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Variable interaction is an important aspect of a problem, which reflects its structure,
and has implications on the design of efficient optimization algorithms. Although variable
interaction has been widely studied in the global optimization community, it has rarely
been explored in the multi-objective optimization literature. In this paper, we empirically
and analytically study the variable interaction structures of some popular multi-objective
benchmark problems. Our study uncovers nontrivial variable interaction structures for
the ZDT and DTLZ benchmark problems which were thought to be either separable or
non-separable.
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1 Introduction

Variable interaction is a major source of difficulty in numerical optimization, which hinders the
performance of optimizers, especially on functions with complex variable interaction structures [1].
Variable interaction can be loosely defined as the extend to which the optimization of a variable is
affected by the values taken by other variables. Complete lack of interaction between the decision
variables is the simplest form of interaction structure in which case the variables can be optimized
independently irrespective of the values take by other variables. The other extreme is when each
variable interacts with every other variable. However, most real-world problems fall in between
these two extremes [2]. Such problems, which are often called partially separable, have a modular
structure and contain several clusters of interacting variables. It is clear that if the variable interaction
structure is known, the problem can be decomposed into a set of simpler problems which are easier
to optimize. Decomposition-based optimization algorithms have been widely studied in the field of
large-scale global optimization to alleviate the adverse effects of high-dimensionality. Although there
are numerous studies on both detecting and exploiting partial separability in global optimization [3,
4], very limited studies have been dedicated to the analysis of variable interaction in the context
of multi-objective optimization. For example, [5] introduced variable interaction into some mulit-
objective test problems; however, their proposed method did not account for a modular design
with respect to variable interaction. In this paper, by using the recently developed differential
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grouping method [4] and mathematical analysis, we empirically and theoretically analyze the variable
interaction structures of two popular benchmark suites, ZDT [6] and DTLZ [7], from the evolutionary
multi-objective optimization (EMO) literature. Contrary to the conventional wisdom [8, 9], our
analysis shows that most of the ZDT and DTLZ test problems exhibit nontrivial interaction structures
which change with the number of objectives. A thorough understanding of variable interaction in
the existing benchmarks can have implications on analyzing the behavior of existing algorithms, the
design of new algorithms, and the design of future benchmark suites. The aim of this paper is to
take a small step towards bridging this gap.

2 Preliminaries

The multi-objective optimization problem (MOP) considered in this paper is as:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to x ∈ Ω
(1)

where Ω =
∏n

i=1[ai, bi] ⊆ R
n is the feasible region of the decision (variable) space, and x =

(x1, . . . ,xn)
T ∈ Ω is a candidate solution. F : Ω → R

m constitutes m objective functions, and
R
m is the objective space.

Definition 1. A function is partially additively separable if it takes the following general form [1]:

f(x) =

k
∑

i=1

fi(xi) (2)

where xi are mutually exclusive decision variables of fi, and k is the number of independent subcom-
ponents.

This property makes it easy to optimize f(x), because each subcomponent xi can be optimized
independently.

argmin
(x1,··· ,xk)

f(x) =
[

argmin
x1

f(x), · · · , argmin
xk

f(x)
]

(3)

Definition 2. Given a continuously differentiable function f(x), for any pair of variables xi and

xj , if
∂2f

∂xi∂xj
6= 0, then xi and xj are said to interact with each other; otherwise, they are said to be

independent from each other.

The differential grouping method for detecting the variable interaction structure is derived from
the following theorem [4].

Theorem 1. For an additively separable function f(x), ∀a, b1 6= b2, δ ∈ R, δ 6= 0, if the following
condition holds:

∆δ,xp
[f ](x)|xp=a,xq=b1 6= ∆δ,xp

[f ](x)|xp=a,xq=b2 (4)

then xp and xq are non-separable where

∆δ,xp
[f ](x) = f(· · · ,xp + δ, · · · )− f(· · · ,xp, · · · ) (5)

refers to the forward difference of f with respect to variable xp with interval δ.

Before the analysis, we describe the test problems used in this paper. ZDT benchmark suite [6]
has been extensively used to benchmark numerous EMO algorithms for more than a decade and has
the following general structure [10]:

minimize F(x) = (f1(xI), f2(xII))

subject to f2(xII) = g(xII) · h(f1(xI), g(xII )),
(6)
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Table 1: Mathematical Definitions of ZDT and DTLZ Benchmark Suites

Name Definition Domain

ZDT1
f1 = x1

[0, 1]g = 1 + 9 ·∑n
i=2 xi/(n − 1)

h = 1−
√

f1/g

ZDT2 as ZDT1, except h = 1− (f1/g)
2 [0, 1]

ZDT3 as ZDT1, except h = 1−
√

f1/g − (f1/g) sin(10πf1) [0, 1]

ZDT4 as ZDT1, except g = 1 + 10 · (n− 1) +
∑n

i=2(x
2
i − 10 cos(4πxi))

x1 ∈ [0, 1]
xi ∈ [−5, 5]

ZDT6
f1 = 1− exp(−4x1) sin6(6πy1)

[0, 1]g = 1 + 9 · (∑n
i=2 xi/(n − 1))0.25

h = 1− (f1/g)
2

DTLZ1

f1 = (1 + g)0.5
∏m−1

i=1 xi

[0, 1]
fj=2:m−1 = (1 + g)0.5(

∏m−j
i=1 xi)(1 − xm−j+1)

fm = (1 + g)0.5(1 − x1)
g = 100[n −m+ 1 +

∑n
i=m((xi − 0.5)2 − cos(20π(xi − 0.5)))]

DTLZ2

f1 = (1 + g)0.5
∏m−1

i=1 cos(xiπ/2)

[0, 1]
fj=2:m−1 = (1 + g)0.5(

∏m−j
i=1 cos(xiπ/2))(sin(xm−j+1π/2))

fm = (1 + g) sin(x1π/2)
g =

∑n
i=m(xi − 0.5)2

DTLZ3 as DTLZ2, except g is replaced by the one from DTLZ1 [0, 1]

DTLZ4 as DTLZ2, except xi is replaced by xαi , where i ∈ {1, · · · ,m− 1},α > 0 [0, 1]

DTLZ5 as DTLZ2, except xi is replaced by 1+2gxi

4(1+g) , where i ∈ {2, · · · ,m− 1} [0, 1]

DTLZ6 as DTLZ5, except the equation for g is replaced by g =
∑n

i=m x0.1i [0, 1]

DTLZ7
fj=1:m−1 = xm

[0, 1]fm = (1 + g)(m −∑m−1
i=1 [ fi

1+g (1 + sin(3πfi))])

g = 1 + 9
∑n

i=m xi/(n−m+ 1)

where x = (xI ,xII) is partitioned into two non-overlapping sets. In particular, xI = x1 and xII =
(x2, · · · ,xn)T for all ZDT test problems. DTLZ [7] is another popular benchmark suite in the EMO
literature. In essence, the DTLZ is developed based on the same principle as that of the ZDT.
However, unlike ZDT, DTLZ test problems are scalable to any number of objectives. To help with
the clarity of the analysis in the following section, the mathematical definitions of ZDT and DTLZ
test problems are summarized in Table 1.

3 Variable Interaction Analysis via Differential Grouping

Differential grouping [4] is a popular technique that can identify the underlying variable interaction
structure of black-box continuous functions with a high accuracy. In this study, we employ its
modified version (as shown in Algorithm 1) to analyze the ZDT and DTLZ benchmark suites. Due
to the existence of multiple objective functions1, Algorithm 1 applies differential grouping to each

1The objective functions of ZDT and DTLZ test suites are genuinely independent.
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Figure 1: Variable interaction structures of the f2 function of ZDT test suite.

Algorithm 1: Interaction Analysis via Differential Grouping

Output: Interaction Structure Matrices I
(1)
n×n, · · · , I

(m)
n×n

1 for i← 1 to m do

2 Initialize all entries of I
(i)
n×n to be 0;

3 for j ← 1 to n do

4 for k ← 1 to n ∧ k 6= j do

5 p1 ← rand(1,n), p2 ← p1/* rand: random number generator */

6 repeat

7 ξ1 ← rand, ξ2 ← rand;
8 until |ξ1 − p1j | > ǫ1 ∧ |ξ2 − p1k| > ǫ1;

9 p2j ← ξ1;

10 ∆1 ← fi(p
1)− fi(p

2);
11 p1k ← ξ2, p

2
k ← ξ2;

12 ∆2 ← fi(p
1)− fi(p

2);
13 if |∆1 −∆2| > ǫ2 then

14 I
(i)
jk ← 1;

15 return I
(1)
n×n, · · · , I

(m)
n×n

objective function independently, which results in m interaction structure matrices.

3.1 Variable Interaction Analysis on ZDT Benchmark Suite

Table 1 clearly shows that f1 of all ZDT test problems is a fully separable function because it is only
a function of x1. Thus, we only need to analyze the variable interaction for the second objective
function f2. To keep the interaction matrices and the graphs within a manageable size, we set the
number of variables to n = 6 which is large enough to reveal the patterns and regularities of the
benchmark functions. The experimental results show that, by running Algorithm 1, f2 of all ZDT
test problems share the same variable interaction matrix, as shown in Fig. 1(a). The graphical
representation of this interaction matrix is a fully connected graph which is shown in Fig. 1(b).
This clearly shows that all the decision variables of f2 interact with each other, making f2 a fully
non-separable function. In order to validate the correctness of this non-separability property, we
use Definition 2 to prove Proposition 1.

Proposition 1. f2 of the ZDT benchmark suite is fully non-separable.
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Proof. Let us start from ZDT1. By taking the derivative of f2 with respect to x1, we have:

∂f2
∂x1

=
∂(g − (1−

√

x1/g))

∂x1
=

∂(g −√x1g)
∂x1

. (7)

Since g is a function of x2 to xn, we can treat it as a constant in equation (7):

∂f2
∂x1

= −0.5
√

g/x1, (8)

where x1 6= 0. According to Table 1, g is a summation of terms involving x2 to xn. Therefore:

∂g

∂xi
= 9/(n − 1), (9)

where i ∈ {2, · · · ,n}. Based on equation (8) and equation (9), we have:

∂2f2
∂x1∂xi

= − 1

4
√
x1g
· ∂g
∂xi

= − 9

4(n− 1)
√
x1g

, (10)

where i ∈ {2, · · · ,n}. Since g > 0, we have ∂2f2
∂x1∂xi

6= 0. Based on Definition 2, we can see that x1
interacts with all other variables, i.e., x2 to xn.

By taking the derivative of f2 with respect to xi for i ∈ {2, · · · ,n}, we have:

∂f2
∂xi

=
∂g

∂xi
− ∂

√

x1/g

∂xi
=

9

n− 1
(1−

√
x1

2 4
√
g
). (11)

By taking the derivative of equation (11) with respect to x1, we have:

∂2f2
∂xi∂x1

= − 9

4(n− 1) 4
√
g
√
x1

, (12)

where x1 6= 0. Since g > 0, we have ∂2f2
∂xi∂x1

6= 0. Furthermore, by taking the derivative of equation (11)
with respect to xj, j ∈ {2, · · · ,n} and i 6= j, we have:

∂2f2
∂xi∂xj

=
81
√
x1

8(n− 1)2g−5/4
, (13)

where x1 6= 0. Since g > 0, we have ∂2f2
∂xi∂xj

6= 0. In summary, we can see that all variables interact

with each other, which means that the f2 function of ZDT1 is fully non-separable. This agrees with
the output of differential grouping. Since the other ZDT test problems share a similar form of h and
g functions as that of ZDT1, we can use the above procedure to prove their non-separability. �

3.2 Variable Interaction Analysis on DTLZ Benchmark Suite

According to Table 1, the mathematical forms of DTLZ functions can be classified into three groups:
DTLZ1 to DTLZ4, DTLZ5 to DTLZ6, and DTLZ7. Thus, we investigate the variable interaction
structure of each group separately. Without loss of generality, we set m = 4 and n = 6 in the experi-
ments. By running Algorithm 1 on DTLZ1 to DTLZ4, we can empirically verify that they share the
same variable interaction matrices as shown in Fig. 2. Moreover, Fig. 3 is the graphical representa-
tion of the matrices in Fig. 2. To validate the correctness of this result, we again use Definition 2 to
prove Proposition 2.
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Figure 2: Variable interaction matrices of DTLZ1 to DTLZ4 .
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Figure 3: Variable interaction graphs of DTLZ1 to DTLZ4 .

Proposition 2. For DTLZ1 to DTLZ4, ∀fi, i ∈ {1, · · · ,m}, we divide the corresponding decision
variables into two non-overlapping sets: xI = (x1, · · · ,xℓ)T , ℓ = m−1 for i ∈ {1, 2} while ℓ = m−i+1
for i ∈ {3, · · · ,m}; and xII = (xm, · · · ,xn)T . All members of xI not only interact with each other,
but also interact with those of xII ; all members of xII are independent from each other.

Proof. From Table 1 and equation (6), we re-write the objective functions of DTLZ1 to DTLZ4 in
the following abstract form:

fi(x) = h(xI) · g(xII), (14)

where i ∈ {1, · · · ,m}. xI = (x1, · · · ,xℓ)T , ℓ = m − 1 for i ∈ {1, 2} while ℓ = m − i + 1 for
i ∈ {3, · · · ,m}; and xII = (xm, · · · ,xn)T . Notice that h function is a multiplication term of all
individual variables of xI , while g function is some independent summations of terms involving all
individual variables of xII .

Let us start from DTLZ1. By taking the derivative of fi, where i ∈ {1, · · · ,m}, with respect to
each member of xI , i.e., xj , where j ∈ {1, · · · , ℓ}, we have:

∂fi
∂xj

= 0.5(1 + g) ·
ℓ
∏

p=1,p 6=j

xp. (15)

Now by differentiating equation (15) with respect to xk, where k ∈ {1, · · · ,n} and k 6= j, we have:

∂2fi
∂xj∂xk

=

{

0.5(1 + g) ·∏m−1
p=1,p 6=i,j xp, k ∈ {1, · · · ,m− 1}

0.5 ∂g
∂xk
·∏m−1

p=1,p 6=i xp, k ∈ {m, · · · ,n}. (16)
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In particular, when k ∈ {m, · · · ,n}, we have:

∂g

∂xk
= 200(xk − 0.5) + 2000π sin(20π(xk − 0.5)). (17)

Note that both g and ∂g
∂xk

are not 0, when xk 6= 0.5, k ∈ {m, · · · ,n}. In this case, we have ∂2fi
∂xj∂xk

6= 0,

where i ∈ {1, · · · ,m}, j ∈ {1, · · · , ℓ}, k ∈ {1, · · · ,n} and k 6= j. According to Definition 2, we can
see that all members of xI not only interact with each other, but also interact with those of xII .
Note that since fi, where i ∈ {3, · · · ,m}, is without of xp, where p ∈ {m− i+2, · · · ,m− 1}, we can
treat xp be independent/non-separable from the other variables for fi.

In addition, by taking the derivative of fi, where i ∈ {1, · · · ,m}, with respect to each member of
xII , i.e., xj , where j ∈ {m, · · · ,n}, we have:

∂fi
∂xj

= 0.5
ℓ
∏

p=1

xp ·
∂g

∂xj
. (18)

According to equation (17), we can see that ∂g
∂xj

is a function of xj. Thus, ∂2f1
∂xj∂xk

= 0, where

k ∈ {m, · · · ,n} and k 6= j. According to Definition 2, we can see that all members of xII are
independent/non-separable from each other.

Since DTLZ2 to DTLZ4 have a similar form as DTLZ1, but are with some different exponentials,
we can use the above proof procedure to derive the same variable interaction structure as DTLZ1. �

Then, by running Algorithm 1 on DTLZ5 and DTLZ6, we obtain the variable interaction matrices
and graphs, as shown in Fig. 4 and Fig. 5, respectively. The correctness of this result is validated by
the proof of Proposition 3.
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Figure 4: Variable interaction matrices of DTLZ5 and DTLZ6.

Proposition 3. For DTLZ5 and DTLZ6, ∀fi, i ∈ {1, · · · ,m}, we divide the corresponding decision
variables into two non-overlapping sets: xI = (x1, · · · ,xℓ)T , ℓ = m−1 for i ∈ {1, 2} while ℓ = m−i+1
for i ∈ {3, · · · ,m}; and xII = (xm, · · · ,xn)T . For fi, where i ∈ {1, · · · ,m − 1}, all members of xI

and xII interact with each other; for fm, we have the same interaction structure as Proposition 2.

Proof. From Table 1 and equation (6), we re-write the objective functions of DTLZ5 and DTLZ6 in
the following abstract form:

fi(x) = h(xI , g(xII)) · g(xII), (19)

where i ∈ {1, · · · ,m − 1}. xI = (x1, · · · ,xℓ)T , ℓ = m − 1 for i ∈ {1, 2} while ℓ = m − i + 1 for
i ∈ {3, · · · ,m}; and xII = (xm, · · · ,xn)T . Comparing equation (19) with equation (14), the only
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Figure 5: Variable interaction graphs of DTLZ5 and DTLZ6.

difference lies on the h function which consists of both xI and xII . Note that the objective functions
of DTLZ5 and DTLZ6 have a similar form as that of DTLZ2, we can use the proof procedure
of Proposition 2 to prove that all members of xI not only interact with each other, but also interact
with those of xII .

In addition, due to the additional term of xI within the h function, we can derive that ∂fi
∂xj

, where

j ∈ {m, · · · ,n}, should be a function of both xj and members of xI . Thus, ∂2fi
∂xj∂xk

6= 0, where

k ∈ {m, · · · ,n} and k 6= j. This means that all members of xII also interact with each other.
As for fm, it still obeys the form of equation (14). According to the proof of Proposition 2, we can

easily derive the same interaction structure as described in Proposition 2. �

At last, we run Algorithm 1 on DTLZ7 and find that all its objective functions are fully separable.
This means that all entries of its interaction matrices should be 0, and the corresponding interaction
graphs consist of n independent nodes. The proof of Proposition 4 validates the correctness of this
result.

Proposition 4. All objective functions of DTLZ7 are fully separable.

Proof. From Table 1, we can see that fi of DTLZ7 is a function of xi for i ∈ {1, · · · ,m−1}. Thus, it
is obvious that these objective functions are fully separable. As for fm, we can re-write it as follows:

fm = (1 + g)m−
m−1
∑

i=1

(fi + fi sin(3πfi)) (20)

In this case, fm is the function of some independent summation terms involving x1 to xn. Therefore,
it is also a separable function. �

4 Conclusions and Future Directions

We have seen that some of the ZDT and DTLZ test problems have complex variable interaction
structures that change with the number of objectives. More specifically, some objective functions are
fully separable (e.g., f1 of ZDT problems and all objectives of DTLZ7), some are fully non-separable
(e.g., f2 of ZDT problems and f1 to fm−1 of DTLZ5 and DTLZ6), while the others are in between
these two extreme cases, i.e., partially non-separable. This result is in contrast with the existing
literature that coarsely classified the functions as separable or non-separable [8, 9].

An interesting observation about the DTLZ functions is the existence of overlapping components
within the objective functions. For example, in Fig. 3, at a first glance, the first two objective func-
tions of DTLZ1 to DTLZ4 may be seen as a single non-separable component. However, upon a closer
inspection, we can see that the variables form three components containing a set of shared decision

8



variables. Concretely, {x1,x2,x3,x4}, {x1,x2,x3,x5} and {x1,x2,x3,x6} can be seen as three com-
ponents with {x1,x2,x3} being the shared variables. This is analogous to functions with overlapping
components in the large-scale global optimization literature [11]. Although differential grouping can
discover the full variable interaction structure matrix, the optimal decomposition of functions with
overlapping components is still an open question [11]. Based on the analysis in Section 3, it appears
that objective functions with overlapping components are commonplace in multi-objective optimiza-
tion. The analysis that we presented in this paper facilitates the study of this phenomenon with
respect to both algorithm and benchmark designs.

Overall, variable interaction can affect various aspects of the EMO community, ranging from opera-
tor design to the choice of aggregation functions within decomposition-based EMO algorithms [12–16].
We believe that variable interaction is an under-explored area in this literature, which might be due
to extreme focus of the current research on small to medium sized problems. It is clear that when the
dimensionality of a problem grows beyond a certain level, using a divide-and-conquer strategy be-
comes inevitable in which case considering variable interaction becomes a necessity. In the future, we
plan to analyze a wider range of common benchmark suites within the EMO community. Addition-
ally, similar to the large-scale global optimization [11], we plan to develop benchmark problems with
challenging yet controllable variable interaction structures, which can better resemble the modular
nature of real-world optimization scenarios.
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