differences between NDVI and albedo in different
409	climate zones. For temperate and alpine climate zones, we found that the changes in
410	NDVI were significantly correlated to albedo ($p < 0.05$, t-test) during 1982–2012, in
411	which the higher NDVI basically corresponds to lower albedo. However, the

relationship between albedo and NDVI is more complex in arid and continentalclimates, particularly during 1995–2005.

414	The NDVI correlated significantly with albedo ($r = -0.82$, $p < 0.01$) in the temperate
415	zone (Figure 9b). Surface SW content after 2005 resulted in a rapid decrease of NDVI
416	from 0.32 to 0.28, while the albedo increased from 0.17 to 0.18. NDVI also correlated
417	significantly with albedo during 1982–2012 ($r = -0.476$, $p < 0.05$) in the alpine zone.
418	Changes in temperature and surface SW since 2005 resulted in an increase in NDVI
419	and a decrease in albedo from 0.187 to 0.185.
420	In the arid and continental climate zones, the NDVI variability during 1982–1995 and
421	2005–2012 was negatively correlated with albedo, while NDVI variability positively
422	correlated with albedo during the period 1995–2005. In particular, the observed
423	changes in 1995–2005 predominantly occurred in the Northeast Plain, where
424	precipitation had reduced and caused an increase in albedo. Precipitation is the
425	dominant control on the evolution of arid and continental climate zones, as changes in
426	precipitation caused notable shifts in the two climate types. Cultivated vegetation is
427	predominantly distributed in the Northeast Plain, according to the Chinese vegetation
428	atlas (2000). The NDVI increased from 1995 to 2005 in arid climate zones, as the
429	NDVI in the changed area was clearly higher than in low shrubland, meadows, and
430	desert regions. Furthermore, decreasing precipitation in continental climate zones had
431	reduced NDVI from 0.45. to 0.43, while albedo decreased from 0.183 to 0.181 from
432	1995 to 2005.

Place Figure 9

435

434

Figure 10 further highlights the observed differences in NDVI, albedo, and SW trends 436 of specific climate zones. SW content and NDVI predominantly increased and the 437 albedo decreased during the vegetation growing periods. The SW content in the arid 438 zone significantly decreased from February to April at rates of -0.4×10^{-3} m³ m⁻³/y to 439 -0.7×10^{-3} m³ m⁻³/y. We also observed significant decreases in February, March, 440 April, and September (continental zones). A significant increasing trend in June and a 441 decreasing trend in March and September were detected in the alpine climate zone. 442 443 The significant decrease in NDVI occurred in November and December during the non-vegetation growing period (continental zones). Furthermore, in the arid and 444 alpine zones, the monthly trends of albedo increased, while predominant trends in 445 temperate and continental climates decreased. More importantly, weak changes in 446 albedo accompanied the strong trends in NDVI and SW content during the vegetation 447 growing periods. 448

449

Place Figure 10

450

451

452 **5 Discussion**

The spatial scales at which climate changes are measured are extremely important, 453 454 since the response mechanism may change as the scale changes (Aalto et al., 2018; Chen et al., 2017; Järvi et al., 2019; Wu, 2004). On the one hand, our results reveal 455 that major climate zones respond differently to changes in temperature and 456 precipitation, indicating that arid and continental zones are more sensitive to 457 precipitation, while temperate and alpine zones are more responsive to temperature. It 458 should be noted that global universal climate change laws are not necessarily 459 applicable to regional-scale climate change. Recent studies (Burrows et al., 2011; Lu 460 et al., 2019; Mahlstein et al., 2013; Sunday et al., 2011) have shown that global 461 warming determines the dynamics of global climate zones. However, our results 462 demonstrate that it does not necessarily determine the dynamics in regional climate 463 zones. On the other hand, we must consider the climate zone change at different 464 spatial resolutions, as the statistical results may change as the possible uncertainty of 465 different spatial resolutions. In this study, we selected regional high-density 466 meteorological data with a resolution of 0.5° to explore changes in regional climate 467 zones. This is because the application of relatively coarse spatial resolution may limit 468 the effectiveness of climatic assessments and potential ecological impacts, particularly 469 when it is insufficient to describe small-scale features such as in some high mountain 470 areas (Beck et al., 2018; Rohli et al., 2015b). In view of this, climate change research 471

must fully consider the selection of a suitable spatial research scale and resolution

because this will help us understand the climate itself (Guan et al., 2020).

474	In addition, our results demonstrate that overall changes in the percentage area of each
475	climate zone were related to surface SW content, NDVI, and albedo in regions of high
476	(temperate zones) and low (alpine zones) vegetation coverage. Since climate zones
477	are considered a substitute for vegetation distribution (Rohli et al., 2015; Wang &
478	Overland, 2004), regional climate zones may show some similarities in the surface
479	biophysical properties of land cover. Changes in land cover influence radiative
480	forcing and have been shown to directly affect regional energy balances (Abera et al.,
481	2019a; Lee Et al., 2011; Li et al., 2015). Similar to shifts in land cover, when climate
482	zones expand or shrink in response to changes in regional temperature or
483	precipitation, these changes can also affect the greening or browning of regional
484	vegetation (Chen et al., 2019), altering regional surface roughness, albedo,
485	evaporation, and net radiation partitioning. However, it is not easy to fully elucidate
486	the interactive mechanisms and feedbacks related to the regional energy balance
487	based on shifts of climate zones, such as at the pixel level (Armstrong et al., 2016;
488	Gerken et al., 2018; Stark et al., 2016). This is due to the lack of observational data on
489	key climatic and biophysical variables, particularly in remote regions. Furthermore,
490	according to the empirical nature of the Köppen classification scheme, the fluctuating
491	climatic zone is significantly different from the surface reference for vegetation cover

with multi-year persistence. Despite these limitations, the study still effectively shedslight on the impact of shifting climate zones on the surface biophysical characteristics.

494	Our results also indicate inconsistencies in the correlations between climate zone
495	shifts, NDVI and albedo in arid and continental climate zones. From 1995 to 2005,
496	the precipitation-controlled shifts between arid and continental zones were mainly
497	concentrated in the Northeast Plain. Due to the decrease in precipitation (Figure 2b),
498	the continental zone in the Northeast Plain was replaced by arid zones. However,
499	there was no obvious change in the type and distribution of vegetation, which may not
500	only be due to human activities but also likely affected by the inertness of modern
501	ecosystems to climate change (Scheffer et al., 2001). On the one hand, human
502	activities such as large-scale agricultural reclamation and irrigation (Piao et al., 2003;
503	Zhu et al., 2013) could change regional soil properties (e.g., moisture, pH, organic
504	matter, nitrogen, and microorganisms) to affect the succession of vegetation types
505	(Jiang et al., 2020), further influencing the biophysical characteristics of vegetation
506	types. On the other hand, the threshold range of precipitation in response to different
507	vegetation types could be more stable than that of the precipitation range of the
508	Köppen arid climate (Mahlstein et al., 2013; Peel et al., 2007). Zhao et al. (2015)
509	indicated that a threshold effect may exist in the vegetation response to climate
510	change in many ecosystems. Although it is difficult to distinguish the different effects
511	quantitatively, internal and external feedback jointly promote the stability of regional
512	ecosystems and vegetation types.

513 6 Conclusion

In this study, we investigated the vegetation response to shifting climate zones and its 514 515 potential impacts on albedo and SW content in China. As the substantial changes in temperature and precipitation across time and space, we detected significant shifts in 516 climate zonation on a nationwide level. From 1983 to 2012, the cumulative 517 percentage of area change in all climate zones significantly increased from 12.08% to 518 18.98% at an annual growth rate of 0.204% (p < 0.05, MK). The percentage areas of 519 arid and continental zones expanded at rates of 0.004%/y and 0.12%/y, respectively, 520 while the temperate and alpine zones decreased by -0.05%/y and -0.07%/y, 521 522 respectively. Sensitivity results in the different simulated cases suggest that the temperature and precipitation impact in specific climate zones are different. 523 Specifically, temperature is the dominant control on the evolution of temperate and 524 alpine zones with r^2 of 0.98 and 0.968 between simulated and observed changes, 525 respectively, while precipitation is the dominant control on the evolution of arid and 526 continental zones with r^2 of 0.856 and 0.815, respectively. Vegetation substantially 527 responds to shifting climate zones with impact on surface biophysical characteristics. 528 Specifically, a pronounced albedo and NDVI feedback response was detected in 529 temperate and alpine zones with a 0.05 significance level. However, inconsistent 530 feedbacks of NDVI to albedo were also reported in arid and continental climates, 531 particularly during 1995-2005. Furthermore, recent climate warming has influenced 532

the seasonal trends in vegetation activity. The SW content and NDVI predominantly

534 increased and the albedo decreased during the vegetation growing periods.

535	In general, the redistribution of vegetation has emerged as one of the most
536	pronounced biological responses to climate change. Considering that the vegetation
537	distribution represents an expression of 'visible climate', the rapid increase or
538	decrease of climate-suitable areas will alter their distributional ranges and seasonal
539	activities to maintain their niche, especially as the global temperature may increase by
540	at least 1.5°C in the near future. If the speed of vegetation species tracks or adaptions
541	to climate conditions cannot reach the rate of climate change, it may lead to the
542	disaggregation of vegetation species assemblages, and the spatial distribution of
543	original vegetation will be gradually replaced by novelty vegetation, in which regional
544	surface biophysical characteristics and radiative mechanisms will inevitably change,
545	especially in the event of accelerated warming in the future. Moreover, future relevant
546	analysis may be useful in a wide range of environmental topics, especially with the
547	advent of continuous high-quality and high-resolution data products, which will
548	improve our ability to describe climate types in areas of sharp climatic gradients (e.g.
549	mountainous areas of the Qinghai-Tibet Plateau).

550 Acknowledgments

We appreciate National Meteorological Information Center (NMIC) of the China andthe Global Inventory Monitoring and Modeling System (GIMMS) project as well as

553	European Centre for Medium-Range Weather Forecasts (ECMWF) to provide the
554	public observed and reanalyzed datasets. This research is supported by the Strategic
555	Priority Research Program of Chinese Academy of Sciences (XDA20040301), the
556	National Natural Science Foundation of China (41890824), and the Fundamental
557	Research Funds for the Central Universities. The data archiving in this study has
558	archived at the Mendeley repository (https://data.mendeley.com/). Furthermore, we
559	would like to thank anonymous reviewers for their useful comments on the
560	manuscript.

562 **Reference:**

563	Aalto, J., Karjalainen, O., Hjort, J., Luoto, M., 2018. Statistical Forecasting of Current
564	and Future Circum-Arctic Ground Temperatures and Active Layer Thickness.
565	Geophys. Res. Lett. 45, 4889-4898. https://doi.org/10.1029/2018GL078007
566	Abera, T.A., Heiskanen, J., Pellikka, P., Rautiainen, M., Maeda, E.E., 2019.
567	Clarifying the role of radiative mechanisms in the spatio-temporal changes of
568	land surface temperature across the Horn of Africa. Remote Sens. Environ. 221,
569	210-224. https://doi.org/10.1016/j.rse.2018.11.024
570	Armstrong, E., Valdes, P., House, J., Singarayer, J., 2016. The role of CO2 and
571	dynamic vegetation on the impact of temperate land-use change in the HadCM3
572	coupled climate model. Earth Interact. 20. https://doi.org/10.1175/EI-D-15-
573	0036.1
	29

574	Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood,
575	E.F., 2018. Present and future köppen-geiger climate classification maps at 1-km
576	resolution. Sci. Data 5, 1-12. https://doi.org/10.1038/sdata.2018.214
577	Burrows, M.T., Schoeman, D.S., Buckley, L.B., Moore, P., Poloczanska, E.S.,
578	Brander, K.M., Brown, C., Bruno, J.F., Duarte, C.M., Halpern, B.S., Holding, J.,
579	Kappel, C. V., Kiessling, W., O'Connor, M.I., Pandolfi, J.M., Parmesan, C.,
580	Schwing, F.B., Sydeman, W.J., Richardson, A.J., 2011. The pace of shifting
581	climate in marine and terrestrial ecosystems. Science (80). 334, 652-655.
582	https://doi.org/10.1126/science.1210288
583	Carey, M., Molden, O.C., Rasmussen, M.B., Jackson, M., Nolin, A.W., Mark, B.G.,
584	2017. Impacts of Glacier Recession and Declining Meltwater on Mountain
585	Societies. Ann. Am. Assoc. Geogr. 107, 350-359.
586	https://doi.org/10.1080/24694452.2016.1243039
587	Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R.K., Fuchs, R., Brovkin,
588	V., Ciais, P., Fensholt, R., Tømmervik, H., Bala, G., Zhu, Z., Nemani, R.R.,
589	Myneni, R.B., 2019. China and India lead in greening of the world through land-
590	use management. Nat. Sustain. 2, 122–129. https://doi.org/10.1038/s41893-019-
591	0220-7
592	Chen, T., Zhang, H., Chen, X., Hagan, D.F., Wang, G., Gao, Z., Shi, T., 2017. Robust
593	drying and wetting trends found in regions over China based on Köppen climate
594	classifications. J. Geophys. Res. 122, 4228-4237.
595	https://doi.org/10.1002/2016JD026168

596	Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S.,
597	Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
598	A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R.,
599	Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E. V.,
600	Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., Mcnally, A.P., Monge-
601	Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C.,
602	Thépaut, J.N., Vitart, F., 2011. The ERA-Interim reanalysis: Configuration and
603	performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553-
604	597. https://doi.org/10.1002/qj.828
605	Editorial Board for Chinese Vegetation Map, Chinese Academy of Sciences.
606	Vegetation Atlas of China (1:100000). Beijing: Science Press, 2001: 129-132.
607	Engelbrecht, C.J., Engelbrecht, F.A., 2016. Shifts in Köppen-Geiger climate zones
608	over southern Africa in relation to key global temperature goals. Theor. Appl.
609	Climatol. 123, 247-261. https://doi.org/10.1007/s00704-014-1354-1
610	Erasmi, S., Dulamsuren, C., Hauck, M., Klinge, M., Karger, D.N., 2017. Climate
611	effects on the vitality of boreal forests at the treeline in different ecozones of
612	Mongolia. Biogeosciences Discuss. 1-25. https://doi.org/10.5194/bg-2017-220
613	Erb, K.H., Luyssaert, S., Meyfroidt, P., Pongratz, J., Don, A., Kloster, S., Kuemmerle,
614	T., Fetzel, T., Fuchs, R., Herold, M., Haberl, H., Jones, C.D., Marín-Spiotta, E.,
615	McCallum, I., Robertson, E., Seufert, V., Fritz, S., Valade, A., Wiltshire, A.,
616	Dolman, A.J., 2017. Land management: data availability and process
617	understanding for global change studies, Global Change Biology.

- 618 https://doi.org/10.3945/ajcn.116.130518
- Fan, Y., van den Dool, H., 2008. A global monthly land surface air temperature
- analysis for 1948-present. J. Geophys. Res. Atmos. 113, 1–18.
- 621 https://doi.org/10.1029/2007JD008470
- Fang, J., Piao, S., He, J., Ma, W., 2004. Increasing terrestrial vegetation activity in
- 623 China, 1982-1999. Sci. China, Ser. C Life Sci. 47, 229–240.
- 624 https://doi.org/10.1360/03yc0068
- Farmer, G.T., Cook, J., 2013. Climate change science: A modern synthesis: Volume 1
- The physical climate. Clim. Chang. Sci. A Mod. Synth. Vol. 1 Phys. Clim. 1,
- 627 1–564. https://doi.org/10.1007/978-94-007-5757-8
- Flemming, J., Huijnen, V., Arteta, J., Bechtold, P., Beljaars, A., Blechschmidt, A.M.,
- Diamantakis, M., Engelen, R.J., Gaudel, A., Inness, A., Jones, L., Josse, B.,
- 630 Katragkou, E., Marecal, V., Peuch, V.H., Richter, A., Schultz, M.G., Stein, O.,
- Tsikerdekis, A., 2015. Tropospheric chemistry in the integrated forecasting
- system of ECMWF. Geosci. Model Dev. 8, 975–1003.
- 633 https://doi.org/10.5194/gmd-8-975-2015
- Garcia, R.A., Cabeza, M., Rahbek, C., Araújo, M.B., 2014. Multiple dimensions of
- climate change and their implications for biodiversity. Science (80-.). 344.
- 636 https://doi.org/10.1126/science.1247579
- 637 Gerken, T., Ruddell, B.L., Fuentes, J.D., Araújo, A., Brunsell, N.A., Maia, J., Manzi,
- A., Mercer, J., dos Santos, R.N., von Randow, C., Stoy, P.C., 2018. Investigating
- the mechanisms responsible for the lack of surface energy balance closure in a

- 640 central Amazonian tropical rainforest. Agric. For. Meteorol. 255, 92–103.
- 641 https://doi.org/10.1016/j.agrformet.2017.03.023
- 642 Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Benito Alonso,
- J.L., Coldea, G., Dick, J., Erschbamer, B., Fernández Calzado, M.R., Kazakis,
- 644 G., Krajči, J., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, D., Moiseev, P.,
- 645 Molau, U., Merzouki, A., Nagy, L., Nakhutsrishvili, G., Pedersen, B., Pelino, G.,
- 646 Puscas, M., Rossi, G., Stanisci, A., Theurillat, J.-P., Tomaselli, M., Villar, L.,
- 647 Vittoz, P., Vogiatzakis, I., Grabherr, G., 2012. Continent-wide response of
- 648 mountain vegetation to climate change. Nat. Clim. Chang. 2, 111–115.
- 649 https://doi.org/10.1038/nclimate1329
- Guan, Y., Lu, H., He, L., Adhikari, H., Pellikka, P., Maeda, E., Heiskanen, J., 2020.
- 651 Intensification of the Dispersion of the Global Climatic Landscape and its
- Potential as a New Climate Change Indicator. Environ. Res. Lett. 10, in press.
- 653 Guetter, P.J., Kutzbach, J.E., 1990. A modified Köppen classification applied to
- model simulations of glacial and interglacial climates. Clim. Change 16, 193–
- 655 215. https://doi.org/10.1007/BF00134657
- Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., 2014. Updated high-resolution grids
- of monthly climatic observations the CRU TS3.10 Dataset. Int. J. Climatol. 34,
- 658 623–642. https://doi.org/10.1002/joc.3711
- Harris, R.M.B., Remenyi, T.A., Williamson, G.J., Bindoff, N.L., Bowman, D.M.J.S.,
- 660 2016. Climate–vegetation–fire interactions and feedbacks: trivial detail or major
- barrier to projecting the future of the Earth system? Wiley Interdiscip. Rev.

- 662 Clim. Chang. 7, 910–931. https://doi.org/10.1002/wcc.428
- Helmens, K.F., Katrantsiotis, C., Sakari Salonen, J., Shala, S., Bos, J.A.A., Engels, S.,
- 664 Kuosmanen, N., Luoto, T.P., Väliranta, M., Luoto, M., Ojala, A., Risberg, J.,
- 665 Weckström, J., 2018. Warm summers and rich biotic communities during N-
- 666 Hemisphere deglaciation. Glob. Planet. Change 167, 61–73.
- 667 https://doi.org/10.1016/j.gloplacha.2018.05.004
- Huang, J., Yu, H., Guan, X., Wang, G., Guo, R., 2016. Accelerated dryland expansion
- under climate change. Nat. Clim. Chang. 6, 166–171.
- 670 https://doi.org/10.1038/nclimate2837
- 671 Huang, X., Ma, L., Liu, T., Sun, B., Zhou, Y., Chen, Y., Qiao, Z., 2020. Spatial
- Variability in Years of Abrupt Seasonal Temperature Changes and Warming
- 673 (Cooling) Hiatuses in China from 1951–2018 and the Variation Trends before
- and after These Years. Atmosphere (Basel). 11, 82.
- 675 https://doi.org/10.3390/atmos11010082
- Järvi, L., Havu, M., Ward, H.C., Bellucco, V., McFadden, J.P., Toivonen, T.,
- Heikinheimo, V., Kolari, P., Riikonen, A., Grimmond, C.S.B., 2019. Spatial
- 678 Modeling of Local-Scale Biogenic and Anthropogenic Carbon Dioxide
- Emissions in Helsinki. J. Geophys. Res. Atmos. 8363–8384.
- 680 https://doi.org/10.1029/2018jd029576
- Jiang, Y., Guo, J., Peng, Q., Guan, Y., Zhang, Y., Zhang, R., 2020. The effects of
- climate factors and human activities on net primary productivity in Xinjiang. Int.
- 683 J. Biometeorol. https://doi.org/10.1007/s00484-020-01866-4

- 684 Kendall MG. 1975. Rank Correlation Methods. Griffin: London.
- Lee, X., Goulden, M.L., Hollinger, D.Y., Barr, A., Black, T.A., Bohrer, G., Bracho,
- 686 R., Drake, B., Goldstein, A., Gu, L., Katul, G., Kolb, T., Law, B.E., Margolis,
- H., Meyers, T., Monson, R., Munger, W., Oren, R., Paw U, K.T., Richardson,
- A.D., Schmid, H.P., Staebler, R., Wofsy, S., Zhao, L., 2011. Observed increase
- in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387.
- 690 https://doi.org/10.1038/nature10588
- Li, Q., Ma, M., Wu, X., Yang, H., 2018. Snow Cover and Vegetation-Induced
- Decrease in Global Albedo From 2002 to 2016. J. Geophys. Res. Atmos. 123,
- 693 124–138. https://doi.org/10.1002/2017JD027010
- Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., Li, S., 2015. Local cooling and
- 695 warming effects of forests based on satellite observations. Nat. Commun. 6.
- 696 https://doi.org/10.1038/ncomms7603
- Lu, H., Guan, Y., He, L., Adhikari, H., Pellikka, P., Heiskanen, J., Maeda, E., 2019.
- Patch aggregation trends of the global climate landscape under future global
- 699 warming scenario. Int. J. Climatol. https://doi.org/10.1002/joc.6358
- Mahlstein, I., Daniel, J.S., Solomon, S., 2013. Pace of shifts in climate regions
- increases with global temperature. Nat. Clim. Chang. 3, 739–743.
- 702 https://doi.org/10.1038/nclimate1876
- Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the
 Econometric Society , 245-259.
- 705 Martin-Benito, D., Pederson, N., 2015. Convergence in drought stress, but a

706	divergence of climatic drivers across a latitudinal gradient in a temperate
707	broadleaf forest. J. Biogeogr. 42, 925-937. https://doi.org/10.1111/jbi.12462
708	McColl, K.A., Alemohammad, S.H., Akbar, R., Konings, A.G., Yueh, S., Entekhabi,
709	D., 2017. The global distribution and dynamics of surface soil moisture. Nat.
710	Geosci. 10, 100–104. https://doi.org/10.1038/ngeo2868
711	Park, S., 2010. IFS Documentation - Cy36r1: PART IV: PHYSICAL PROCESSES
712	1–171.
713	Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J.L.B.,
714	Coldea, G., Dick, J., Erschbamer, B., Calzado, R.F., Ghosn, D., Holten, J.I.,
715	Kanka, R., Kazakis, G., Kollár, J., Larsson, P., Moiseev, P., Moiseev, D., Molau,
716	U., Mesa, J.M., Nagy, L., Pelino, G., Pușcaș, M., Rossi, G., Stanisci, A.,
717	Syverhuset, A.O., Theurillat, J.P., Tomaselli, M., Unterluggauer, P., Villar, L.,
718	Vittoz, P., Grabherr, G., 2012. Recent plant diversity changes on Europe's
719	mountain summits. Science (80). https://doi.org/10.1126/science.1219033
720	Pearson, R.G., Phillips, S.J., Loranty, M.M., Beck, P.S.A., Damoulas, T., Knight, S.J.,
721	Goetz, S.J., 2013. Shifts in Arctic vegetation and associated feedbacks under
722	climate change. Nat. Clim. Chang. 3, 673–677.
723	https://doi.org/10.1038/nclimate1858
724	Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the
725	Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644.
726	https://doi.org/10.5194/hess-11-1633-2007
727	Piao, S., Fang, J., Zhou, L., Guo, Q., Henderson, M., Ji, W., Li, Y., Tao, S., 2003.

- 728 Interannual variations of monthly and seasonal normalized difference vegetation
- index (NDVI) in China from 1982 to 1999. J. Geophys. Res. D Atmos. 108, 1–
- 730 13. https://doi.org/10.1029/2002jd002848
- Piao, S., Yin, G., Tan, J., Cheng, L., Huang, M., Li, Y., Liu, R., Mao, J., Myneni,
- 732 R.B., Peng, S., Poulter, B., Shi, X., Xiao, Z., Zeng, N., Zeng, Z., Wang, Y.,
- 733 2015. Detection and attribution of vegetation greening trend in China over the
- ⁷³⁴ last 30 years. Glob. Chang. Biol. 21, 1601–1609.
- 735 https://doi.org/10.1111/gcb.12795
- Pinzon, J.E., Tucker, C.J., 2014. A non-stationary 1981-2012 AVHRR NDVI3g time
- r37 series. Remote Sens. 6, 6929–6960. https://doi.org/10.3390/rs6086929
- Pithan, F., Mauritsen, T., 2014. Arctic amplification dominated by temperature
- feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184.
- 740 https://doi.org/10.1038/ngeo2071
- Ren, Z., Zhang, M., Wang, S., Qiang, F., Zhu, X., Dong, L., 2015. Changes in daily
- extreme precipitation events in South China from 1961 to 2011. J. Geogr. Sci.
- 743 25, 58–68. https://doi.org/10.1007/s11442-015-1153-3
- Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey,
- 745 M., 2013. Climate change, phenology, and phenological control of vegetation
- feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173.
- 747 https://doi.org/10.1016/J.AGRFORMET.2012.09.012
- Rohli, R. V., Andrew Joyner, T., Reynolds, S.J., Shaw, C., Vázquez, J.R., 2015a.
- 749 Globally Extended Kppen-Geiger climate classification and temporal shifts in

- terrestrial climatic types. Phys. Geogr. 36, 142–157.
- 751 https://doi.org/10.1080/02723646.2015.1016382
- 752 Rohli, R. V., Joyner, T.A., Reynolds, S.J., Ballinger, T.J., 2015b. Overlap of global
- Köppen–Geiger climates, biomes, and soil orders. Phys. Geogr. 36, 158–175.
- 754 https://doi.org/10.1080/02723646.2015.1016384
- Rubel, F., Kottek, M., 2010. Observed and projected climate shifts 1901-2100
- depicted by world maps of the Köppen-Geiger climate classification. Meteorol.
- 757 Zeitschrift 19, 135–141. https://doi.org/10.1127/0941-2948/2010/0430
- Schaaf, C.B., Gao, F., Strahler, A.H., Lucht, W., Li, X., Tsang, T., Strugnell, N.C.,
- Zhang, X., Jin, Y., Muller, J., Lewis, P., Barnsley, M., Hobson, P., Disney, M.,
- Roberts, G., Dunderdale, M., Doll, C., Robert, P., Hu, B., Liang, S., Privette,
- J.L., Roy, D., 2002. First operational BRDF, albedo nadir reflectance products
- 762 from MODIS 83, 135–148.
- Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B., 2001. Catastrophic
- shifts in ecosystems. Nature 413, 591–596. https://doi.org/10.1038/35098000
- Shen, M., Piao, S., Jeong, S.-J., Zhou, L., Zeng, Z., Ciais, P., Chen, D., Huang, M.,
- Jin, C.-S., Li, L.Z.X., Li, Y., Myneni, R.B., Yang, K., Zhang, G., Zhang, Y.,
- Yao, T., 2015. Evaporative cooling over the Tibetan Plateau induced by
- vegetation growth. Proc. Natl. Acad. Sci. 112, 9299–9304.
- 769 https://doi.org/10.1073/pnas.1504418112
- 770 Stark, S.C., Breshears, D.D., Garcia, E.S., Law, D.J., Minor, D.M., Saleska, S.R.,
- 571 Swann, A.L.S., Villegas, J.C., Aragão, L.E.O.C., Bella, E.M., Borma, L.S.,

772	Cobb, N.S., Litvak, M.E., Magnusson, W.E., Morton, J.M., Redmond, M.D.,
773	2016. Toward accounting for ecoclimate teleconnections: intra- and inter-
774	continental consequences of altered energy balance after vegetation change.
775	Landsc. Ecol. 31, 181–194. https://doi.org/10.1007/s10980-015-0282-5
776	Sunday, J.M., Bates, A.E., Dulvy, N.K., 2011. Global analysis of thermal tolerance
777	and latitude in ectotherms. Proc. R. Soc. B Biol. Sci. 278, 1823–1830.
778	https://doi.org/10.1098/rspb.2010.1295
779	Tucker, C.J., Pinzon, J.E., Brown, M.E., Slayback, D.A., Pak, E.W., Mahoney, R.,
780	Vermote, E.F., El Saleous, N., 2005. An extended AVHRR 8-km NDVI dataset
781	compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens.
782	26, 4485–4498. https://doi.org/10.1080/01431160500168686
783	Turco, M., Von Hardenberg, J., AghaKouchak, A., Llasat, M.C., Provenzale, A.,
784	Trigo, R.M., 2017. On the key role of droughts in the dynamics of summer fires
785	in Mediterranean Europe. Sci. Rep. 7, 1–10. https://doi.org/10.1038/s41598-017-
786	00116-9
787	Wang, M., Overland, J.E., 2004. Detecting arctic climate change using Köppen
788	climate classification. Clim. Change 67, 43-62. https://doi.org/10.1007/s10584-
789	004-4786-2
790	Williams, J.W., Jackson, S.T., Kutzbach, J.E., 2007. Projected distributions of novel
791	and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. U. S. A. 104,
792	5738-5742. https://doi.org/10.1073/pnas.0606292104
793	Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B., Zhao, W., 2015. Time-lag

- effects of global vegetation responses to climate change. Glob. Chang. Biol. 21,
- 795 3520–3531. https://doi.org/10.1111/gcb.12945
- 796 Wu, J., 2004. Effects of changing scale on landscape pattern analysis: Scaling
- relations. Landsc. Ecol. 19, 125–138.
- 798 https://doi.org/10.1023/B:LAND.0000021711.40074.ae
- Yang, Y., Roderick, M.L., Zhang, S., McVicar, T.R., Donohue, R.J., 2018.
- 800 Hydrologic implications of vegetation response to elevated CO2 in climate
- 801 projections. Nat. Clim. Chang. https://doi.org/10.1038/s41558-018-0361-0
- Zhao, Y., 2018. Vegetation and climate reconstructions on different time scales in
- 803 China: a review of Chinese palynological research. Veg. Hist. Archaeobot. 27,
- 804 381–392. https://doi.org/10.1007/s00334-017-0655-6
- Zhao, Y., Herzschuh, U., Li, Q., 2015. Complex vegetation responses to climate
- change on the Tibetan Plateau: A paleoecological perspective. Natl. Sci. Rev. 2,
- 400–402. https://doi.org/10.1093/nsr/nwv057
- Zhu, X., Li, Y., Li, M., Pan, Y., Shi, P., 2013. Agricultural irrigation in China. J. Soil
- 809 Water Conserv. 68, 147–154. https://doi.org/10.2489/jswc.68.6.147A
- 810
- **Figure 1.** Distribution of (a) annual average temperature (China's ground temperature
- 812 $0.5^{\circ} \times 0.5^{\circ}$ grid dataset) (http://data.cma.cn/data/index/), (b) annual average
- precipitation (China's ground precipitation $0.5^{\circ} \times 0.5^{\circ}$ grid dataset), (c) topography

- 814 (SRTM DEM) (http://www.gscloud.cn/), and (d) vegetation types extracted from year
- 815 2000 land cover data (http://www.resdc.cn/) in China.
- Figure 2. Trends in (a) annual average temperature and (b) precipitation and
- correlations of NDVI to (c) temperature and (d) precipitation during 1982–2012.
- **Figure 3.** The spatial distribution of the Köppen climate zones in China for (a) 1982,
- (b) 1990, (c) 2000, and (d) 2010. Each year represents an average period of five
- 820 consecutive years. A–E represents tropical, arid, temperate, continental, and alpine
- climates, respectively. During 1990–2000, shifts between continental and arid
- climates predominantly occurred in the Northeast Plain.
- Figure 4. Cumulative percentage of area change of all climate zones in China during
- 1983–2012. The temporal trend was statistically significant at the significance level of
- 825 0.05, based on the MK test.
- **Figure 5.** Temporal variations of percentage area for (a) arid, (b) temperate, (c)
- continental, and (d) alpine zones in China during 1982–2012. Changes in climatic
- type percentage areas are based on 5-yr running means of ground temperature and
- precipitation $0.5^{\circ} \times 0.5^{\circ}$ grid datasets. Note that the y-axis scale differs between

830 climatic zones.

- **Figure 6.** Sensitivity analysis of (a) arid, (b) temperate, (c) continental, and (d) alpine
- zones. S_{precip} and S_{temp} represent the sensitivity analysis results with precipitation or
- temperature held constant, respectively. The results show that precipitation is the
- dominant driver in the arid and continental climate zones, while temperature is the
- dominant driver in the temperate and alpine climate zones. All fittings were

836 statistically significant (p < 0.01, t-test). Note that the axis scale differs between 837 climatic zones.

838	Figure 7. Trends in (a) surface SW content (ERA-interim), (b) NDVI (GIMMS), (c)
839	albedo (ERA-interim), and (d) the correlation between albedo and NDVI from 1982
840	to 2012. Statistically significant correlations ($p < 0.05$) are marked with crosses.
841	Figure 8. The response of the percentage area (PA) to its dominant climate control
842	(temperature or precipitation) in (a) arid, (b) temperate, (c) continental, and (d) alpine
843	climate zones from 1982 to 2012. The percentage area is indicated by the location of
844	circles, while mean NDVI is indicated by the colour of the circles. Changes in
845	percentage area are negatively correlated to precipitation in arid climate and to
846	temperature in alpine climate, while percentage area change is positively correlated to
847	temperature in temperate climate and to precipitation in continental climate. The
848	histograms indicate changes in the surface SW anomaly.
849	Figure 9. The relationship between annual NDVI (red lines) and albedo (blue line)
850	from 1982 to 2012.
851	Figure 10. Monthly trends in NDVI, albedo, and SW anomaly for (a) arid, (b)
852	temperate, (c) continental, and (d) alpine climate zone during 1982–2012. The green
853	shaded areas represent the growing period (Arid: May to October; Temperate: April to
854	November; Continental: May to mid-October; Alpine: May to mid-September). The
855	clear monthly trends in NDVI, albedo, and SW content occur during the growing

- period. The temporal trend was statistically significant at the significance level of
- 857 0.05, based on the MK test.
- **Table 1.** Remote sensing and meteorological reanalysis dataset characteristics
- **Table 2.** Changes in percentage area of different periods relative to baseline time
- 860 (1982).
- **Table 3.** Qualitative sensitivity parameters of the percentage area in each climate
- zone where either temperature or precipitation is held constant.

Tables

Data type	Product	Version	Spatial	Temporal	Timestep
			resolution	resolution	
NDVI	GIMSS NDVI3g	V0	0.0833° ×	Half month	1982–
			0.0833°		2012
Temperature	China's ground	V2.0	0.5° ×	Monthly	1982–
	temperature $0.5^{\circ} \times$		0.5°		2012
	0.5°				
	Grid data set				
Precipitation	China's ground	V2.0	$0.5^{\circ} \times$	Monthly	1982–
	precipitation 0.5°		0.5°		2012
	$\times 0.5^{\circ}$				
	Grid data set				
Albedo	ERA-Interim	V2.0	0.125° ×	Monthly	1982–
			0.125°		2012
Volumetric	ERA-Interim	V2.0	0.125° ×	Monthly	1982–
soil water			0.125°		2012
Topography	SRTM DEM	\	1 km	\	2000
Vegetation	Land use/cover	\	1 km	\	2000
type	(2000)				

 Table 1. Remote sensing and meteorological reanalysis dataset characteristics

(1982). Comparison Arid Temperate Continental Alpine $APA_{1990} = -1.10 \quad 1.34 \qquad 0.20 \qquad -0.47$

Δ1 / 1 / 1 / 9 / 1 /	1.10	1.54	0.20	0.47
ΔPA2000	3.01	0.95	-3.72	-0.33
ΔPA_{2010}	-1.74	0.24	1.95	-0.50

Table 3. Qualitative sensitivity parameters of the percentage area in each climate

Zones	Sensitivity	Linear regression	Coefficients of	Significance
	parameter	equation	determination (r^2)	<i>(p)</i>
В	Sprecip	y = 0.74x + 7.73	0.856	<i>p</i> < 0.01
	Stemp	y = 0.3x + 19.58	0.473	<i>p</i> < 0.01
С	Sprecip	y = 0.13x + 20.18	0.646	<i>p</i> < 0.01
	Stemp	y = 0.95x + 1.39	0.980	<i>p</i> < 0.01
D	Sprecip	y = 0.59x + 11.12	0.815	<i>p</i> < 0.01
	Stemp	y = 0.49x + 17.21	0.753	<i>p</i> < 0.01
Е	Sprecip	y = -1.31x + 40.57	0.514	<i>p</i> < 0.01
	Stemp	y = 1.28x - 5.47	0.968	<i>p</i> < 0.01

zone where either temperature or precipitation is held constant.

B-E represent arid, temperate, continental, and alpine climates, respectively.

Table 2. Changes in percentage area of different periods relative to baseline time

Figure 1. Distribution of (a) annual average temperature (China's ground temperature $0.5^{\circ} \times 0.5^{\circ}$ grid dataset) (http://data.cma.cn/data/index/), (b) annual average precipitation (China's ground precipitation $0.5^{\circ} \times 0.5^{\circ}$ grid dataset), (c) topography (SRTM DEM) (http://www.gscloud.cn/), and (d) vegetation types extracted from year 2000 land cover data (http://www.resdc.cn/) in China.

Figure 2. Trends in (a) annual average temperature and (b) precipitation and correlations of NDVI to (c) temperature and (d) precipitation during 1982–2012.

Figure 3. The spatial distribution of the Köppen climate zones in China for (a) 1982, (b) 1990, (c) 2000, and (d) 2010. Each year represents an average period of five consecutive years. A–E represents tropical, arid, temperate, continental, and alpine climates, respectively. During 1990–2000, shifts between continental and arid climates predominantly occurred in the Northeast Plain.

Figure 4. Cumulative percentage of area change of all climate zones in China during 1983–2012. The temporal trend was statistically significant at the significance level of 0.05, based on the MK test.

Figure 5. Temporal variations of percentage area for (a) arid, (b) temperate, (c) continental, and (d) alpine zones in China during 1982–2012. Changes in climatic type percentage areas are based on 5-yr running means of ground temperature and precipitation $0.5^{\circ} \times 0.5^{\circ}$ grid datasets. Note that the y-axis scale differs between climatic zones.

Figure 6. Sensitivity analysis of (a) arid, (b) temperate, (c) continental, and (d) alpine zones. S_{precip} and S_{temp} represent the sensitivity analysis results with precipitation or temperature held constant, respectively. The results show that precipitation is the dominant driver in the arid and continental climate zones, while temperature is the dominant driver in the temperate and alpine climate zones. All fittings were statistically significant (p < 0.01, t-test). Note that the axis scale differs between climatic zones.

Figure 7. Trends in (a) surface SW content (ERA-interim), (b) NDVI (GIMMS), (c) albedo (ERA-interim), and (d) the correlation between albedo and NDVI from 1982 to 2012. Statistically significant correlations (p < 0.05) are marked with crosses.

Figure 8. The response of the percentage area (PA) to its dominant climate control (temperature or precipitation) in (a) arid, (b) temperate, (c) continental, and (d) alpine climate zones from 1982 to 2012. The percentage area is indicated by the location of circles, while mean NDVI is indicated by the colour of the circles. Changes in percentage area are negatively correlated to precipitation in arid climate and to temperature in alpine climate, while percentage area change is positively correlated to temperature in temperate climate and to precipitation in continental climate. The histograms indicate changes in the surface SW anomaly.

Figure 9. The relationship between annual NDVI (red lines) and albedo (blue line) from 1982 to 2012.

Figure 10. Monthly trends in NDVI, albedo, and SW anomaly for (a) arid, (b) temperate, (c) continental, and (d) alpine climate zone during 1982–2012. The green shaded areas represent the growing period (Arid: May to October; Temperate: April to November; Continental: May to mid-October; Alpine: May to mid-September). The clear monthly trends in NDVI, albedo, and SW content occur during the growing period. The temporal trend was statistically significant at the significance level of 0.05, based on the MK test.

