80 research outputs found

    Goodness-of-fit tests for continuous-time financial market models

    Get PDF
    Master'sMASTER OF SCIENC

    Overpotential decomposition enabled decoupling of complex kinetic processes in battery electrodes

    Full text link
    Identifying overpotential components of electrochemical systems enables quantitative analysis of polarization contributions of kinetic processes under practical operating conditions. However, the inherently coupled kinetic processes lead to an enormous challenge in measuring individual overpotentials, particularly in composite electrodes of lithium-ion batteries. Herein, the full decomposition of electrode overpotential is realized by the collaboration of single-layer structured particle electrode (SLPE) constructions and time-resolved potential measurements, explicitly revealing the evolution of kinetic processes. Perfect prediction of the discharging profiles is achieved via potential measurements on SLPEs, even in extreme polarization conditions. By decoupling overpotentials in different electrode/cell structures and material systems, the dominant limiting processes of battery rate performance are uncovered, based on which the optimization of electrochemical kinetics can be conducted. Our study not only shades light on decoupling complex kinetics in electrochemical systems, but also provides vitally significant guidance for the rational design of high-performance batteries

    Control of Intestinal Inflammation, Colitis-Associated Tumorigenesis, and Macrophage Polarization by Fibrinogen-Like Protein 2

    Get PDF
    Fibrinogen-like protein 2 (Fgl2) is critical for immune regulation in the inflammatory state. Elevated Fgl2 levels are observed in patients with inflammatory bowel disease (IBD), but little is known about its functional significance. In this study, we sought to investigate the role of Fgl2 in the development of intestinal inflammation and colitis-associated colorectal cancer (CAC). Here, we report that Fgl2 deficiency increased susceptibility to dextran sodium sulfate-induced colitis and CAC in a mouse model. During colitis development, the expression of the membrane-bound and secreted forms of Fgl2 (mFgl2 and sFgl2, respectively) in the colon were increased and predominantly expressed by colonic macrophages. In addition, using bone marrow chimeric mice, we determined that Fgl2 function in colitis is strictly related to its expression in the hematopoietic cells. Loss of Fgl2 induced the polarization of M1, but suppressed that of M2 both in vivo and in vitro, independent of intestinal inflammation. Thus, Fgl2 suppresses intestinal inflammation and CAC development through its role in macrophage polarization and may serve as a therapeutic target in inflammatory diseases, including IBD

    Using economic evaluations to support acupuncture reimbursement decisions: current evidence and gaps

    Full text link
    Hongchao Li and colleagues explore the global challenges of including economic evaluations in decisions about reimbursement for acupunctur

    Exploring retinal ganglion cells encoding to multi-modal stimulation using 3D microelectrodes arrays

    Get PDF
    Microelectrode arrays (MEA) are extensively utilized in encoding studies of retinal ganglion cells (RGCs) due to their capacity for simultaneous recording of neural activity across multiple channels. However, conventional planar MEAs face limitations in studying RGCs due to poor coupling between electrodes and RGCs, resulting in low signal-to-noise ratio (SNR) and limited recording sensitivity. To overcome these challenges, we employed photolithography, electroplating, and other processes to fabricate a 3D MEA based on the planar MEA platform. The 3D MEA exhibited several improvements compared to planar MEA, including lower impedance (8.73 ± 1.66 kΩ) and phase delay (−15.11° ± 1.27°), as well as higher charge storage capacity (CSC = 10.16 ± 0.81 mC/cm2), cathodic charge storage capacity (CSCc = 7.10 ± 0.55 mC/cm2), and SNR (SNR = 8.91 ± 0.57). Leveraging the advanced 3D MEA, we investigated the encoding characteristics of RGCs under multi-modal stimulation. Optical, electrical, and chemical stimulation were applied as sensory inputs, and distinct response patterns and response times of RGCs were detected, as well as variations in rate encoding and temporal encoding. Specifically, electrical stimulation elicited more effective RGC firing, while optical stimulation enhanced RGC synchrony. These findings hold promise for advancing the field of neural encoding

    Normal-weight central obesity: implications for diabetes mellitus

    Get PDF
    BackgroundCurrent guidelines for obesity prevention and control focus on body mass index (BMI) and rarely address central obesity. Few studies have been conducted on the association between normal-weight central obesity and the risk of diabetes mellitus (DM).Methods26,825 participants from the National Health and Nutrition Examination Survey (NHANES) were included in our study. A weighted multivariate logistic regression model was used to analyze the relationship between different obesity patterns and the risk of DM.ResultsOur results suggest that normal-weight central obesity is associated with an increased risk of DM (OR: 2.37, 95% CI: 1.75–3.23) compared with normal-weight participants without central obesity. When stratified by sex, men with normal-weight central obesity, obesity and central obesity were found to have a similar risk of DM (OR: 3.83, 95% CI: 2.10–5.97; OR: 4.20, 95% CI: 3.48–5.08, respectively) and a higher risk than all other types of obesity, including men who were overweight with no central obesity (OR: 1.21, 95% CI: 0.96–1.51) and obese with no central obesity (OR: 0.53, 95% CI: 0.30–0.91).ConclusionOur results highlight the need for more attention in people with central obesity, even if they have a normal BMI

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV
    corecore