7,679 research outputs found

    Temperature-based stiffness identification of que-Ti’s in a historic Tibetan timber building

    Full text link
    © 2017 Taylor & Francis Group, London. Que-Ti, like the corbel brackets connecting beam and column in modern structures, is an important component in typical Tibetan historic timber buildings. It transfers shear, compression and bending moment by slippage and deformation of components as well as limited joint rotation. A rigorous analytical model of Que-Ti is needed for predicting the behaviour of a timber structure under load. However, few researches have been done with this model, particularly on the parameters describing the performances of this joint under load. The equivalent stiffness of a Que-Ti connection in its operating state is determined by using ambient temperature variations as a forcing function in the complete input(temperature)-output(local mechanical strains) relationship when it is incorporated in a finite element model of the structure. The identification is done iteratively via correlating the calculated strain responses with measured data

    Prefix-Projection Global Constraint for Sequential Pattern Mining

    Full text link
    Sequential pattern mining under constraints is a challenging data mining task. Many efficient ad hoc methods have been developed for mining sequential patterns, but they are all suffering from a lack of genericity. Recent works have investigated Constraint Programming (CP) methods, but they are not still effective because of their encoding. In this paper, we propose a global constraint based on the projected databases principle which remedies to this drawback. Experiments show that our approach clearly outperforms CP approaches and competes well with ad hoc methods on large datasets

    Variable interaction in multi-objective optimization problems

    Get PDF
    14th International Conference on Parallel Problem Solving from Nature – PPSN XIV, 2016-09-17, 2016-09-21, Edinburgh, UK, pp. 399 - 409This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The final publication is available at link.springer.comVariable interaction is an important aspect of a problem, which reflects its structure, and has implications on the design of efficient optimization algorithms. Although variable interaction has been widely studied in the global optimization community, it has rarely been explored in the multi-objective optimization literature. In this paper, we empirically and analytically study the variable interaction structures of some popular multi-objective benchmark problems. Our study uncovers nontrivial variable interaction structures for the ZDT and DTLZ benchmark problems which were thought to be either separable or non-separable

    Controlled release of human growth hormone fused with a human hybrid Fc fragment through a nanoporous polymer membrane

    Get PDF
    Nanotechnology has been applied to the development of more effective and compatible drug delivery systems for therapeutic proteins. Human growth hormone (hGH) was fused with a hybrid Fc fragment containing partial Fc domains of human IgD and IgG(4) to produce a long-acting fusion protein. The fusion protein, hGH-hyFc, resulted in the increase of the hydrodynamic diameter (ca. 11 nm) compared with the diameter (ca. 5 nm) of the recombinant hGH. A diblock copolymer membrane with nanopores (average diameter of 14.3 nm) exhibited a constant release rate of hGH-hyFc. The hGH-hyFc protein released in a controlled manner for one month was found to trigger the phosphorylation of Janus kinase 2 (JAK2) in human B lymphocyte and to exhibit an almost identical circular dichroism spectrum to that of the original hGH-hyFc, suggesting that the released fusion protein should maintain the functional and structural integrity of hGH. Thus, the nanoporous release device could be a potential delivery system for the long-term controlled release of therapeutic proteins fused with the hybrid Fc fragment.X111313sciescopu

    An improved prediction of the effective range of stress intensity factor in fatigue crack growth

    Get PDF
    This paper will summarise the results obtained to date and which demonstrate that the mesoscale CJP model of crack tip fields is capable of providing an improved correlation of fatigue crack growth rates across a range of stress ratios and specimen geometries, compared with the standard stress intensity factor calculations

    Efficient Resource Allocation in Cooperative Co-Evolution for Large-Scale Global Optimization

    Get PDF
    Cooperative co-evolution (CC) is an explicit means of problem decomposition in multipopulation evolutionary algorithms for solving large-scale optimization problems. For CC, subpopulations representing subcomponents of a large-scale optimization problem co-evolve, and are likely to have different contributions to the improvement of the best overall solution to the problem. Hence, it makes sense that more computational resources should be allocated to the subpopulations with greater contributions. In this paper, we study how to allocate computational resources in this context and subsequently propose a new CC framework named CCFR to efficiently allocate computational resources among the subpopulations according to their dynamic contributions to the improvement of the objective value of the best overall solution. Our experimental results suggest that CCFR can make efficient use of computational resources and is a highly competitive CCFR for solving large-scale optimization problems

    Chiral zero-mode for abelian BPS dipoles

    Get PDF
    We present an exact normalisable zero-energy chiral fermion solution for abelian BPS dipoles. For a single dipole, this solution is contained within the high temperature limit of the SU(2) caloron with non-trivial holonomy.Comment: 9 pages, 1 figure (in 2 parts), presented at the workshop on "Confinement, Topology, and other Non-Perturbative Aspects of QCD", 21-27 Jan. 2002, Stara Lesna, Slovaki
    corecore