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A B S T R A C T   

Variations in climate types are commonly used to describe changes in natural vegetation cover in response to 
global climate change. However, few attempts have been made to quantify the heterogeneous dynamics of 
climate types. In this study, based on the Coupled Model Intercomparison Project phase 5 (CMIP5) historical and 
representative concentration pathway (RCP) runs from 18 global climate models, we used Shannon’s Diversity 
Index (SHDI) and Simpson’s Diversity Index (SIDI) to characterise of global climate heterogeneity from a 
morphological perspective. Our results show that global climate heterogeneity calculated by the SHDI/SIDI 
indices decreased from 1901 to 2095 at a significance level of 0.01. As radiative forcing intensified from RCP 2.6 
to 8.5, the SHDI/SIDI decreased significantly. Furthermore, we observed that the spatial distribution of global 
climate heterogeneity was significantly reduced, with a pronounced latitudinal trend. Sensitivity analysis indi-
cated that the temperature increase played a more significant role in reducing global climate heterogeneity than 
precipitation under the three warming scenarios, which is possibly attributed to anthropogenic forcing. Our 
findings suggest that the dynamics of global climate heterogeneity can be an effective means of quantifying 
global biodiversity loss.   

1. Introduction 

The relationships between climate change and other ongoing human- 
induced threats (such as loss of natural habitats) are expected to present 
serious challenges for biodiversity in the 21st century. To effectively 
manage and protect natural resources, it is necessary to accurately 
predict the potential impact of climate change on biodiversity (Gaston, 
2000; Deutsch et al., 2008; Elsen et al., 2018). To address this issue, 
researchers have developed a series of bioclimatic models to measure 
the relationships between individual species and climate change 
through statistical or process analysis (Guisan and Zimmermann, 2000; 
Niskanen et al., 2017). In these models, climatic factors are generally 
considered to be the main driving force determining the spatial 

distribution of species (Sunday et al., 2012; Beck et al., 2018). However, 
because most species on Earth lack sufficient population or physiological 
data, it is difficult to construct accurate models or predictions. An 
alternative approach is to use simpler indicators of climate change to 
quantify and explain the different threats and opportunities for ecosys-
tems or biodiversity (Ohlemüller et al., 2008; Beaumont et al., 2011; 
Burrows et al., 2011; Garcia et al., 2014). 

Climatic indicators expressed as isotherm shifts or a mixture of 
temperature and precipitation indices vary across space and time, as 
described in previous studies (Ohlemüller et al., 2008; Vicente-Serrano 
et al., 2010; van der Schrier et al., 2013; Schwalm et al., 2017; Mah-
ony and Cannon, 2018). However, these climatological indicators do not 
necessarily characterise biomes. Given that multi-year vegetation 
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coverage is considered to be ‘visible climate’, the Köppen–Geiger 
climate scheme is commonly used to describe global biome distributions 
(Wang and Overland, 2004; Beck et al., 2018). The strong correspon-
dence between climate and biome types allows the Köppen–Geiger 
criteria to be used across numerous applications. The Köppen–Geiger 
climate classification based on the threshold values and seasonality of 
monthly air temperatures and precipitation as an indicator of vegetation 
coverage was initially summarised by Köppen (1931). Since then, it has 
been modified into different versions (Lee, 1947; Thornthwaite, 1948; 
1961; Feddema, 2005; Kottek et al., 2006; Peel et al., 2007). 

The availability of recently observed and simulated grid datasets 
allows for the diagnosis or prediction of climate change by exploring the 
changing climate type boundaries across time and space. For example, 
Seidel et al. (2008) indicated that the tropical climate type has expanded 
since the 1970 s. Feng et al. (2012) reported that the climate types in 
31.3%–46.3% of global land area are estimated to change by the end of 
this century under RCP4.5 and RCP8.5 scenarios. Mahlstein et al. (2013) 
revealed that the pace of shifts in global climate types under RCP 8.5 is 
significantly related to the temperature increase. Chan and Wu (2015) 
demonstrated that approximately 5.7% of Earth’s surface has become 
drier and hotter. They attributed these changes to anthropogenic ac-
tivities that have occurred since 1950. Lu et al. (2020) revealed patch 
aggregation effects accompanied by changes in the global climatic 
landscape. Despite the widespread use of Köppen metrics in previous 
studies, we still have a limited understanding of how the global climate 
system maintains its heterogeneity, that is, the diversity and complexity 
of the spatial distribution of climate type changes. For example, as the 
temperature rises, cold climates (such as tundra, frost, or alpine cli-
mates) in the Arctic and major mountainous regions of the world tend to 
shrink, while tropical and arid warm climates (such as savannah or 
desert climates) expand. These global complementary changes are likely 
to lead to changes in climate heterogeneity. The strong spatial overlap 
between climate and biome types makes climate heterogeneity for 
explaining the potential impact of climate change on biodiversity. 

The global climatic landscape consists of different patches with 
various climatic hydrothermal conditions (Pickett and Cadenasso, 
1995). Spatial morphology allows the use of a landscape index to 
describe heterogeneous changes in the climatic landscape (Guan et al., 
2020). These morphological measurements are predominantly based on 
the assumption that the spatial heterogeneity of climatic conditions has 
a significant impact on the distribution of spatial vegetation or ecosys-
tems (Garcia et al., 2014). In particular, many species are heavily 
dependent on different climate types, particularly in their key phases of 
life, such as migration, growth, and reproduction. Previous research 
(Guan et al., 2020) has revealed that morphological changes in the 
climate landscape could be an important indicator of climate change. 
However, recent studies have shown that the spatial heterogeneity of 
climate itself has not attracted widespread attention in different 
warming scenarios (Taylor et al., 2012). We hypothesise that the 
decrease of climate heterogeneity will lead to the homogenization of the 
eco-climatic zones, which may further limit the speciation and migra-
tion of species, and reduce the biodiversity at a given spatial scale. 

This study aimed to detect the spatiotemporal characteristics of 
global-scale climate heterogeneity. Owing to the overlapping spatial 
relationships between climate and vegetation, the dynamics of global 
climate heterogeneity can provide insight into global biodiversity 
changes. First, we identified the changes in the main climate type area 
under different warming scenarios to quantify the impact of different 
emission pathways on the climatic landscape. Subsequently, we used the 
diversity index to identify the heterogeneity of spatiotemporal features 
from the perspective of spatial morphology. We then used a sensitivity 
analysis to distinguish the effects of temperature and precipitation on 
climate heterogeneity. Finally, we analysed the impacts of different 
model data uncertainties on the climate heterogeneity calculations. 
Exploring global climate heterogeneity stands to provide a useful 
reference for identifying and predicting future changes in biodiversity. 

2. Materials and methods 

2.1. Climate data and pre-treatments 

We collated global monthly land simulated temperature and pre-
cipitation gridded datasets (excluding Antarctica) derived from multiple 
coupled atmosphere–ocean global climate models (GCMs), dividing 
them into four periods: P1 (1901–1950), P2 (1951–2000), P3 
(2001–2050), and P4 (2051–2095). These GCM simulations were 
collected from the historical and RCP 2.6, 4.5, and 8.5 runs from the 
Coupled Model Intercomparison Project phase 5 (CMIP5) (https://esgf-n 
ode.llnl.gov/search/cmip5/), as established by the World Climate 
Research Programme (Taylor et al., 2012). 

The RCP emission scenarios offer different projections of future 
anthropogenic climate changes (Taylor et al., 2012). This provides an 
opportunity to explore responses over a range of warming trends from 
low to high. Specifically, the RCP 2.6, 4.5, and 8.5 emissions pathways 
correspond to the estimated minimum, medium, and maximum added 
mean radiative forcing (~2.6, 4.5, and 8.5 W/m2, respectively, relative 
to pre-industrial conditions) by the end of this century. In the CMIP5 
design process, the initialisation conditions for each model are sensitive 
to different methods or observational datasets (Taylor et al., 2010). To 
maintain consistency in the results of the models, similar to those of 
Mahlstein et al. (2013) and Lu et al. (2019), we used the same ensemble 
(r1i1p1) from the 18 typical models (Table S1), and all simulations were 
interpolated to regular 1◦ × 1◦ grid boxes by bilinear interpolation to 
maintain the same resolution. 

Furthermore, we used the nine model outputs (Table S2) provided by 
the CMIP5 historical single-forcing experiments that were driven by 
natural forcing only (HIST-NAT), greenhouse gas forcing only (HIST- 
GHG), and combined forcing (HIST-ALL). Because the historical attri-
bution experiment lasted until 2006, we selected 1940–2006 as a typical 
period to illustrate the different effects of natural variation and 
anthropogenic forcing. Specifically, the HIST-NAT simulations were 
driven by natural forcing only (e.g. volcanoes and solar variability) 
evolving in the control run. These simulations further featured fixed pre- 
industrial conditions, such as prescribed atmospheric concentrations of 
some short-lived species and prescribed non-evolving emissions of nat-
ural aerosols and unperturbed land use. Similar to the imposed condi-
tions of NAT, the HIST-GHG simulations were driven by greenhouse gas 
forcing only (consistent with observations) evolving in the control run 
under fixed natural forcing. The HIST-ALL simulations were driven by a 
combination of anthropogenic forcing, natural forcing, and land-use 
changes. In comparison, the contribution of HIST-GHG or HIST-NAT 
experiments to recent climate zone changes can be distinguished from 
the estimates of HIST-ALL. Similar to the above-mentioned analysis, all 
single-forcing experiment datasets were interpolated to regular 1◦ × 1◦

grid boxes by bilinear interpolation to explore the possible causes of 
global climate heterogeneity. 

The Köppen–Geiger scheme can be sensitive to certain thresholds, 
and models can have difficulty in simulating present-day distributions of 
the correct Köppen–Geiger climate zones. Therefore, in this study, we 
followed data pre-treatments previously reported by Mahlstein et al. 
(2013) and Chan et al. (2016). First, the monthly anomalies for each 
historical and RCP run from 1980 to 1999 relative to the monthly mean 
were calculated and then added to the observational ‘base period’ of the 
1980–1999 monthly means to generate the climatological temperature 
and precipitation datasets. For temperature and precipitation, this re-
sults in a time period of 195 years covering 1901–2095. Second, for the 
climate model outputs of single-forcing experiments, we calculated the 
observational monthly means for 1940–1969 and added them to the 
historical monthly anomalies to generate the climatological distribution 
of temperature and precipitation covering 1940–2000. The observed 
monthly temperature and precipitation data from 1980 to 1999 and 
from 1940 to 1969 were provided by the Climatic Research Unit 
Timeseries (CRU TS) version 3.2. CRU TS supplies a gridded time-series 
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dataset based on observational records from more than 4,000 sites 
worldwide. The monthly average surface temperature and precipitation 
are included as climatological references in this study. This method has 
been used widely in similar climatic research fields (Mahlstein et al., 
2013; Feng et al., 2014; Chan et al., 2016) and is helpful for reducing 
errors in climate classification. Subsequently, a five-year running mean 
method was used to increase the robustness of each model’s temperature 
and precipitation datasets because the annual changes may include 
larger internal climate variability unrelated to climate trends. However, 
the results are not highly sensitive to time scales in 15yrs (Mahlstein 
et al., 2013; Chan and Wu, 2015). 

2.2. Computing the Köppen–Geiger climate types 

The Köppen–Geiger climate classification method (Peel et al., 2007) 
was employed to separate the global land area into five climate types 
(the 30 subtypes are not included here) on a grid-scale (Table S3): 
tropical climate (A), arid climate (B), polar climate (E), temperate 
climate (C), and cold climate (D). Based on this scheme, each land grid 
location was assigned a specific climatic code (A–E). In this study, the 
percentage area change of a specific climate type was calculated based 
on the change in the number of grid boxes in that climate type. 

2.3. Computing climate heterogeneity 

The public domain software FRAGSTATS (version 4.2) was used for 
landscape analyses (McGarigal et al., 2002). It has been widely used in 
several fields of research, such as landscape ecology. Although FRAG-
STATS provides several spatial metrics, many quantify similar or iden-
tical aspects of landscape patterns. In most cases, redundant indicators 
have high correlations, or may even correlate perfectly. Despite these 
limitations, landscape indices describe different features of landscape 
patterns, such as shape, structure, and diversity. To reduce the uncer-
tainty of the Köppen map projection, we selected area-based Shannon’s 
Diversity Index (SHDI) and Simpson’s Diversity Index (SIDI) to charac-
terise the dynamics of global climate heterogeneity. In general, SHDI 
(Shannon, 1948) is more sensitive to richness than evenness, whereas 
SIDI (Simpson, 1949) is the opposite. The SHDI increases with the 
number of different patch types, and as the distribution of areas among 
climatic patch types becomes more homogeneous. The SHDI value can 
be determined as follows: 

SHDI = −
∑I

i=1
(pi × lnpi) (1)  

where pi is the proportion of the grid boxes occupied by climatic patch 
types, and I is the number of climatic patch types present in the global 
climate types (I = 5 in this study). This proportion can be estimated as pi 
= Ni/N, where Ni is the total number of grid boxes belonging to the i-th 
type. 

The SIDI (Figure S1–S5) is another measure of diversity and repre-
sents the probability that two grid boxes randomly selected from a cli-
matic sample belong to different climate types. It can be determined as 
follows: 

SIDI = 1 −
∑I

i=1
p2

i (2)  

where pi is the proportion of grid boxes occupied by the climatic patch 
types. When the climatic landscape contains only one patch (i.e. no di-
versity), SIDI = 0. SIDI approaches 1 as the number of different patch 
types increases and the proportional distribution of area among patch 
types becomes more even. 

2.4. Computing the geographic features of global diversity patterns 

For geographic features, we used the moving window and standard 
deviational ellipse (SDE) methods (Scott and Janikas, 2010) to calculate 
the spatial distribution of SHDI. First, using the eight-cell neighbour-
hood rule in the FRAGSTATS 4.2 software platform (McGarigal et al., 
2002), we computed the squared SHDI patterns with a minimum side 
length of 2◦ over each positively valued grid box and returned a value to 
the centre grid boxes. To identify the spatial characteristics in the four 
periods, we used the SDE method from the direction distribution module 
of ArcGIS 10.0 to generate new fields and features, including standard 
distances of long and short axes and elliptical polygons. The long semi- 
axis (Y-standard distance, β) of the ellipse characterises the directional 
trends of the spatial distribution, and the short semi-axis (X-standard 
distance, α) represents the spatial distribution range. The shorter the X- 
standard distance of the SDE, the smaller and more aggregated the 
spatial distribution coverage. 

2.5. Statistical analysis 

The Mann–Kendall trend test (Kendall, 1975; Mann, 1945) is a 
non-parametric trend test that is widely used to assess the significance of 
meteorological time-series trends. The null hypothesis in the Man-
n–Kendall test means that the data are independent and randomly or-
dered. The results of the trend test clarify the magnitude of the 
correlation and direction of the relationship. The range of the coefficient 
values was 1 to –1, which indicates positive and negative correlations, 
respectively. The t-test was used to determine whether the correlation 
coefficient was significantly different from zero, indicating a correlation 
between the two variables. 

2.6. Sensitivity and uncertainty analysis 

Considering temperature and precipitation sensitivities, we first kept 
the temperature or precipitation constant for each model under the three 
emission pathways from 1901 to 2095. Then, we simulated the SHDI for 
each model to distinguish the impacts of temperature and precipitation 
on variations in global climate heterogeneity. In terms of uncertainty, 
we first evaluated the differences of all models in the SHDI simulation 
using a box-and-whisker plot (Zhang et al., 2018), in which the lengths 
of the interquartile range and whisker reflect the biases of each model to 
the corresponding multi-model mean. Meanwhile, based on alpha 
models, the Cronbach alpha (α) coefficient (Bonett and Wright, 2015) 
was used to check the internal consistency of all models as a whole, 
meaning that the smaller the Cronbach’s alpha coefficient value, the 
more discrete the interior. 

3. Results 

3.1. Changes in climate types from the simulation dataset 

Figure 1 illustrates that the degree of change in areas for global 
climate types tends to increase from RCP 2.6 to 8.5. The disappearing 
types occur mainly at high latitudes and altitudes, especially in Alaska, 
East Siberia, Tibet, and East Africa. Overall, tropical, arid, and cold 
climates are expanding, whereas polar climates are decreasing under the 
three emission pathways. Specifically, Fig. 2 indicates that the cumu-
lative percentage area of tropical climate has increased by 1.17%, 
2.00%, and 2.75% in RCP 2.6, 4.5 and 8.5, respectively, in the 
1901–1950/2051–2095 comparison periods. The cumulative increases 
in the arid climate are 1.31%, 1.86%, and 3.44%, respectively. The in-
creases in the cold climate are 1.79%, 1.95%, and 2.26%, respectively. 
However, the polar climates decrease more rapidly with a cumulative 
percentage area of –4.15%, –5.35%, and –7.94% from RCP 2.6 to 8.5, 
respectively. 
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3.2. Changes in global climate heterogeneity 

Figure 3 shows that SHDI decreases at a significance level of 0.01 
(MK) under the three emission pathways. Under RCP 2.6, the multi- 
model mean of SHDI decreases from 1.53 to 1.5 (–0.21 × 10− 3/y) (p 
< 0.01, MK) during 1901–2095. Under RCP 4.5, the downward trends of 
the multi-model means are further strengthened within the range of 1.53 
to 1.47 (–0.32 × 10− 3/y) during the same period. Under RCP 8.5, the 

multi-model means decrease significantly from 1.53 to 1.46 (–0.41 ×
10− 3/y). Overall, as radiative forcing increased from RCP 2.6 to 8.5, the 
SHDI tended to decrease, suggesting that the higher the emissions, the 
greater and more rapid the loss of climate heterogeneity. 

Figure 4 depicts the spatial distributions of SHDI, showing direc-
tional and dispersion changes between the four periods. From RCP 2.6 to 
8.5, the SDE coverage of the SHDI tended to decrease (Fig. 4d). Specif-
ically, the SHDI area decreased from 1.9 × 108 km2 to 1.66 × 108 km2 

Fig. 1. Distributions of emerging and disappearing Köppen climate zones in the multi-model mean between the period of 1901–1950 and 2051–2095.  

Fig. 2. Area change (%) of Köppen major climate types in the multi-model mean between the period of 1901–1950 and 2051–2095.  
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(RCP 2.6), from 1.977 × 108 km2 to 1.63 × 108 km2 (RCP 4.5), and from 
1.945 × 108 km2 to 1.632 × 108 km2 (RCP 8.5). Fig. 4e shows the X- 
standard distance of the SDE with a pronounced latitudinal trend over 
the four periods. The SHDI values reduced from 0.429 × 106 km to 
0.394 × 106 km, from 0.44 × 106 km to 0.393 × 106 km, and from 0.446 
× 106 km to 0.409 × 106 km for RCP 2.6, 4.5, and 8.5, respectively. 
Overall, by comparing the SDE coverage, directional trend, and X- 
standard distance over four periods from RCP 2.6 to 8.5, we identified a 
reduction in the spatial distribution of global climate heterogeneity 
patterns, with clear latitudinal trends. 

3.3. Sensitivity analysis of temperature and precipitation for climate 
heterogeneity 

Figure 5 illustrates the simulated SHDI for different climate sce-
narios, when temperature (S1) or precipitation (S2) are constant from 
1901 to 2095. From RCP 2.6 to 8.5, the minimum, maximum and 
interquartile range of the simulated SHDI for climate scenario (S2) are 
similar to the actual SHDI (S0). Specifically, when precipitation is con-
stant, SHDI (S2) within the range of 1.52 (75th) to 1.499 (25th) for 
RCP2.6, 1.522 (75th) to 1.493 (25th) for RCP4.5, and 1.521 (75th) to 
1.49 (25th) for RCP8.5. In contrast, at constant temperature, SHDI (S1) 
change weakly under the three emission pathways. This suggests that 
temperature is the primary driver in the evolution of global climate 
heterogeneity under different emission pathways. As radiative forcing 
intensifies, increasing temperature will have a greater influence on the 
reduction in global climate heterogeneity than precipitation. 

3.4. Attribution of single-forcing experimental simulations to Köppen 
climate zones 

Figure 6 shows the differences in HIST-NAT, HIST-ALL, and HIST- 
GHG in global climate heterogeneity. In general, the SHDI for anthro-
pogenic forcing (HIST-GHG) and mixed forcing (HIST-ALL) are close to 
the observed changes during 1940–2000. Specifically, the linear trends 
decrease at the rates of − 0.3 × 10− 2 (HIST-GHG), − 0.1 × 10− 2 (HIST- 
ALL), and − 0.2 × 10− 2 (CRU). However, under the HIST-NAT simula-
tion, it is difficult to reproduce the observed changes (CRU) at the rates 
of 0.4 × 10− 4 (SHDI). This suggests that anthropogenic activities and 
emissions are the main driving forces in the dynamics of global climate 
heterogeneity. 

3.5. Uncertainty analysis of global climate heterogeneity 

Figure 7 shows that the internal consistencies of all models are 
generally stable. From RCP 2.6 to 8.5, the Cronbach alpha (α) co-
efficients are 0.977, 0.986, and 0.989 for SHDI. As radiative forcing 
strengthens, the coefficients increase, as does the overall homogeneity 
or consistency of the models. Upon visual inspection, the lengths of the 
whiskers for each model from RCP 2.6 to 8.5 are generally larger than 
those of the multi-model means, indicating that the multi-model mean 
effectively filters out natural variability and can better simulate changes 
in global climate heterogeneity. Furthermore, for RCP 2.6, 4.5, and 8.5, 
the whisker-and-box lengths among all models tend to increase, indi-
cating that the uncertainty for high emissions pathways is greater than 
that for low emissions pathways. In general, the uncertainties of models 
in simulating the SHDI are quite large and cover a range of different- 
paced changes. However, all the models simulate a consistent and 
downward trend from RCP 2.6 to 8.5. 

Fig. 3. Dynamics of SHDI under RCP 2.6 (a), 4.5 (b), and 8.5 (c). Dark green line denotes multi-model mean, and coloured lines correspond to different models 
(Table S1). The temporal trend of each model is statistically significant at the significance level of 0.01 based on the MK test. b represents the linear trend of the multi- 
model mean. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion 

As an important indicator of vegetation coverage, the Köppen 
climate scheme is widely used in many applications, such as ecological 
models and climate change impact assessments. Recent studies have 
shown that simple indicators of climate change can be used to effectively 
quantify and explain the potential impacts on biodiversity (Garcia et al., 
2014; Carroll et al., 2018). Loarie et al. (2009) used the velocity of the 
climate change index to indicate that high velocities of the climates are 
only 8% of global protected areas with stability times exceeding 100 
years. Burrows et al. (2011), using shifting isotherms, revealed that 
climate change leads organisms to move and adapt to new climatic types 
by shifting their biogeographic ranges and changing their phenology. 
Sunday et al. (2012) reported a phenomenon of global species redistri-
bution due to thermal tolerance. On one hand, factors such as wind and 
sunlight are not considered in the Köppen–Geiger classification, but may 
affect the relationship between climate types and vegetation. On the 
other hand, owing to the inertness of modern ecosystems to climate 
change (Zhao et al., 2015), the threshold range of precipitation or 
temperature in response to different vegetation types could be more 

Fig. 4. Spatial distributions (a-c) of SHDI (dots) under RCP 2.6 to 8.5 over four periods. Colour bars denote area change (d) and X-standard distance (e) under RCP2.6 
to 8.5 over four periods. α and β represent the directional trends and range of spatial distribution, respectively. P1-P4 denotes the multi-model mean of 1901–1950, 
1951–2000, 2001–2050, and 2051–2095. 

Fig. 5. Sensitivity analysis of SHDI when temperature (S1) or precipitation (S2) are constant. S0 denotes actual SHDI. Whisker denotes the Min-Max range and the 
top and bottom of the boxplots indicate the 75th and 25th percentiles, respectively. 

Fig. 6. Dynamics of SHDI for HIST-NAT, HIST-GHG, and HIST-ALL. Except 
HIST-NAT, the temporal trends decrease at the significance of 0.01 (MK). 
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stable than that of the Köppen climate type. Despite these limitations, 
the Köppen climate scheme provides a readily computed hydrothermal 
combination index to explain potential ecological implications. The 
strong correspondence between the boundaries of Köppen climatic types 
and biomes indicates that the decrease in climate heterogeneity should 
be an important means for characterising global biodiversity loss. 

Our results reveal the dynamics of global climate heterogeneity from 
a spatial morphological perspective. Based on landscape indices, we 
demonstrated that the SHDI of global climatic landscape patterns tended 
to decrease from 1901 to 2095. Recent research has shown that, by 
exploring their varying boundaries, it is possible to diagnose or predict 
substantial changes in present and future climates (Mahlstein et al., 
2013; Feng et al., 2014; Beck et al., 2018). Earlier studies considered 
variations in climate type areas at different scales or the rate at which 
these shifts occur. However, they did not consider that these changes 
will cause certain regions to be recategorised as different climate types; 
however, the overall proportion of these climate types may not change 
on a larger spatial scale. From a spatial morphological perspective, these 
moving boundaries will inevitably cause spatial structural (such as patch 
aggregation) or functional changes (such as heterogeneity) in the global 
climatic landscape pattern. However, it should be noted that the 
morphological changes at the global and regional scales are not neces-
sarily consistent (Guan et al., 2020). Despite these limitations, the 
measurement of climatic morphology deepens our understanding of the 
heterogeneity of climate itself. 

Our results further indicate that the spatial distribution of global 
SHDI patterns tends to correlate with clear latitudinal trends. Similar to 
poleward movements in earlier research (Lu et al., 2009; Burrows et al., 
2011; Mahlstein et al., 2013; Chan and Wu, 2015), this phenomenon can 

be attributed to temperature playing a more significant role than pre-
cipitation in the variations in global climate heterogeneity. However, 
this study focuses on climate change on a horizontal scale, and some 
important factors, such as changes in the vertical scale, have not been 
considered. Some studies have revealed accelerating upward ecological 
trends that occur in the topographical gradients of mountain regions in 
response to climate change. For example, accelerating tree line shifts 
(Cazzolla Gatti et al., 2019) in the Altai Mountains and plant species 
richness (Bjorkman et al., 2018) across European mountain regions have 
been linked to a warming climate. This suggests that a more in-depth 
investigation of the topographical gradient of climate heterogeneity in 
the future will provide important insights. 

An increasing demand placed on today’s models is to provide more 
information on finer spatial resolutions. In many studies related to the 
Köppen–Geiger climate classification (Wang and Overland, 2004; Peel 
et al., 2007; Rubel and Kottek, 2010; Belda et al., 2014; Feng et al., 2014; 
Chan and Wu, 2015; Rohli et al., 2015; Djamila and Yong, 2016; Chen 
et al., 2017; Rubel et al., 2017), simulated and observed datasets at 0.5, 
1.0, and 2.5◦ resolutions from different research units were frequently 
used to analyse changes in large-scale climate types. These datasets 
effectively promoted an understanding of climate type. However, the 
appropriate spatial resolution should depend on the issues raised and the 
phenomena considered, as statistical relationships may change with 
spatial resolution. Furthermore, it is necessary to explore climate het-
erogeneity on a regional scale. Similar or opposite trends provide a 
deeper understanding of climate change. It is generally considered that 
regional factors, such as topography and atmospheric circulation, can 
affect climate type and distribution on a regional scale. 

Although the reorganisation, loss, and increase of species are closely 

Fig. 7. Box-and-whisker plots (lower sections) for all models. The top and bottom of the boxplots indicate the 75th and 25th percentiles, respectively. Whisker 
denotes the Min-Max range. As the radiative forcing increases from RCP 2.6 to 8.5, the biases and uncertainty of the models increase. 
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related to the intensity of changes in climate heterogeneity, it should be 
noted that these changes are not equivalent to those in actual biomes 
(Guan et al., 2020). Because the climate sensitivity encapsulated by 
different GCMs (Ahlström et al., 2013) covers a range of different 
changes, the global average warming caused by the increase in atmo-
spheric CO2 concentration will vary in climate models, depending on the 
assumed intensity and sign of feedbacks that may suppress or amplify 
the direct radiative forcing of CO2 through the greenhouse effect (Knutti 
and Hegerl, 2008). Although different GCMs offer the possibility of 
exploring future changes in global climate heterogeneity under different 
emission intensities (Taylor et al., 2012), many current GCMs do not 
fully explain the impact of anthropogenic CO2 emissions stored in both 
the terrestrial biosphere and surface layers of the oceans on future 
climate change (Le Quéré et al., 2009). We should pay attention to future 
climate uncertainties induced by the climate sensitivity of different 
GCMs. 

5. Conclusions 

In this study, we investigated the dynamics of global climate het-
erogeneity based on the Köppen climate scheme. As the areas changed 
substantially in major climate zones under the three warming scenarios, 
we detected a significant decrease in global climate heterogeneity from 
1901 to 2095 at a significance level of 0.01 (MK). As radiative forcing 
intensified, the trends of heterogeneity loss strengthened. For RCP 2.6, 
4.5, and 8.5, the SHDI of the multi-model mean decreased at rates of 
–0.2 × 10− 3/y, –0.3 × 10− 3/y, and –0.4 × 10− 3/y. In addition, the 
spatial distributions of SHDI calculated by the moving window method 
were reduced, and the coverage and X-standard distance of the SDE were 
reduced significantly, especially for RCP 8.5. Our sensitivity analysis 
further showed that anthropogenically driven temperature increases, 
rather than precipitation changes, resulted in the loss of global climate 
heterogeneity. Our results suggest that, owing to strong spatial overlap, 
changes in climate heterogeneity are useful for interpreting the impacts 
of climate change on biomes, such as future biodiversity loss. 

6. Availability of data 

The data that support the findings are available from the corre-
sponding authors upon request. 
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Geiger climate classification. Hydrol. Earth Syst. Sci. 11 (5), 1633–1644. https://doi. 
org/10.5194/hess-11-1633-2007. 

Pickett, A.S.T.A., Cadenasso, M.L., 1995. Landscape ecology: spatial heterogeneity in 
ecological systems. Science (80-) 269, 331–334. 

Rohli, R.V., Andrew Joyner, T., Reynolds, S.J., et al., 2015. Globally Extended Kppen- 
Geiger climate classification and temporal shifts in terrestrial climatic types. Phys. 
Geogr. 36, 142–157. https://doi.org/10.1080/02723646.2015.1016382. 

Rubel, F., Brugger, K., Haslinger, K., Auer, I., 2017. The climate of the European Alps: 
shift of very high resolution Köppen-Geiger climate zones 1800–2100. Meteorol. 
Zeitschrift 26 (2), 115–125. https://doi.org/10.1127/metz/2016/0816. 

Rubel, F., Kottek, M., 2010. Observed and projected climate shifts 1901–2100 depicted 
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