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Abstract 19 

Extensive research has focused on the response of vegetation to climate change, 20 

including potential mechanisms and resulting impacts. Although many studies have 21 

explored the relationship between vegetation and climate change in China, research 22 

on spatiotemporal distribution changes of climate regimes using natural vegetation as 23 

an indicator is still lacking. Further, limited information is available on the response 24 

of vegetation to shifts in China’s regional climatic zones. In this study, we applied 25 

Mann–Kendall, and correlation analysis to examine the variabilities in temperature, 26 

precipitation, surface soil water, normalised difference vegetation index (NDVI), and 27 

albedo in China from 1982 to 2012. Our results indicate significant shifts in the 28 

distribution of Köppen–Geiger climate classes in China from 12.08% to 18.98% 29 

between 1983 and 2012 at a significance level of 0.05 (MK). The percentage areas in 30 

the arid and continental zones expanded at a rate of 0.004%/y and 0.12%/y, 31 

respectively, while the percentage area in the temperate and alpine zones decreased by 32 

-0.05%/y and -0.07%/y. Sensitivity fitting results between simulated and observed 33 

changes identified temperature to be a dominant control on the dynamics of temperate 34 

(r2=0.98) and alpine (r2=0.968) zones, while precipitation was the dominant control 35 

on the changes of arid (r2=0.856) and continental (r2=0.815) zones. The response of 36 

the NDVI to albedo infers a more pronounced radiative response in temperate (r = –37 

0.82, p < 0.01) and alpine (r = –0.476, p < 0.05) compared to arid and continental 38 

zones. Furthermore, we identified more pronounced monthly increasing trends in 39 
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NDVI and soil water, corresponding to weak changes in albedo during vegetation 40 

growing periods. Our results suggest that climate zone shifting has considerable 41 

impacts on the vegetation in China and will have larger ecological impacts through 42 

radiative or non-radiative feedback mechanisms in future warming scenarios. 43 

Key words: Climate zones; Temperature; Precipitation; NDVI; Albedo 44 

1 Introduction 45 

Research work (Carey et al., 2017; Fan and van den Dool, 2008; Shen et al., 2015; 46 

Turco et al., 2017) has demonstrated that shifts in the climate system increase the 47 

likelihood of widespread and irreversible impacts on global ecosystems, including 48 

changes to vegetation greening/coverage (Abera et al., 2019; Erb et al., 2017; Fang et 49 

al., 2004; Harris et al., 2016; Helmens et al., 2018; Huang et al., 2016; Li et al., 2018; 50 

Piao et al., 2015; Richardson et al., 2013; Shen et al., 2015; Yang et al., 2018; Zhao, 51 

2018). Vegetation supplies the materials and energy required to sustain life on Earth 52 

through photosynthesis by converting water and carbon dioxide to oxygen and 53 

carbohydrates. The length of the growing season and vegetation productivity are 54 

highly sensitive to changes in climate (Erasmi et al., 2017; Martin-Benito and 55 

Pederson, 2015; Turco et al., 2017). Greening and browning are measured by the 56 

NDVI changes, which are commonly correlated to vegetation productivity and 57 

biomass. These vegetation changes can alter the regional energy, carbon, and water 58 

balance, resulting in atmospheric warming or cooling, depending on the relative 59 
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impacts of radiative (albedo) and non-radiative processes (such as evapotranspiration 60 

and surface roughness length) (Abera et al., 2019; Li et al., 2015). 61 

Many studies have explored the response mechanisms between climate change and 62 

vegetation processes at different scales. For example, in the context of global 63 

warming, increased vegetation productivity in the Arctic was shown to reduce surface 64 

albedo, resulting in positive temperature feedback (Pearson et al., 2013; Pithan and 65 

Mauritsen, 2014). Conversely, analysis of NDVI and evapotranspiration in the 66 

Tibetan Plateau inferred reduced surface warming in the growing season in response 67 

to increased vegetation activity (Shen et al., 2015). Gottfried et al. (2012) and Pauli et 68 

al. (2012) identified a link between ongoing continent-scale climate change and 69 

changing mountain plant communities, with a particular increase in the number of 70 

warm-adapted species due to thermophilization. Wu et al. (2015) applied NDVI and 71 

climatic data to demonstrate that the time-lag effect between vegetation and primary 72 

climate factors influences vegetation growth on a global scale. 73 

The Köppen–Geiger classification (Peel et al., 2007; Rubel & Kottek, 2010) is often 74 

used to describe highly heterogeneous climate zones with different climatic 75 

conditions. It is one of the most widely accepted climate classification systems used to 76 

describe vegetation distribution based solely on annual and monthly temperature and 77 

precipitation patterns. The Köppen–Geiger criteria has been validated by a number of 78 

studies through its strong links between climate and biome type (Engelbrecht and 79 

Engelbrecht, 2016; Farmer and Cook, 2013; Rohli et al., 2015a), suggesting that its 80 
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dynamic characteristics still have significant research value in many fields of research 81 

today. This connection between climate and biomes provides the possibility of 82 

assessing the relationship between the empirical climate and natural vegetation (Guan 83 

et al., 2020; Guetter and Kutzbach, 1990). 84 

Considering the nature of the climate classification, the change in vegetation response 85 

to climate should be presented simply and clearly. Garcia et al. (2014) reported that 86 

changes in the regional distribution of climate can affect the availability and 87 

distribution of climatically suitable areas for vegetation. The changes in specific 88 

climate zones suitable for the vegetation types are likely to result in the expansion or 89 

reduction of the distribution range of specific vegetation types. Rohli et al. (2015a) 90 

identified that the boundaries of the Köppen classes strongly overlapped with many 91 

ecological factors, such as vegetation distribution. Williams et al. (2007) suggested 92 

that novel and disappearing climates can lead to the disaggregation of vegetation 93 

species assemblages. Wang and Overland, (2004) reported a decline in the Arctic 94 

Tundra climate zone since the 1990s, accompanied by a marked increase in boreal and 95 

temperate groups. According to modelling results by Pearson et al. (2013), at least 96 

half of the Arctic vegetation coverage is expected to shift by 2050, with woody 97 

vegetation coverage expected to increase by 52% in response to specific climate 98 

change. In some areas where the tundra is replaced by shrubs, the albedo in the 99 

growing season will decrease. 100 
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Recent studies have shown that we can hypothesise that if shifts between climate 101 

zones occur constantly, vegetation will substantially respond to shifting climate zones 102 

and surface biophysical characteristics will change. Similar to changes in land cover, 103 

shifts in heterogeneous climate zones are highly likely to affect vegetation structure 104 

(e.g., canopy height), phenology, the seasonality of albedo, and even vegetation type 105 

succession, which in turn directly affect regional surface energy balance and net 106 

radiation partitioning (Richardson et al., 2013). However, the impacts of shifting 107 

climate zones on vegetation have not yet been fully addressed in China. In this regard, 108 

the combination of NDVI, soil water, and albedo variables can be effectively used to 109 

shed light on the impact of shifting climate zones on vegetation, further its surface 110 

biophysical characteristics. Thus, further examination using relatively high-resolution 111 

remote sensing observations and reanalysis data sets is needed, in the area that have 112 

undergone climate type shifts, to better understand the impact of temperature and 113 

precipitation to specific climate zones, and to clarify the potential response of 114 

vegetation to specific climate zones. 115 

This study aims to determine the dynamic response of regional vegetation in China to 116 

the shifting climatic regimes and its resulting impact on surface biophysical 117 

characteristics from 1982 to 2012. In particular, we explored (1) the temporal shifts of 118 

the Köppen climate regions, including total climate zones, and specific arid, 119 

temperate, continental, and alpine climate regions; (2) the dominant drivers 120 

(temperature or precipitation) of the dynamics of specific climate zones; and (3) the 121 
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response of vegetation to changes in the four climate zones and its influence on 122 

surface soil water (SW) content and albedo. The exploration between vegetation 123 

response and the climate types involved can better estimate the uniqueness of climate 124 

change at a given scale, and may also inform our understanding of impacts of climate 125 

change on biome. 126 

2 Study area 127 

China’s climate is complex and diverse and is predominantly controlled by the 128 

distribution of temperature (Figure 1a), precipitation (Figure 1b), and topography 129 

(Figure 1c). The spatial distribution of temperature is primarily influenced by latitude 130 

and altitude (e.g., from Qinghai to the Tibetan Plateau) and ranges from −12.4. to 131 

25.07 °C. The total precipitation gradually decreases from a maximum of 1937.5 mm 132 

in the southeast to a minimum of 8.3 mm in the northwest. During the warm season, 133 

the southern and eastern regions of China experience high rainfall due to the influence 134 

of the monsoon. In contrast, Northwest China experiences low precipitation due to its 135 

distance from the ocean. During the cold seasons, continental circulation causes most 136 

regions, particularly in the north and west, to be cold and dry. In general, China’s 137 

climate is geographically distinct and seasonally variable. 138 

Given that climate is an important limiting factor in ecological processes, China's 139 

large spatial climate variability promotes the heterogeneous distribution of vegetation 140 

types and ecosystems (Figure 1d). China has a variety of land vegetation types, 141 
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including shrubs, swamps, broadleaf forests, meadows, coniferous forests, cultivated 142 

vegetation, alpine vegetation, grasslands, mixed forests, and deserts. From individual 143 

forms to spatial community distributions, vegetation is dependent on the temporal and 144 

spatial distribution of regional hydrothermal conditions. 145 

------------------------------------------------------ 146 

Place Figure 1 147 

------------------------------------------------------ 148 

3 Data and methods 149 

3.1 Observed and reanalysis data 150 

We utilised satellite-based vegetation data, climatic observational grid data, and 151 

reanalysis data from 1982 to 2012, including NDVI, temperature, precipitation, 152 

albedo, and surface volumetric SW (Table 1). To achieve a consistent spatial 153 

resolution for the analysis, we applied the bilinear method to interpolate the remote 154 

sensing and reanalysis data to regular 0.125° × 0.125° grids. To further reduce the 155 

impact of natural variability, a 5-year running mean was applied to all datasets to 156 

mitigate possible short-term variations (Mahlstein et al., 2013). 157 

NDVI is an effective measurement of the photosynthetically active radiation absorbed 158 

by chlorophyll in the green leaves of vegetation canopies (Pinzon & Tucker, 2014). 159 
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Absorption in the visible spectral region and reflectance in the near infra-red region 160 

increases with increasing chlorophyll content, leaf area index (LAI), and healthy leaf 161 

structure, and thus greener and denser vegetation will result in relatively high NDVI 162 

(approaching one). We used the GIMSS NDVI3g (v0) dataset generated from the 163 

National Oceanic and Atmospheric Administration Advanced Very High Resolution 164 

Radiometer (AVHRR) (Tucker et al., 2005; Pinzon & Tucker, 2014). The data range 165 

from July 1982 to December 2011, has a resolution of 0.0833° and is carefully 166 

harmonised from different AVHRR sensors. Negative influences, such as calibration 167 

loss, volcanic eruptions, and orbital drift, were considered in data processing. 168 

Albedo and volumetric soil water (SW) reanalysis data were obtained from the 169 

European Centre for Medium-Range Weather Forecasts. The reanalysis data were 170 

produced by combining weather forecast models with observations using data 171 

assimilation, that is, the four-dimensional variational assimilation (4D-Var) method 172 

(Dee et al., 2011). In general, this is an incremental and iterative method to minimise 173 

a cost function to reduce the biases between observed values and the available short-174 

range forecasts (Flemming et al., 2015). These datasets have been produced and 175 

archived on a reduced Gaussian grid, which has quasi-uniform spacing across the 176 

globe. Specifically, reduced Gaussian grids have a series of evenly spaced data grids 177 

along each latitude, which are spaced at quasi-regular intervals. Close to the equator, 178 

there are many points along a latitude parallel, but near the pole, only a few points 179 

along a latitude parallel. Furthermore, the datasets were interpolated to a regular grid 180 
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at a horizontal resolution of 0.125°. The default interpolation method is bilinear for 181 

our continuous parameters (e.g., albedo and SW). For SW data, we used the surface 182 

layer at a range of 0–7 cm, as surface soil moisture affected by temperature and 183 

precipitation is sensitive to vegetation change (McColl et al., 2017). For albedo data, 184 

in the short-wave radiation scheme, the surface reflection is handled by combining 185 

direct and diffuse radiation. Over land, surface albedo is derived from the monthly 186 

mean climatology of its visible and near-infrared direct and diffuse components built 187 

from MODIS albedo over the years 2000-2003 (Park, 2010; Schaaf et al., 2002). It 188 

can be used to assess potential environmental impacts from vegetation changes in 189 

different climatic regions, such as impacts on the regional energy balance. 190 

China’s ground temperature and precipitation grid datasets (V2.0) at 0.5 ° × 0.5 ° 191 

resolution were provided by the National Meteorological Information Center of the 192 

China Meteorological Administration. The data cover most of China, excluding 193 

Taiwan, with 2472 national-level meteorological observation stations. Topography 194 

and vegetation type datasets were provided by the Geospatial Data Cloud 195 

(http://www.gscloud.cn/) and Resource and Environmental Data Clouds Platform 196 

from the Chinese Academy of Science (http://www.resdc.cn), respectively. These 197 

datasets have been widely applied in regional climate change research in China (Ren 198 

et al., 2015), and they provided accurate data for mapping the spatial distribution of 199 

Köppen–Geiger climatic types in the present study. We also collected monthly 200 

gridded precipitation and temperature datasets at 0.5 ° × 0.5 ° resolution from the 201 

http://www.gscloud.cn/
http://www.resdc.cn/
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University of East Anglia Climatic Research Unit (CRU TS V.4.02) (Harris et al., 202 

2014) to generate the Köppen map. CRU TS V.4.02 provides a gridded time-series 203 

dataset based on observations from more than 4,000 sites over land. 204 

------------------------------------------------------ 205 

Place Table 1 206 

------------------------------------------------------ 207 

3.2 Köppen–Geiger climate classification 208 

We used the Köppen–Geiger climate classification (Peel et al., 2007) to divide China 209 

into five climatic categories: tropical (A), arid (B), temperate (C), continental (D), and 210 

alpine (E) (Table S1). Given that the annual shifts in these climate zones may produce 211 

unrelated trends in the calculated results prior to the climate zoning analysis, we first 212 

applied the 5-year running mean to eliminate biases in climate variability (Mahlstein 213 

et al., 2013). Then, we determined the cumulative percentage of area change of all 214 

climatic zones during 1982–2012 relative to the spatial distribution in the first year 215 

(1982) (Huang et al., 2020). As each grid was assigned an initial climate category, 216 

altered grids were included if they shifted to a new climate type. Percentage area of 217 

specific climate was based on the number of grids of different climate types. To 218 

validate the applicability of our results, we compared the maps over the period 1982–219 
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2012 to the map generated by the Climatic Research Unit (CRU) monthly temperature 220 

and precipitation (Figure S1-2). 221 

3.3 Statistical analysis 222 

One of the widely used non-parametric trend tests is the Mann–Kendall trend test 223 

(Text S1) (Mann, 1945; Kendall, 1975), which has been widely used to assess the 224 

significance of trends in meteorological time series. The null hypothesis in the Mann-225 

Kendall test is that the data are independent and randomly ordered. The results 226 

elucidate the magnitude of the correlation and the direction of the relationship. The 227 

value of the coefficient ranges from 1 to –1, indicating a positive correlation and a 228 

negative correlation, respectively. Furthermore, we assume that the data are normally 229 

distributed. The null hypothesis states that the population correlation coefficient is 230 

equal to zero, which indicates that there is no linear correlation between the 231 

environmental variables. An alternative hypothesis was that it is not equal to zero. 232 

The t-test was used to determine whether the correlation coefficient was significantly 233 

different from zero, indicating an association between the two variables. 234 

3.4 Sensitivity analysis 235 

We conducted a sensitivity analysis to evaluate the evolution of climate zones in 236 

response to temperature and precipitation. First, we separately maintained each 237 

monthly temperature or precipitation at the same value as the initial year (1982) to 238 

compute the simulated percentage area of each climate zone. Second, we compared 239 

the experimental results with the observed percentage area of each zone to identify the 240 
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relative influence of the two climatic factors (e.g., either temperature or precipitation). 241 

Lastly, we utilised the coefficient of determination (r2) and significance (p) value to 242 

determine the sensitivity of each climate zone to temperature and precipitation. 243 

4 Results 244 

4.1 Spatiotemporal variability of temperature, precipitation, and vegetation 245 

We observed that the linear trends of annual temperature and precipitation featured 246 

clear spatial characteristics during 1982–2012 (Figure 2a-b). The highest rates of 247 

temperature rise were located in the Qinghai–Tibet Plateau (0.07 °C/y), East Inner 248 

Mongolia (0.05 °C/y), and the lower reaches of the Yangtze River (0.05 °C/y), while 249 

negative trends were most prominent in Northeast China (-0.01 °C/y). Negative trends 250 

in precipitation were predominantly observed in the middle and lower reaches of the 251 

Yangtze River (-25.2 mm/y), the Yunnan–Guizhou Plateau (-17.2 mm/y), and the 252 

Northeast Plain (-15.3 mm/y). Meanwhile, large increases in precipitation were 253 

observed in Northwest China, such as the Tianshan mountain region (6.3 mm/y) and 254 

the Qinghai–Tibet Plateau (9.4 mm/y). 255 

In addition, we observed that the correlation between temperature and precipitation 256 

and NDVI between 1982 and 2012 has obvious regional characteristics. Overall, the 257 

temperature change (p < 0.05, MK) has a greater impact on vegetation growth than 258 

precipitation nationwide, especially in southern China and the Qinghai-Tibetan 259 

Plateau (Figure 2c), where NDVI is more sensitive to temperature changes. However, 260 
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NDVI in eastern Inner Mongolia and Tianshan area is more sensitive to precipitation 261 

decrease, with a significance level of 0.05 (t-test). 262 

The spatiotemporal changes in temperature and precipitation will alter the regional 263 

climate zonation based on the Köppen–Geiger climate classification, and different 264 

climatic zones are likely to have varying sensitivities to the changes. For example, the 265 

rapid temperature increase in the Qinghai–Tibet Plateau is likely to result in a 266 

shrinking of the alpine climate zone and an expansion of the continental climate zone, 267 

triggering a rapid response to vegetation changes, including types and distribution. 268 

Furthermore, the observed decrease in precipitation in the Northeast Plain is likely to 269 

lead to the expansion of arid climate zones. 270 

------------------------------------------------------ 271 

Place Figure 2 272 

------------------------------------------------------ 273 

4.2 Spatiotemporal variability in the climate zone 274 

Figure 3 illustrates the spatial distribution of China’s climate zones in 1982, 1990, 275 

2000, and 2010. Table 2 compares the 1990, 2000, and 2010 results relative to the 276 

baseline time (1982). The comparisons of 1982 to 1990 and 2000 to 2010 show that 277 

the percentage areas of arid zones are, respectively, reduced by -1.1% and -1.74%, but 278 

expanded from 1990 to 2000. In space, the largest changes in the percentage area of 279 
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arid zones were concentrated on the North China Plain and the Northeast Plains. 280 

Many areas alternated between the continental and arid climates—particularly in the 281 

northeast—in response to changes in precipitation, such as the marked precipitation 282 

reduction from 1990 to 2005 (Figure 2b). The percentage area of the temperate zone 283 

has expanded since 1982, with the highest increase (1.34%) observed from 1982 to 284 

1990. Spatially, these changes occurred at the northern boundary of the temperate 285 

zone. The boundary between the Qinling Mountain and the Huaihe River Line shifted 286 

towards the north between 1982 and 1990, and gradually back towards the south 287 

thereafter. The temporal trends in the percentage area of the continental zone are 288 

directly opposite to the trend in the arid zone, which expanded by 0.2% and 1.95% 289 

from 1982 to 1990, and from 2000 to 2010, respectively, and reduced by -3.72% from 290 

1990 to 2000. The total percentage area of the alpine zone has decreased consistently 291 

since 1982. Spatially, these changes occurred at the boundary between the alpine and 292 

continental zones. The areal expansion of the temperate zone resulted in the alpine 293 

zone in the Qinghai–Tibet Plateau shrinking, which has been predominantly replaced 294 

by the continental zone. In general, we observed clear fluctuations in the percentage 295 

area of arid, temperate, and continental zones, and a continued decrease in the 296 

percentage area of alpine zone since 1982. 297 

------------------------------------------------------ 298 

Place Figure 3 299 
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------------------------------------------------------ 300 

------------------------------------------------------ 301 

Place Table 2 302 

------------------------------------------------------ 303 

Figure 4 indicates that the cumulative percentage of area change in all climate zones 304 

significantly increased from 12.08% to 18.98% at a rate of 0.204%/y from 1983 to 305 

2012 at a significance level of 0.05 (MK). However, we observed differences in the 306 

percentage area change between each climate zone from 1982 to 2012 (Figure 5). In 307 

general, the arid and continental zones expanded at rates of 0.004%/y and 0.12%/y, 308 

respectively, while the percentage areas of temperate and alpine zones decreased by -309 

0.05%/y and -0.07%/y at a significance level of 0.05, respectively. Moreover, we 310 

detected a signal over each climate zone in 2005, where the percentage areas of the 311 

arid and temperate zones evidently decreased from 34.46% to 25.26% and 22.8% to 312 

22.52%, respectively. The area of the continental and alpine zones increased from 313 

26.01% to 34.1% and 16.58% to 17.32%, respectively. These change trends around 314 

2005 should be attributed to the differential response of specific climate zones to 315 

notable changes in temperature and precipitation. 316 

------------------------------------------------------ 317 

Place Figure 4 318 
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------------------------------------------------------ 319 

------------------------------------------------------ 320 

Place Figure 5 321 

------------------------------------------------------ 322 

4.3 Climate zone sensitivity to driving forces 323 

Figure 6 and Table 3 show the linear fitting results of the sensitivity experiments 324 

between observed and simulated percentage areas for specific climate zones in 325 

different scenarios during 1982–2012. Where temperature is held constant, the 326 

simulated change in the percentage area approximates the observed changes with r2 of 327 

0.855 and 0.815 (p < 0.01, t-test) in arid and continental zones, respectively. In this 328 

case, the linear fitting coefficients between the simulated and observed changes are 329 

0.646 and 0.514 (p < 0.01, t-test) in the temperate and alpine zones, respectively. On 330 

the contrary, where precipitation is held constant, the linear fitting coefficients of 331 

simulated to observed changes are 0.473 and 0.753 (p < 0.01, t-test) in arid and 332 

continental zones, respectively. However, the correlation between the observed and 333 

simulated percentage area was stronger with temperature change, with r2 values of 334 

0.98 and 0.968 (p < 0.01, t-test) in the temperate and alpine zones, respectively. In 335 

general, through sensitivity analysis, precipitation seems to be the main driver in the 336 

dynamics of arid and continental zones, while temperature dominates the area change 337 
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of temperate and alpine zones. However, considering the nature of the Köppen 338 

scheme, temperature and precipitation essentially determine the changes in different 339 

climate zones. Therefore, we cannot ignore the important role of non-dominant 340 

factors in their respective climate zones. Particularly, in the continental zone the 341 

fitting coefficients between the simulated and observed changes in different scenarios 342 

are relatively close, with r2 values of 0.815 and 0.753, respectively, indicating that 343 

temperature change also plays an important role in the change process in specific 344 

climate zone. 345 

------------------------------------------------------ 346 

Place Figure 6 347 

------------------------------------------------------ 348 

------------------------------------------------------ 349 

Place Table 3 350 

------------------------------------------------------ 351 
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4.4 Response of vegetation to climate zone and links to surface soil water content and 352 

albedo 353 

Figure 7 shows the trends in the annual SW content, NDVI, albedo, and the 354 

correlation between albedo and NDVI for the period 1982–2012. Spatial changes in 355 

NDVI are related to surface moisture and albedo. We observed a decrease in surface 356 

SW content in the Northeast Mountains area and South China (Figure 7a). In contrast, 357 

we observed a gradual increase in soil moisture content in the middle and west of 358 

Tibet, the Northeast plain, and the Huaihe River Basin. We observed an increase in 359 

NDVI in the Northeast Plain, Huaihe River Basin, and the Tianshan Mountains 360 

(Figure 7b), and a decrease in NDVI in the Northeast, Yangtze River, Pearl River, and 361 

Yunnan–Guizhou Plateau. The albedo trends of the middle and lower reaches of the 362 

Yangtze River Basin, the Northeast Mountains, Southern China, and the Western 363 

border mountains are more pronounced than elsewhere (Figure 7c). Figure 7d 364 

illustrates the correlation between the NDVI and albedo. Albedo and NDVI were 365 

positively correlated in Central and Western China, particularly in the Northeast plain, 366 

the Yarlung Zangbo River Basin, and in Eastern Inner Mongolia. 367 

------------------------------------------------------ 368 

Place Figure 7 369 

------------------------------------------------------ 370 
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Figure 8 depicts the relationship between the percentage area of each climate zone 371 

and their dominant driving factors (precipitation or temperature based on the 372 

sensitivity experiments), NDVI, and SW anomalies during 1982–2012. In general, 373 

changes in the percentage area of each climate zone are clearly related to the 374 

dominant driving factor, while changes in NDVI are influenced directly by SW 375 

content affected by the climate zone. 376 

The percentage area of the arid zone increased slightly prior to 2005, which was 377 

consistent with changes in precipitation (Figure 8a). In contrast, the percentage area of 378 

arid zones decreased after 2005, which is opposite to the observed precipitation trend. 379 

With the rapid increase in precipitation, the percentage area of the arid zone and SW 380 

tended to decrease. Temperature was the dominant control on the percentage area of 381 

temperate zones. After 2005, the percentage area reduced from 27.91% to 26.52% in 382 

response to a temperature decrease from 16.71 °C to 16.16 °C. Since 2005, the area 383 

reduction of temperate climate has been concentrated on the North China Plain, where 384 

precipitation and SW have increased rapidly. Due to the decrease in coverage of 385 

temperate zones and the decrease in precipitation in the Yangtze River area, NDVI 386 

decreased from 0.646 to 0.524 since 2005. The percentage area of the continental 387 

zone increased from 23.36% to 27.20% in response to an increase in precipitation 388 

from 472 mm to 572 mm, as the evolution of the continental zone is more sensitive to 389 

changes in precipitation than changes in temperature. With the decrease in 390 

precipitation and SW before 2005, the disappearing area was mainly in the Northeast 391 
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Plain, and the overall NDVI of the continental zone increased due to the increase in 392 

the proportion of forest area. Since 2005, due to the rapid increase in precipitation, the 393 

percentage area has also increased rapidly, particularly in the Northeast Plain and 394 

Qinghai-Tibet Plateau, which decreased the overall SW and NDVI in the continental 395 

zone. The percentage area of the alpine zone was negatively correlated with changes 396 

in temperature and SW. Prior to 2005, the percentage area decreased from 21.9% to 397 

20.9% in response to increasing temperature from –4.8 °C to –3.7 °C. However, the 398 

percentage area expanded from 20.9% to 21.2% and the NDVI increased from 0.371 399 

to 0.379 since 2005 in response to a temperature change from –3.7 °C to –4.3 °C. 400 

Since 2005, the emerging area of the alpine zone has been concentrated between the 401 

alpine zone and the continental zone where the vegetation status is usually more 402 

productive than of that in the alpine zone. 403 

------------------------------------------------------ 404 

Place Figure 8 405 

------------------------------------------------------ 406 

Figure 9 shows the response of annual NDVI variability to albedo from 1982 to 2012. 407 

In general, there are evident differences between NDVI and albedo in different 408 

climate zones. For temperate and alpine climate zones, we found that the changes in 409 

NDVI were significantly correlated to albedo (p <0.05, t-test) during 1982–2012, in 410 

which the higher NDVI basically corresponds to lower albedo. However, the 411 
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relationship between albedo and NDVI is more complex in arid and continental 412 

climates, particularly during 1995–2005. 413 

The NDVI correlated significantly with albedo (r = –0.82, p < 0.01) in the temperate 414 

zone (Figure 9b). Surface SW content after 2005 resulted in a rapid decrease of NDVI 415 

from 0.32 to 0.28, while the albedo increased from 0.17 to 0.18. NDVI also correlated 416 

significantly with albedo during 1982–2012 (r = –0.476, p < 0.05) in the alpine zone. 417 

Changes in temperature and surface SW since 2005 resulted in an increase in NDVI 418 

and a decrease in albedo from 0.187 to 0.185. 419 

In the arid and continental climate zones, the NDVI variability during 1982–1995 and 420 

2005–2012 was negatively correlated with albedo, while NDVI variability positively 421 

correlated with albedo during the period 1995–2005. In particular, the observed 422 

changes in 1995–2005 predominantly occurred in the Northeast Plain, where 423 

precipitation had reduced and caused an increase in albedo. Precipitation is the 424 

dominant control on the evolution of arid and continental climate zones, as changes in 425 

precipitation caused notable shifts in the two climate types. Cultivated vegetation is 426 

predominantly distributed in the Northeast Plain, according to the Chinese vegetation 427 

atlas (2000). The NDVI increased from 1995 to 2005 in arid climate zones, as the 428 

NDVI in the changed area was clearly higher than in low shrubland, meadows, and 429 

desert regions. Furthermore, decreasing precipitation in continental climate zones had 430 

reduced NDVI from 0.45. to 0.43, while albedo decreased from 0.183 to 0.181 from 431 

1995 to 2005. 432 
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------------------------------------------------------ 433 

Place Figure 9 434 

------------------------------------------------------ 435 

Figure 10 further highlights the observed differences in NDVI, albedo, and SW trends 436 

of specific climate zones. SW content and NDVI predominantly increased and the 437 

albedo decreased during the vegetation growing periods. The SW content in the arid 438 

zone significantly decreased from February to April at rates of –0.4 × 10−3 m3 m−3/y to 439 

-0.7 × 10−3 m3 m−3/y. We also observed significant decreases in February, March, 440 

April, and September (continental zones). A significant increasing trend in June and a 441 

decreasing trend in March and September were detected in the alpine climate zone. 442 

The significant decrease in NDVI occurred in November and December during the 443 

non-vegetation growing period (continental zones). Furthermore, in the arid and 444 

alpine zones, the monthly trends of albedo increased, while predominant trends in 445 

temperate and continental climates decreased. More importantly, weak changes in 446 

albedo accompanied the strong trends in NDVI and SW content during the vegetation 447 

growing periods. 448 

------------------------------------------------------ 449 

Place Figure 10 450 

------------------------------------------------------ 451 
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5 Discussion 452 

The spatial scales at which climate changes are measured are extremely important, 453 

since the response mechanism may change as the scale changes (Aalto et al., 2018; 454 

Chen et al., 2017; Järvi et al., 2019; Wu, 2004). On the one hand, our results reveal 455 

that major climate zones respond differently to changes in temperature and 456 

precipitation, indicating that arid and continental zones are more sensitive to 457 

precipitation, while temperate and alpine zones are more responsive to temperature. It 458 

should be noted that global universal climate change laws are not necessarily 459 

applicable to regional-scale climate change. Recent studies (Burrows et al., 2011; Lu 460 

et al., 2019; Mahlstein et al., 2013; Sunday et al., 2011) have shown that global 461 

warming determines the dynamics of global climate zones. However, our results 462 

demonstrate that it does not necessarily determine the dynamics in regional climate 463 

zones. On the other hand, we must consider the climate zone change at different 464 

spatial resolutions, as the statistical results may change as the possible uncertainty of 465 

different spatial resolutions. In this study, we selected regional high-density 466 

meteorological data with a resolution of 0.5° to explore changes in regional climate 467 

zones. This is because the application of relatively coarse spatial resolution may limit 468 

the effectiveness of climatic assessments and potential ecological impacts, particularly 469 

when it is insufficient to describe small-scale features such as in some high mountain 470 

areas (Beck et al., 2018; Rohli et al., 2015b). In view of this, climate change research 471 
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must fully consider the selection of a suitable spatial research scale and resolution 472 

because this will help us understand the climate itself (Guan et al., 2020). 473 

In addition, our results demonstrate that overall changes in the percentage area of each 474 

climate zone were related to surface SW content, NDVI, and albedo in regions of high 475 

(temperate zones) and low (alpine zones) vegetation coverage. Since climate zones 476 

are considered a substitute for vegetation distribution (Rohli et al., 2015; Wang & 477 

Overland, 2004), regional climate zones may show some similarities in the surface 478 

biophysical properties of land cover. Changes in land cover influence radiative 479 

forcing and have been shown to directly affect regional energy balances (Abera et al., 480 

2019a; Lee Et al., 2011; Li et al., 2015). Similar to shifts in land cover, when climate 481 

zones expand or shrink in response to changes in regional temperature or 482 

precipitation, these changes can also affect the greening or browning of regional 483 

vegetation (Chen et al., 2019), altering regional surface roughness, albedo, 484 

evaporation, and net radiation partitioning. However, it is not easy to fully elucidate 485 

the interactive mechanisms and feedbacks related to the regional energy balance 486 

based on shifts of climate zones, such as at the pixel level (Armstrong et al., 2016; 487 

Gerken et al., 2018; Stark et al., 2016). This is due to the lack of observational data on 488 

key climatic and biophysical variables, particularly in remote regions. Furthermore, 489 

according to the empirical nature of the Köppen classification scheme, the fluctuating 490 

climatic zone is significantly different from the surface reference for vegetation cover 491 
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with multi-year persistence. Despite these limitations, the study still effectively sheds 492 

light on the impact of shifting climate zones on the surface biophysical characteristics. 493 

Our results also indicate inconsistencies in the correlations between climate zone 494 

shifts, NDVI and albedo in arid and continental climate zones. From 1995 to 2005, 495 

the precipitation-controlled shifts between arid and continental zones were mainly 496 

concentrated in the Northeast Plain. Due to the decrease in precipitation (Figure 2b), 497 

the continental zone in the Northeast Plain was replaced by arid zones. However, 498 

there was no obvious change in the type and distribution of vegetation, which may not 499 

only be due to human activities but also likely affected by the inertness of modern 500 

ecosystems to climate change (Scheffer et al., 2001). On the one hand, human 501 

activities such as large-scale agricultural reclamation and irrigation (Piao et al., 2003; 502 

Zhu et al., 2013) could change regional soil properties (e.g., moisture, pH, organic 503 

matter, nitrogen, and microorganisms) to affect the succession of vegetation types 504 

(Jiang et al., 2020), further influencing the biophysical characteristics of vegetation 505 

types. On the other hand, the threshold range of precipitation in response to different 506 

vegetation types could be more stable than that of the precipitation range of the 507 

Köppen arid climate (Mahlstein et al., 2013; Peel et al., 2007). Zhao et al. (2015) 508 

indicated that a threshold effect may exist in the vegetation response to climate 509 

change in many ecosystems. Although it is difficult to distinguish the different effects 510 

quantitatively, internal and external feedback jointly promote the stability of regional 511 

ecosystems and vegetation types. 512 
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6 Conclusion 513 

In this study, we investigated the vegetation response to shifting climate zones and its 514 

potential impacts on albedo and SW content in China. As the substantial changes in 515 

temperature and precipitation across time and space, we detected significant shifts in 516 

climate zonation on a nationwide level. From 1983 to 2012, the cumulative 517 

percentage of area change in all climate zones significantly increased from 12.08% to 518 

18.98% at an annual growth rate of 0.204% (p < 0.05, MK). The percentage areas of 519 

arid and continental zones expanded at rates of 0.004%/y and 0.12%/y, respectively, 520 

while the temperate and alpine zones decreased by -0.05%/y and -0.07%/y, 521 

respectively. Sensitivity results in the different simulated cases suggest that the 522 

temperature and precipitation impact in specific climate zones are different. 523 

Specifically, temperature is the dominant control on the evolution of temperate and 524 

alpine zones with r2 of 0.98 and 0.968 between simulated and observed changes, 525 

respectively, while precipitation is the dominant control on the evolution of arid and 526 

continental zones with r2 of 0.856 and 0.815, respectively. Vegetation substantially 527 

responds to shifting climate zones with impact on surface biophysical characteristics. 528 

Specifically, a pronounced albedo and NDVI feedback response was detected in 529 

temperate and alpine zones with a 0.05 significance level. However, inconsistent 530 

feedbacks of NDVI to albedo were also reported in arid and continental climates, 531 

particularly during 1995-2005. Furthermore, recent climate warming has influenced 532 
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the seasonal trends in vegetation activity. The SW content and NDVI predominantly 533 

increased and the albedo decreased during the vegetation growing periods. 534 

In general, the redistribution of vegetation has emerged as one of the most 535 

pronounced biological responses to climate change. Considering that the vegetation 536 

distribution represents an expression of ‘visible climate’, the rapid increase or 537 

decrease of climate-suitable areas will alter their distributional ranges and seasonal 538 

activities to maintain their niche, especially as the global temperature may increase by 539 

at least 1.5°C in the near future. If the speed of vegetation species tracks or adaptions 540 

to climate conditions cannot reach the rate of climate change, it may lead to the 541 

disaggregation of vegetation species assemblages, and the spatial distribution of 542 

original vegetation will be gradually replaced by novelty vegetation, in which regional 543 

surface biophysical characteristics and radiative mechanisms will inevitably change, 544 

especially in the event of accelerated warming in the future. Moreover, future relevant 545 

analysis may be useful in a wide range of environmental topics, especially with the 546 

advent of continuous high-quality and high-resolution data products, which will 547 

improve our ability to describe climate types in areas of sharp climatic gradients (e.g. 548 

mountainous areas of the Qinghai-Tibet Plateau). 549 
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Figure 1. Distribution of (a) annual average temperature (China's ground temperature 811 

0.5° × 0.5° grid dataset) (http://data.cma.cn/data/index/), (b) annual average 812 

precipitation (China's ground precipitation 0.5° × 0.5° grid dataset), (c) topography 813 
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(SRTM DEM) (http://www.gscloud.cn/), and (d) vegetation types extracted from year 814 

2000 land cover data (http://www.resdc.cn/) in China. 815 

Figure 2. Trends in (a) annual average temperature and (b) precipitation and 816 

correlations of NDVI to (c) temperature and (d) precipitation during 1982–2012. 817 

Figure 3. The spatial distribution of the Köppen climate zones in China for (a) 1982, 818 

(b) 1990, (c) 2000, and (d) 2010. Each year represents an average period of five 819 

consecutive years. A–E represents tropical, arid, temperate, continental, and alpine 820 

climates, respectively. During 1990–2000, shifts between continental and arid 821 

climates predominantly occurred in the Northeast Plain. 822 

Figure 4. Cumulative percentage of area change of all climate zones in China during 823 

1983–2012. The temporal trend was statistically significant at the significance level of 824 

0.05, based on the MK test. 825 

Figure 5. Temporal variations of percentage area for (a) arid, (b) temperate, (c) 826 

continental, and (d) alpine zones in China during 1982–2012. Changes in climatic 827 

type percentage areas are based on 5-yr running means of ground temperature and 828 

precipitation 0.5° × 0.5° grid datasets. Note that the y-axis scale differs between 829 

climatic zones. 830 

Figure 6. Sensitivity analysis of (a) arid, (b) temperate, (c) continental, and (d) alpine 831 

zones. Sprecip and Stemp represent the sensitivity analysis results with precipitation or 832 

temperature held constant, respectively. The results show that precipitation is the 833 

dominant driver in the arid and continental climate zones, while temperature is the 834 

dominant driver in the temperate and alpine climate zones. All fittings were 835 
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statistically significant (p < 0.01, t-test). Note that the axis scale differs between 836 

climatic zones. 837 

Figure 7. Trends in (a) surface SW content (ERA-interim), (b) NDVI (GIMMS), (c) 838 

albedo (ERA-interim), and (d) the correlation between albedo and NDVI from 1982 839 

to 2012. Statistically significant correlations (p < 0.05) are marked with crosses. 840 

Figure 8. The response of the percentage area (PA) to its dominant climate control 841 

(temperature or precipitation) in (a) arid, (b) temperate, (c) continental, and (d) alpine 842 

climate zones from 1982 to 2012. The percentage area is indicated by the location of 843 

circles, while mean NDVI is indicated by the colour of the circles. Changes in 844 

percentage area are negatively correlated to precipitation in arid climate and to 845 

temperature in alpine climate, while percentage area change is positively correlated to 846 

temperature in temperate climate and to precipitation in continental climate. The 847 

histograms indicate changes in the surface SW anomaly. 848 

Figure 9. The relationship between annual NDVI (red lines) and albedo (blue line) 849 

from 1982 to 2012. 850 

Figure 10. Monthly trends in NDVI, albedo, and SW anomaly for (a) arid, (b) 851 

temperate, (c) continental, and (d) alpine climate zone during 1982–2012. The green 852 

shaded areas represent the growing period (Arid: May to October; Temperate: April to 853 

November; Continental: May to mid-October; Alpine: May to mid-September). The 854 

clear monthly trends in NDVI, albedo, and SW content occur during the growing 855 
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period. The temporal trend was statistically significant at the significance level of 856 

0.05, based on the MK test. 857 

Table 1. Remote sensing and meteorological reanalysis dataset characteristics 858 

Table 2. Changes in percentage area of different periods relative to baseline time 859 

(1982). 860 

Table 3. Qualitative sensitivity parameters of the percentage area in each climate 861 

zone where either temperature or precipitation is held constant. 862 



Tables 

Table 1. Remote sensing and meteorological reanalysis dataset characteristics 

Data type  Product  Version Spatial 

resolution 

Temporal 

resolution  

Timestep 

NDVI GIMSS NDVI3g V0 0.0833° × 

0.0833° 

Half month 1982–

2012 

Temperature China's ground 

temperature 0.5° × 

0.5° 

Grid data set  

V2.0 0.5° × 

0.5° 

Monthly 1982–

2012 

Precipitation China's ground 

precipitation 0.5° 

× 0.5° 

Grid data set 

V2.0 0.5° × 

0.5° 

Monthly 1982–

2012 

Albedo ERA-Interim V2.0 0.125° × 

0.125° 

Monthly 1982–

2012 

Volumetric 

soil water 

ERA-Interim  V2.0 0.125° × 

0.125° 

Monthly 1982–

2012 

Topography SRTM DEM \ 1 km  \ 2000 

Vegetation 

type 

Land use/cover 

(2000) 

\ 1 km \ 2000 

 



Table 2. Changes in percentage area of different periods relative to baseline time 

(1982). 

Comparison Arid Temperate Continental Alpine 

ΔPA1990 –1.10 1.34 0.20 –0.47 

ΔPA2000 3.01 0.95 –3.72 –0.33 

ΔPA2010 –1.74 0.24 1.95 –0.50 

 

Table 3. Qualitative sensitivity parameters of the percentage area in each climate 

zone where either temperature or precipitation is held constant. 

Zones Sensitivity 

parameter 

Linear regression 

equation 

Coefficients of 

determination (r2) 

Significance 

(p) 

B Sprecip y = 0.74x + 7.73 0.856 p < 0.01 

Stemp y = 0.3x + 19.58 0.473 p < 0.01 

C Sprecip y = 0.13x + 20.18 0.646 p < 0.01 

Stemp y = 0.95x + 1.39 0.980 p < 0.01 

D Sprecip y = 0.59x + 11.12 0.815 p < 0.01 

Stemp y = 0.49x + 17.21 0.753 p < 0.01 

E Sprecip y = –1.31x + 40.57 0.514 p < 0.01 

Stemp y = 1.28x – 5.47 0.968 p < 0.01 

B–E represent arid, temperate, continental, and alpine climates, respectively. 



Figure 1. Distribution of (a) annual average temperature (China's ground temperature 

0.5° × 0.5° grid dataset) (http://data.cma.cn/data/index/), (b) annual average 

precipitation (China's ground precipitation 0.5° × 0.5° grid dataset), (c) topography 

(SRTM DEM) (http://www.gscloud.cn/), and (d) vegetation types extracted from year 

2000 land cover data (http://www.resdc.cn/) in China. 

 

 

http://www.resdc.cn/


Figure 2. Trends in (a) annual average temperature and (b) precipitation and 

correlations of NDVI to (c) temperature and (d) precipitation during 1982–2012. 

 

 



Figure 3. The spatial distribution of the Köppen climate zones in China for (a) 1982, 

(b) 1990, (c) 2000, and (d) 2010. Each year represents an average period of five 

consecutive years. A–E represents tropical, arid, temperate, continental, and alpine 

climates, respectively. During 1990–2000, shifts between continental and arid 

climates predominantly occurred in the Northeast Plain. 

 

 



Figure 4. Cumulative percentage of area change of all climate zones in China during 

1983–2012. The temporal trend was statistically significant at the significance level of 

0.05, based on the MK test. 

 

 



Figure 5. Temporal variations of percentage area for (a) arid, (b) temperate, (c) 

continental, and (d) alpine zones in China during 1982–2012. Changes in climatic 

type percentage areas are based on 5-yr running means of ground temperature and 

precipitation 0.5° × 0.5° grid datasets. Note that the y-axis scale differs between 

climatic zones. 

 

 



Figure 6. Sensitivity analysis of (a) arid, (b) temperate, (c) continental, and (d) alpine 

zones. Sprecip and Stemp represent the sensitivity analysis results with precipitation or 

temperature held constant, respectively. The results show that precipitation is the 

dominant driver in the arid and continental climate zones, while temperature is the 

dominant driver in the temperate and alpine climate zones. All fittings were 

statistically significant (p < 0.01, t-test). Note that the axis scale differs between 

climatic zones. 

 

 



Figure 7. Trends in (a) surface SW content (ERA-interim), (b) NDVI (GIMMS), (c) 

albedo (ERA-interim), and (d) the correlation between albedo and NDVI from 1982 

to 2012. Statistically significant correlations (p < 0.05) are marked with crosses. 

 

 



Figure 8. The response of the percentage area (PA) to its dominant climate control 

(temperature or precipitation) in (a) arid, (b) temperate, (c) continental, and (d) alpine 

climate zones from 1982 to 2012. The percentage area is indicated by the location of 

circles, while mean NDVI is indicated by the colour of the circles. Changes in 

percentage area are negatively correlated to precipitation in arid climate and to 

temperature in alpine climate, while percentage area change is positively correlated to 

temperature in temperate climate and to precipitation in continental climate. The 

histograms indicate changes in the surface SW anomaly. 

 

 



Figure 9. The relationship between annual NDVI (red lines) and albedo (blue line) 

from 1982 to 2012. 

 

 



Figure 10. Monthly trends in NDVI, albedo, and SW anomaly for (a) arid, (b) 

temperate, (c) continental, and (d) alpine climate zone during 1982–2012. The green 

shaded areas represent the growing period (Arid: May to October; Temperate: April to 

November; Continental: May to mid-October; Alpine: May to mid-September). The 

clear monthly trends in NDVI, albedo, and SW content occur during the growing 

period. The temporal trend was statistically significant at the significance level of 

0.05, based on the MK test. 

 

 


