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Summary

Diffusion processes have wide applications in many disciplines, especially in

modern finance. Due to their wide applications, the correctness of various diffusion

models needs to be verified. This thesis concerns the specification test of diffu-

sion models proposed by Äıt-Sahalia (1996a). A serious doubt on Äıt-Sahalia’s

test in general and the employment of the kernel method in particular has been

cast by Pritsker (1998) by carrying out some simulation studies on the empirical

performance of Äıt-Sahalia’s test. He found that Äıt-Sahalia’s test had very poor

empirical size relative to nominal size of the test. However, we found that the

dramatic size distortion is due to the use of the asymptotic normality of the test

statistic. In this thesis, we reformulate the test statistic of Äıt-Sahalia by a version

of the empirical likelihood. To speed up the convergence, the bootstrap is employed

to find the critical values of the test statistic. The simulation results show that the

proposed test has reasonable size and power, which then indicate there is nothing

wrong with using the kernel method in the test of specification of diffusion models.

The key is how to use it.
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Chapter 1

Introduction

1.1 A Brief Introduction To Diffusion Processes

The study of diffusion processes originally arises from the field of statistical physics,

but diffusion processes have widely applied in engineering, medicine, biology and

other disciplines. In these fields, they have been well applied to model phenomena

evolving randomly and continuously in time under certain conditions, for example

security price fluctuations in a perfect market, variations of population growth on

ideal condition and communication systems with noise, etc.

Karlin and Taylor (1981) summed up three main advantages for diffusion processes.

Firstly, diffusion processes model many physical, biological, economic and social

phenomena reasonably. Secondly, many functions can be calculated explicitly for

one-dimensional diffusion process. Lastly in many cases Markov processes can be

approximated by diffusion processes by transforming the time scale and renormal-
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izing the state variable. In short, diffusion processes specify phenomena well and

possess practicability.

From the influential paper of Merton (1969), continuous-time methods on dif-

fusion models have become an important part of financial economics. Moreover,

it is said that modern finance would not have been possible without them. These

models are important to describe stock prices, exchange rates, interest rates and

portfolio selection which are certain core areas in finance. Although its develop-

ment is only about thirty years, continuous-time diffusion methods have proved

to be one of the most attractive ways to guide financial research and offer correct

economic applications.

What is diffusion processes? Here, we give the definition of the diffusion

processes derived from Karlin and Taylor (1981) and more details can be found

in their book. ”A continuous time parameter stochastic process which possesses

the Markov property and for which the sample paths Xt are continuous functions

of t is called a diffusion process.”

Generally continuous-time diffusion process Xt, t ≥ 0 has the form

dXt = µ(Xt)dt + σ(Xt)dBt (1.1)

where µ(·) and σ(·) > 0 are respectively the drift and diffusion functions of the

process, and Bt is a standard Brownian motion. Generally, the functions are para-

meterized:

µ(x) = µ(x, θ) and σ2(x) = σ2(x, θ), where θ ∈ Θ ⊂ RK. (1.2)
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where Θ is a compact parameter space (see the appendix of Äıt-Sahalia (1996a)

for more details).

1.2 Notation

Before we review part of the works on diffusion processes in financial eco-

nomics, we first present some notations on the marginal density and the transition

density of a diffusion process in this thesis. For easy reference, from now the mar-

ginal density function and the transition density function for a diffusion process

described in (1.1) are denoted as f(·, θ) and pθ(·, ·|·, ·) respectively. Here the tran-

sition density pθ(y, s|x, t) is the probability density that Xs = y at time s given

that Xt = x at time t for t < s. If the diffusion process is stationary, we have

pθ(y, s|x, t) = pθ(y, s− t|x, 0) which is denoted as pθ(y|x, s− t) . The marginal den-

sity f(x, θ) denotes the unconditional probability density. In fact, the relationship

between the transition density and the marginal density is

f(x, θ) = lims→∞pθ(y, s|x, t). (1.3)

This was implied by Pritsker (1998).

From the two different densities, different information about the process can

be obtained. The transition density shows that Xs = y at time s depends on

Xt = x at time t when the time between the observations is finite. It is clear that

the transition density describes the short-run time-series behavior of the diffusion

process. Therefore, the transition density captures the full dynamics of the diffusion
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process. From the relationship indicated in (1.3), we know that the marginal

density describes the long-run behavior of the diffusion process.

1.3 Commonly Used Diffusion Models

The seminal contributions by Black and Scholes (1973) and Merton (1969) are

always mentioned in the development of continuous-time methods in finance. Their

works on options pricing signify a new and promising stage of research in financial

economics. The Black-Scholes (B-S) model proposed by Fisher Black and Myron

Scholes (1973) is often cited as the foundation of modern derivatives markets. It is

the first model that provided accurate price options. Merton (1973) investigated

B-S model and derived B-S model under weaker assumptions and this model is

indeed more practical than the original B-S model.

The term structure of interest rates is one of core areas in finance where

continuous-time methods made a great impact. Most research works focus on find-

ing the suitable expressions for drift and diffusion functions of the diffusion process

(1.1). Table 1.1 is driven from Äıt-Sahalia (1996a) who collected commonly used

diffusion models in the literature for the drift and the instantaneous variance of the

short-term interest rate. Merton (1973) derived a model of discount bond prices

and the diffusion process he considered is simply a Brownian motion with drift.

The Vasicek model has a linear drift function and a constant diffusion function.

This model is widely applied to value bond options, futures options, etc. Jamshid-
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ian (1989) derived a closed-form solution for European options on pure discount

bonds using the Vasicek (1977) model. Gibson and Schwartz (1990) applied the

model to derive oil-linked assets.

Table 1.1: Alternative specifications of the spot interest rate process

dXt = µ(Xt)dt + σ(Xt)dBt

µ(X) σ(X) Stationary Reference

β σ Yes Merton(1973)

β(α − X) σ Yes Vasicek(1977)

β(α − X) σX1/2 Yes Cox-Ingersoll-Ross(1985b),

Brown-Dybvig(1986),

Gibbons-Ramaswamy(1993)

β(α − X) σX Yes Courtadon(1982)

β(α − X) σXλ Yes Chan et al.(1992)

β(α − X)
√

σ + γX Yes Duffie-Kan(1993)

βr(α − ln(X)) σX Yes Brennan-Schwartz(1979)[one-factor]

αX(−1−δ) + βX σXδ/2 Yes Marsh-Rosenfeld(1983)

α + βX + γX2 σ + γX Yes Constantinides(1992)

Cox-Ingersoll-Ross (1985) (CIR) specified that the instantaneous variance is a

linear function of the level of the spot rate X, namely σ2(x, θ) = σ2x. Applying

the CIR model, Cox-Ingersoll-Ross (1985) derived the discount bond option and
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Ramaswamy and Sundaresan (1986) evaluated the floating-rate notes. Longstaff

(1990) extended the CIR model and derived closed-form expressions for the values

of European calls. Courtadon (1982) studied the pricing of options on default-free

bonds using the CIR model.

These diffusion models have simple drift and diffusion functions and have closed

forms for the transition density and marginal density in theory. However it is gen-

erally thought that their performances are poor in empirical tests to capture the

dynamics of the short-term interest rate. Chan, Karolyi, Longstaff and Sanders

(1992) presented a parametric model that the diffusion function σ2(x, θ) = σ2x2λ,

where λ > 1/2 ( If λ = 1/2, it is the CIR model ). Using annualized monthly

Treasury Bill Yield from June, 1964 to December, 1989 (306 observations), Chan

et al. applied Generalized Method of Moments (GMM) to estimate their diffusion

model as well as other eight different diffusion models such as the Merton (1973)

model, the Vasicek (1977) model, the CIR (1982) model and so on. They also

formulated a test statistic which is asymptotically distributed χ2 with k degrees of

freedom and compared these variety diffusion models. They found that the value

of λ in their model was the most important feature differentiating these diffuion

models. At last, they concluded that these models, which allow λ ≥ 1, capture the

dynamics of the short-term interest rate, better than those where the parameter

λ < 1. Brennan and Schwartz (1979) expressed the term structure of interest rates

as a function of the longest and shortest maturity default free instruments which

follow a Gauss-Wiener process and the model was applied to derive the bond price.
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Marsh-Rosenfeld (1983) considered a mean-reverting constant elasticity of vari-

ance diffusion model which was nested within the typical diffusion-poisson jump

model and examined these models for nominal interest rate changes. Constanti-

nides (1992) developed a model of the nominal term structure of interest rate and

derived the closed form expression for the prices of discount bonds and European

options on bonds.

1.4 Parameter Estimation

These different parametric models of short rate process attempt to capture

particular features of observed interest rate movements in real market. However,

there are unknown parameters or unknown functions in these models. Generally,

they are estimated from observations of the diffusion processes. Kasonga (1988)

showed that the least squares estimator of the drift function derived from the dif-

fusion model is strongly consistent under some mild conditions. Dacunha-Castelle

and Florens-Zmirou (1986) estimated the parameters of the diffusion function from

a discretized stationary diffusion process. Dohnal (1987) considered the estimation

of a parameter from a diffusion process observed at equidistant sampling points only

and proved the local asymptotic mixed normality property of the volatility func-

tion. Genon-Catelot and Jacod (1993) constructed the estimation of the diffusion

coefficient for multi-dimensional diffusion processes and studied their asymptotic.

Furthermore, they also considered a general sampling scheme. Here, we review two
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main parametric estimation strategies for diffusion models, Maximum likelihood

methods (MLE) and Generalized Method of Moments (GMM).

Recall the diffusion model expression in (1.1). If the functions µ and σ are given,

the transition density pθ(y, s|x, t) satisfies the Kolmogorov forward equation,

∂pθ(y, s|x, t)

∂s
= − ∂

∂y
[µ(y, θ)pθ(y, s|x, t)] +

1

2

∂2

∂y2

[
σ2(y, θ)pθ(y, s|x, t)

]
(1.4)

and the backward equation (see Øksendal,1985)

−∂pθ(y, s|x, t)

∂t
= µ(x, θ)

∂

∂x
[pθ(y, s|x, t)] +

1

2
σ2(x, θ)

∂2

∂x2
[pθ(y, s|x, t)] . (1.5)

In some applications, the marginal and transition densities can be expressed in

closed forms. For example, the marginal and transition densities for the Vasicek

(1977) model are all Gaussian and the transition density of the CIR (1985) model

follows non-central chi-square. In such situations, MLE is often selected to estimate

the parameters of the diffusion process.

Lo (1988) discussed the parametric estimation problem for continuous-time sto-

chastic processes using the method of maximum likelihood with discretized data.

Pearson and Sun (1994) applied the MLE method to estimate the two-factor CIR

(1985) model using data on both discount and coupon bonds. Chen and Scott

(1993) extended the CIR model to a multifactor equilibrium model of the term

structure of interest rate and presented a maximum likelihood estimation for one-,

two-, and three-factor models of the nominal interest rate. As a result, they as-

sumed that a model with more than one factor is necessary to explain the changes

over time in the slope and shape of the yield curve.
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However, most of transition densities of the diffusion models have no closed form

expression. Therefore, researchers estimate the likelihood function by Monte Carlo

simulation methods (see Lo (1988) and Sundaresan (2000)). Recently, Äıt-Sahalia

(1999) investigated the maximum-likelihood estimation with unknown transition

functions. He applied a Hermite expansion of the transition density around a

normal density up to order K and generated closed-form approximations to the

transition function of an arbitrary diffusion model, and then used them to get

approximate likelihood functions.

Another important estimation method is the Generalized Method of Moments

(GMM) proposed by Hansen (1982). The method is often applied when the like-

lihood function is too complicated especially for the nonlinear diffusion model or

where we only have interest on certain aspects of the diffusion processe. Hansen

and Scheinkman (1995) discussed ways of constructing moment conditions which

are implied by stationary Markov processes by using infinitesimal generators of the

processes. The Generalized Method of Moments estimators and tests can be con-

structed and applied to discretized data obtained by sampling Markov processes.

Chen et. al (1992) used Generalized Method of Moments to estimate a variety of

diffusion models.
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1.5 Nonparametric Estimation

Parametric estimation methods for diffusion models are well developed to specify

features of observed interest rate movements. However, the inference statistics of

a diffusion process rely on the parametric specifications of the diffusion model. If

the parametric specification of the diffusion model is misspecified, the inference

statistics of the diffusion process are misleading. Hence, some researchers have

used nonparametric techniques to reduce the number of arbitrary parametric re-

strictions imposed on the underlying process. Florens-Zmirou (1993) proposed an

estimator of volatility function nonparametrically based on discretized observations

of the diffusion processes and described the asymptotic behavior of the estimator.

Äıt-Sahalia (1996b) estimated the diffusion function nonparametrically and gave a

linear specification for the drift function. Stanton (1997) constructed kernel esti-

mators of the drift and diffusion functions based on discretized data.

The results of these studies for nonparametric estimation showed that the drift

function has substantial nonlinearity. Stanton (1997) also pointed out that there

was the evidence of substantial nonlinearity in the drift. As maintained out by

Ahn and Gao (1999), the linearity of the drift imposed in the literature appeared

to be the main source of misspecification.

Äıt-Sahalia (1996a) considered testing the specification of a diffusion process.

His work may be the first and the most significant one on specifying the suitability

of a parametric diffusion model. Let the true marginal density be f(x). In order to
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test whether both the drift and the diffusion functions satisfy certain parametric

forms, he checked if the true density of the diffusion process is the same as the

parametric one which is determined by the drift and diffusion functions. As a

matter of fact, once we know the drift and the diffusion functions, the marginal

density is determined according to

f(x, θ) =
ξ(θ)

σ2(x, θ)
exp{

∫ x

x0

2µ(u, θ)

σ2(µ, θ)
du} (1.6)

where x0 the lower bound of integration in the interior of D = (x, x) for given

x, x such that x < x. The constant ξ(θ) is applied so that the marginal density

integrates to one. However the true marginal density is unknown and Äıt-Sahalia

(1996a) applied the nonparametric kernel estimator to replace the true marginal

density. Therefore, the test statistic proposed by Äıt-Sahalia (1996a) is based on a

differece between the parametric marginal density f(x, θ) and the kernel estimator

of the same density f̂(x). For a daily short-rate data of 22 years, he strongly rejected

all the well-known one factor diffusion models of the short interest rate except the

model which has non-linear drift function. Äıt-Sahalia (1996a) maintained that

the linearity of the drift was the main source of the misspecification.

However, Pritsker (1998) carried out the simulation on Äıt-Sahalia’s (1996a)

test and discovered that Äıt-Sahalia’s test had very poor empirical size relative to

the nominal size of the test. Aiming to find the reason of the poor performance

of Äıt-Sahalia’s (1996a) test, Pritsker(1998) considered the finite sample of Äıt-

Sahalia’s test of diffusion models properties. He pointed out the main reasons for



CHAPTER 1. INTRODUCTION 12

the poor performance were that the nonparametric kernel estimator based test was

unable to differentiate between independent and dependent series as the limiting

distributions were the same. Furthermore, the interest rate is highly persistent and

the nonparametric estimators converged very slowly. Particularly, in order to attain

the accuracy of the kernel density estimator implied by asymptotic distribution

with 22 years of data generated from the Vasicek (1977) model, 2755 years of data

are required.

There is no doubt that the observation of Pritsker (1998) is valid. However, the

poor performance of Äıt-Sahalia’s (1996a) test is not because of the nonparametric

kernel density estimator. As a matter of fact, the test statistic proposed by Äıt-

Sahalia (1996a) is a U-statistic, which is known for slow convergence even for

independent observations.

In this thesis, we propose a test statistic based on the bootstrap in conjunc-

tion with an empirical likelihood formulate. We find that the empirical likelihood

goodness-of-fit test proposed by us has reasonable properties of size and power even

for time span of 10 years and our results are much better than those reported by

Pritsker (1998).

Chapman and Pearson (2000) carried out a Monte Carlo study of the finite sam-

ple properties of the nonparametric estimators of Äıt-Sahalia (1996a) and Stanton

(1997). They pointed out that there were quantitatively significant biases in kernel

regression estimators of the drift advocated by Stanton (1997). Their empirical

results suggested that nonlinearity of the short rate drift is not a robust stylized
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fact. The studies of Chapman and Pearson (2000) and Pritsker (1998) cast seri-

ous doubts on the nonparametric methods applied in finance because the interest

rate and many other high frequency financial data are usually dependent with high

persistence.

Recently, Hong and Li (2001) proposed two nonparametric transition density-

based specification tests for testing transition densities in continuous–time diffusion

models and showed that nonparametric methods were a reliable and powerful tool

in finance area. Their tests are robust to persistent dependence in data by using

an appropriate data transformation and correcting the boundary bias caused by

kernel estimators.

1.6 Methodology And Main Results

In this thesis, we consider the nonparametric specification test to reformulate Äıt-

Sahalia’s (1996a) test statistic via a version of the empirical likelihood (Owen,

1988). This empirical likelihood formulation is designed to put the discrepancy

measure which is used in Äıt-Sahalia’s original proposal by taking into account of

the variation of the kernel estimator. But the discrepancy measure is the difference

between the nonparametric kernel density and the smoothed parametric density

in order to avoid the bias associated with the kernel estimator. Then we use a

bootstrap procedure to profile the finite sample distribution of the test statistic.

Since it is well-known that both the bootstrap and the full empirical likelihood are
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time-consuming, the least squares empirical likelihood introduced by Brown and

Chen (1998) is applied in this thesis instead of the full empirical likelihood.

We carry out a simulation study of the same five Vasicek diffusion models as

in Pritsker (1998) study and find that the proposed bootstrap based empirical

likelihood test had reasonable size for time spans of 10 years to 80 years.

1.7 Chapter Development

This thesis is organized as follows:

In Chapter 2, we present the misspecification of parametric methods and the

misspecification may be caused in applications of diffusion models. Then, the

details about Äıt-Sahalia (1996a) test and asymptotic distribution of the test sta-

tistic are introduced. We then describe Pritsker’s (1998) simulation studies on

Äıt-Sahalia’s (1996a) test and his findings based on his simulation results.

Our main task in Chapter 3 is to propose the empirical likelihood goodness-

of-fit test for the marginal density. At the beginning, the empirical likelihood is

presented. It includes the empirical likelihood for mean parameter and the full

empirical likelihood. Then we describe a version of the empirical likelihood for the

marginal density which employed in this thesis. The empirical likelihood goodness-

of-fit test is discussed in the last section.

Chapter 4 focus on simulation results for the empirical likelihood goodness-

of-fit test. We discuss some practical issues in formulating the test, for example
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parameters estimator, bandwidth selection, the diffusion process generation, etc.

In the part of result, we first report the result of the goodness-of-fit test for IID

case to make sure that the new method works. Then we show the simulation result

on the empirical size and power for the least square empirical likelihood goodness-

of-fit test of the marginal density. Lastly, we implement Äıt-Sahalia (1996a) test

again which is similar to Pritsker’s (1998) simulation studies.

In Chapter 5, we employ the proposed empirical likelihood specification test to

evaluate five popular diffusion models for the spot interest rate. We measure the

goodness-of-fit of these five models for the interest rate first. After that, we present

the test statistic and p-values of these diffusion models.
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Chapter 2

Existing Tests For Diffusion

Models

2.1 Introduction

As mentioned in Chapter 1, most researchers studied continuous-time diffusion

models in order to capture the term structure of important economic variables,

such as exchange rates, stock prices and interest rates. Among them, most of the

works focused on selecting suitable parametric drift and diffusion families which

determine the diffusion models. There are so many parametric models that we

might have no idea which model to choose. In fact, the statistical inference of

diffusion processes rest entirely on the parametric specifications of the diffusion

models. If the parametric specification is misspecified, not only the performance of

the model is poor but also the results of inference may be misleading. Therefore,
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determining the suitability of a parametric diffusion model is important and this

is the focus of this thesis.

Among the research works to determine the suitability of a parametric diffusion

model, the test proposed by Äıt-Sahalia (1996a) is one of the most influential tests.

Although some papers have pointed out that the performance of the test statistic

proposed by Äıt-Sahalia was poor, Äıt-Sahalia’s test was the first one to make such

idea into reality and many later research works were based on Äıt-Sahalia’s idea.

In this chapter, we outline the details of Äıt-Sahalia’s test first. At the same time,

the nonparametric kernel estimator applied by Äıt-Sahalia (1996a) is described.

Lastly, we show the asymptotic distribution of the test statistic.

Pritsker (1998) studied the performance of the finite sample distribution of Äıt-

Sahalia (1996a) test. Pritsker found Äıt-Sahalia’s test had very poor empirical size

relative to the nominal size of the test. In particular, he found that 2755 years of

data were required for obtaining a reasonable agreement between the empirical size

and the nominal size. Actually, the cause of poor performance he believed is that

the nonparametric kernel estimator based test was unable to differentiate between

independent and dependent series as their limiting distributions are the same.

In this thesis, we propose a test based on the least square empirical likelihood

via the bootstrap. We carry the same simulation study as Pritsker (1998) and

compare the performance between these two tests. Therefore, it is necessary for us

to know the details of the Pritsker (1998) study as well. To this end, a detail of

Pritsker (1998) study is outlined in Section 2.3.
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2.2 Aı̈t-Sahalia’s Test

2.2.1 Test Statistic

Suppose that the stationary diffusion process with dynamics represented by a

diffusion equation (1.1) is {Xt, t ≥ 0}. The joint parametric family of the drift and

diffusion is

P ≡ {(µ(·, θ), σ2(·, θ))|θ ∈ Θ}, (2.1)

where θ is a parameter within the parametric space Θ. The null and alternative

hypotheses described by Äıt-Sahalia’s (1996a) are

H0 : µ(·, θ0) = µ0(·) and σ2(·, θ0) = σ2
0(·) for some θ0 ∈ Θ,

H1 : (µ0(·), σ2
0(·)) /∈ P, (2.2)

where (µ0(·), σ2
0(·)) are the ”true” drift and diffusion functions for diffusion equation

(1.1).

Äıt-Sahalia (1996a) proposed a test for the specification of a diffusion model

based on the marginal density which is the focus of this thesis. As mentioned

before, once we know the drift and diffusion functions as specified in H0 of (2.2),

the marginal density is determined according to

f(x, θ) =
ξ(θ)

σ2(x, θ)
exp{

∫ x

x0

2µ(u, θ)

σ2(µ, θ)
du}, (2.3)

where x0 the lower bound of integration in the interior of D = (x, x) for given

x, x such that x < x. The constant ξ(θ) is applied so that the marginal density
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integrates to one. The idea of Äıt-Sahalia was to check if the true density of the

diffusion process is the same with the parametric density given in (2.3). A weight

L2 discrepancy measure between the true density f(·) and the parametric density

f(·, θ) is

M ≡ min
θ∈Θ

∫ x

x
(f(u, θ) − f(u))2f(u)du (2.4)

= min
θ∈Θ

E[(f(X, θ) − f(X))2]. (2.5)

In fact, this is the integrated squared difference between the true and parametric

density weighted by f(·). From the measure of distance, it is clear that under the

null hypothesis M is small, while M is large under the alternative hypothesis.

Äıt-Sahalia (1996a) applied the nonparametric kernel estimator to replace the

true marginal density. The parametric and nonparametric density estimators should

be quite the same under H0. Under H1, the parametric density estimator would

deviate from the nonparametric estimator. In his test, he used the standard kernel

estimator:

f̂(x) =
1

N

N∑

t=1

1

h
K(

x − Xt

h
), (2.6)

where N is the number of observations, h is called the bandwidth and K(·) is a

function which is commonly a symmetric probability density and satisfies :

∫

R
K(x)dx = 1, (2.7)

∫

R
xK(x)dx = 0, (2.8)

∫

R
x2K(x)dx = σ2

k, (2.9)
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where σ2
k is a positive constant. Table 2.1 lists some of the common kernels used

in literature on nonparametric kernel estimators.

Kernel K(u)

Gaussian
1√
2π

e−
u2

2

Epanechnikov
3

4
(1 − u2)I(u)

Biweight
15

16
(1 − u2)2I(u)

Table 2.1: Common used Kernels (I(·) signifies the indicator function)

Äıt-Sahalia (1996a) applied Gaussian kernel in his empirical studies. To esti-

mate the marginal density, we choose the bandwidth such that h → 0, limN→∞Nh =

∞ and limN→∞Nh4.5 = 0.

Finally, the test statistic proposed by Äıt-Sahalia (1996a) is

M̂ ≡ Nh min
θ∈Θ

1

N

N∑

t=1

(f(Xt, θ) − f̂(Xt))
2, (2.10)

where Nh is a normalizing constant. Äıt-Sahalia (1996a) estimated θ, say θ̂M that

minimizes the distance between the densities with the same bandwidth, i.e,

θ̂M ≡ arg min
θ∈Θ

1

N

N∑

t=1

(f(Xt, θ) − f̂(Xt))
2. (2.11)

2.2.2 Distribution Of The Test Statistic

Äıt-Sahalia (1996a) used the asymptotic distribution of the kernel density estimate

to derive the asymptotic distribution of the test statistic M̂ . He showed under the
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conditions limN→∞Nh = ∞, h → 0 and limN→∞Nh4.5 = 0, the test statistic M̂ is

distributed as

h−1/2{M̂ − EM} D−→ N(0, VM), (2.12)

where

EM ≡ (
∫ +∞

−∞
K2(x)dx)(

∫ x

x
f 2(x)dx), (2.13)

VM ≡ 2(
∫ +∞

−∞
{
∫ +∞

−∞
K(u)K(u + x)du}2dx)(

∫ x

x
f 4(x)dx), (2.14)

where x and x are the lowest and highest realizations of Xt in the data.

Therefore, the procedure of the test at level α is to

reject H0 : when M̂ ≥ ĉ(α) ≡ ÊM + h1/2z1−α/V̂
1/2
M , (2.15)

where ÊM and V̂M are the estimators of EM and VM . The estimators are the

plugged-in types and have the expressions:

ÊM ≡ (
∫ +∞

−∞
K2(x)dx)(

1

N

N∑

t=1

f̂(Xt)), (2.16)

V̂M ≡ 2(
∫ +∞

−∞
{
∫ +∞

−∞
K(u)K(u + x)du}2dx)(

1

N

N∑

t=1

f̂ 3(Xt)). (2.17)

2.3 Pritsker’s Study

Using the test statistic above, Äıt-Sahalia (1996a) only did empirical test for

diffusion models on a data set and did not do simulation studies. Pritsker (1998)

carried out simulation study on Äıt-Sahalia’s (1996a) test. As a result, he found

that the empirical size of Äıt-Sahalia’s test is poor.
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If the marginal density of the diffusion model is complicated (what’s more is

that many marginal densities of the diffusion models have no close form), study-

ing the finite sample properties of the test of the diffusion model is a challenge

work. It is well-known that the marginal density of the Vasicek (1977) model

is Gaussian, which is the most used statistical distribution and well-developed in

theory. Therefore, Pritsker selected the Vasicek (1977) model which is the most

tractable to study Äıt-Sahalia’s (1996a) test.

Now we turn to know more details on the properties of the Vasicek (1977)

model. The Vasicek (1977) model has the form:

dXt = κ(α − Xt)dt + σdBt, (2.18)

where the parameters κ and σ are restricted to be positive, and the value of α is

finite.

Under the diffusion process in Equation (2.19), X has a normal marginal density.

f(x|κ, α, σ) =
1√

2πVE

e
−0.5( x−α√

VE
)2

, (2.19)

where VE =
σ2

2κ
.

From equation (2.19), it is clear that the marginal density of X is a normal

density with the unconditional mean α and variance
σ2

2κ
. The rate of mean rever-

sion becomes slowly when we lower the value of κ. Therefore, the parameter κ

determines the persistence of the diffusion process.

In order to quantify the effect of κ on persistence, Pritsker fixed the marginal

distribution but varied the persistence of the diffusion process. He changed the
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value of σ2 and κ in the same proportion, in this case the persistence of the process

varied but the marginal density is not changed. The parameters in the baseline

model Pritsker selected are κ = 0.85837, α = 0.089102 and σ2 = 0.0021854. These

parameters were from Äıt-Sahalia (1996b), which were obtained by applying the

GMM based on the seven-day Eurodollar deposit rate between June 1, 1973 and

February 25, 1995 from Bank of American. Pritsker also considered models in

which the baseline κ and σ2 are doubled, quadrupled, halved and quartered. Table

2.2 lists the corresponding models which are labeled model -2, model -1, model

0, model 1 and model 2. Although models toward the top of the table are less

persistence, all models have the same marginal distribution.

Parameters

Model κ α σ2

-2 3.433480 0.089102 0.008742

-1 1.716740 0.089102 0.004371

0 0.858370 0.089102 0.002185

1 0.429185 0.089102 0.001093

2 0.214592 0.089102 0.000546

Table 2.2: Models considered by Pritsker (1998)

Pritsker (1998) performed 500 Monte Carlo simulations for each of the Vasicek

(1977) model. In each simulation, he generated 22 years of daily data which gave
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a total of 5500 observations. The bandwidth applied was the optimal bandwidth

which minimized the Mean Integrated Squared Error (MISE) of the nonparametric

kernel density estimate (More details about the bandwidth selection refer to Prisker

(1998)). To compute the test statistic of Äıt-Sahalia (1996a), he generated the

following consistent estimates of M, VM and EM :

M̂ ≡ min
θ∈Θ

Nh
∫ x

x
[f(θ̂, u) − f̂(u)]2f̂(u)du, (2.20)

ÊM ≡ (
∫ +∞

−∞
K2(x)dx)(

∫ x

x
f̂ 2(u)du), (2.21)

V̂M ≡ 2(
∫ +∞

−∞
{
∫ +∞

−∞
K(u)K(u + x)du}2dx)(

∫ x

x
f̂ 4(u)du), (2.22)

where x and x are the highest and lowest realization in the data. The difference

of these consistent estimators between Pritsker (1998) and Äıt-Sahalia (1996a) is

that Äıt-Sahalia calculated these estimators by Riemann sum while Pritsker used

Riemann Integral.

Using asymptotic critical values, Pritsker (1998) got the empirical rejection fre-

quencies which showed in Table 2.3. In the case the Vasicek model 0, the empirical

rejection frequeny is about 50% at the 5% confidence level. The rejection rates

increase from model -2 to model -1 but they decrease from model -1 to model 2

rapidly. For the Vasicek model 2 which has the highest persistence, the empirical

rejection frequeny is only 21% at the 5% confidence level.

Pritsker (1998) also showed the finite sample properties of kernel density es-

timates of the marginal distribution when interest rates are generated from the

Vasicek model. He derived analytic expressions of finite sample bias, variance,
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covariance and MISE for the nonparametric kernel estimator. He found that the

optimal choice of bandwidth depends on the persistence of the process but not

on the frequency with which the process was sampled. After comparing the fi-

nite sample and asymptotic properties of kernel density estimators of the marginal

distribution for the Vasicek model, he maintained that the asymptotic approxima-

tion understated the finite sample magnitudes of the bias, variance, covariance and

correlation of the kernel density estimator. In particular, he found that to obtain

a reasonable agreement between the empirical size and the nominal size required

about 2755 years of data.

Model Rej.freq(5%) Optimal Bandwidth

-2 45.60% 0.0140979

-1 57.40% 0.0175509

0 51.60% 0.0217661

1 40.80% 0.0268048

2 21.00% 0.0325055

Table 2.3: Empirical rejection frequencies using asymptotic critical values at 5%

level, extracted from Pritsker(1998).
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Chapter 3

Goodness-of-fit Test

3.1 Introduction

From the early chapters, we are aware that the misspecification for the diffusion

process may be produced when a parametric model is used in a study. Therefore,

goodness-of-fit tests arise aiming at testing the validity of the parametric model.

The purpose of this chapter is to apply a version of Owen’s (1988, 1990) empiri-

cal likelihood to formulate a test procedure on the specification of the stationary

density of a diffusion model.

The null and alternative hypotheses we considered are:

H0 : f(·, θ) = f(·) for some θ ∈ Θ,

H1 : f(·, θ) 6= f(·) for all θ ∈ Θ, (3.1)

where Θ is a compact parameter space.
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We take the opportunity to reformulate Äıt-Sahalia’s (1996a) test statistic via

a version of the empirical likelihood. The test statistic Äıt-Sahalia (1996a) pro-

posed was directly based on the difference between the parametric density and the

nonparametric kernel density estimator which brings undersmoothing. Our test

statistic avoids undersmoothing as we carry out a local linear smoothing of the

parametric density implied by the diffusion model under consideration.

We use a bootstrap procedure to profile the finite sample distribution of the test

statistic in order to remove part of the problem appeared in Äıt-Sahalia’s (1996a)

test. It is well known that both the bootstrap and the full empirical likelihood

are computing intensive methods. Fortunately, we note that one version of empir-

ical likelihood, the least squares empirical likelihood, can be computed efficiently.

This least squares empirical likelihood was introduced by Brown and Chen (1998)

and has a simpler form in one-dimension than the full empirical likelihood. It

avoids maximizing a nonlinear function, and hence makes the computation of the

test statistic straightforward. At the same time, this least squares empirical likeli-

hood has a high level of approximation to the full empirical likelihood under some

mild conditions. The difference between the full empirical likelihood and the least

squares empirical likelihood based test statistic is just a smaller order, as indicated

in Brown and Chen (2003). Therefore, we propose the test statistic based on the

least square empirical likelihood to make the computation more efficient.

In this chapter, we introduce the empirical likelihood in Section 3.2 for the case

of the mean parameter first. Then we extend the full empirical likelihood and the



CHAPTER 3. GOODNESS-OF-FIT TEST 28

least square empirical likelihood for the stationary density of the diffusion model

as well. The least squares empirical likelihood based goodness-of-fit test and some

of its properties is presented in Section 3.3.

3.2 Empirical Likelihood

3.2.1 The Full Empirical Likelihood

The conception of empirical likelihood is presented for the case of the mean

parameter first. Then the details on the empirical likelihood for the stationary

density of the diffusion model are described.

The early idea of empirical likelihood ratio appeared in Thomas and Grunke-

meier (1975), who used a nonparametric likelihood ratio to construct confidence

intervals for survival probabilities. It was Owen (1988) who extended the idea and

proposed using empirical likelihood ratio to form confidence intervals for the mean

parameter. Like other nonparametric statistical methods, the empirical likelihood

is applied to data without assuming that they come from a known family of distri-

bution. Other nonparametric inferences include the jackknife and the bootstrap.

These nonparametric methods give confidence intervals and tests with validity not

depending on strong distributional assumptions. Among these, the empirical like-

lihood is known to be effective in certain aspects of inference as summarized in

Owen (2001).

Let X1, X2, · · · , XN be independent random vectors in Rp, with a common
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distribution F . Then the empirical distribution function F̂ is

F̂ (x) = N−1
N∑

t=1

I(Xt ≤ x),

where I(·) is the indicator function. Assume that what we are interested in is the

mean of the population, say θ = θ(F ). Let p1, p2, · · · , pN be nonnegative probability

weight allocated to the sample. The empirical weighted distribution function is

F̂p(x) =
N∑

t=1

ptI(Xt ≤ x).

Then

θ(p) =
∫

xdF̂p(x) =
N∑

t=1

ptXt

is the mean based on the distribution F̂p. The empirical likelihood of θ, evaluated

at θ = θ0 is

L(θ0) = sup{
N∏

t=1

pt|θ(p) = θ0,
N∑

t=1

pt = 1}. (3.2)

If we only keep the natural constraint
N∑

t=1

pt(x) = 1, after applying the basic

inequality, we have

N∏

t=1

pt ≤ (
1

N

N∑

t=1

pt)
1/N = (

1

N
)1/N .

Since the equality holds if and only if p1 = p2 = · · · = pN =
1

N
. Therefore, the

maximum empirical likelihood is

L(θ̂) = N−N ,

where the maximum empirical likelihood estimator is θ̂ = X̄ = 1/N
N∑

t=1

Xt. The

empirical log-likelihood ratio `(θ0) is

−2log{L(θ0)/L(θ̂)} = −2inf{
N∑

t=1

log(Npt)|θ(p) = θ0,
N∑

t=1

pt = 1}. (3.3)
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Introducing the Lagrange multiplier λ and γ, let

G =
N∑

t=1

logNpt + γ(1 −
N∑

t=1

pt) + Nλ
N∑

t=1

pt(Xt − θ0).

Setting to zero the partial derivative of G with respect to pt gives

∂G

∂pt
=

1

pt
− γ + Nλ(Xt − θ0) = 0.

Applying the restriction
N∑

t=1

ptXt = θ0,

0 =
N∑

t=1

pt
∂G

∂pt

= N − γ.

So γ = N . Therefore we may write

pt(x) =
1

N
{1 + λ(Xt − θ0)}−1, t = 1, · · · , N, (3.4)

where λ(x) is the root of

N∑

t=1

Xt

1 + λ(x)(Xt − θ0)
= 0. (3.5)

Finally, we get the log empirical likelihood ratio

−2log{L(θ0)/L(θ̂)} = −2{
N∑

t=1

log(Npt)|θ(p) = θ0,
N∑

t=1

pt = 1} (3.6)

= 2
N∑

t=1

log{1 + λ(Xt − θ0)}. (3.7)

Now we turn to the empirical likelihood for the stationary density of the dif-

fusion model which is our interest of this thesis. For the diffusion model (1.1),

we observe the process Xt at dates {t∆|t = 0, 1, · · · , N}, where ∆ > 0 is gener-

ally small, but fixed, for example ∆ = 1/250(daily) and ∆ = 1/12(monthly). Let
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Kh(·) = h−1K(·/h), then the standard kernel density estimator of f(x) can be

expressed f̂(x) =
1

N

N∑

t=1

Kh(x − Xt).

Let

f̃(x, θ̂) =
N∑

t=1

wt(x)f(Xt, θ̂) (3.8)

be the kernel smoothed density of the parametric density f(x, θ̂) by using the

same kernel and bandwidth. Here θ̂ is a consistent estimator of θ and wt(x) =

1

N
Kh(x−Xt)

s2(x) − s1(x)(x − Xt)

s2(x)s0(x) − s2
1(x)

is the local weight, where sr(x) =
1

N

N∑

s=1

Kh(x−

Xs)(x − Xs)
r for r = 0, 1, 2.

In Chapter 2, we have already known that the test statistic proposed by Äıt-

Sahalia (1996a) was based directly on the difference between the parametric density

of the diffusion model f(x, θ̂) and the nonparametric kernel density estimator f̂(x).

While the test statistic we considered is based on the difference between f̃(x, θ̂)

and f̂(x). By doing this, the issue of bias associated with the nonparametric fit is

canceled so as to avoid undersmoothing. To appreciate this point, we note that if

θ̂ is a
√

N -consistent estimator of θ, then it may be shown from some algebra that

E{f̃(x, θ̂) − f̃(x, θ)}2 = O(
1

N
).

It follows a standard derivatation in kernel density estimator, for instance that

given in Silverman (1986), where f(x) is the real density:

E[f̂(x) − f(x)] =
1

2
h2σ2

kf
′′(x) + o(h2)

and

E[f̃(x, θ̂) − f(x)] =
1

2
h2σ2

kf
′′(x) + o(h2)
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provided that the first three derivation of f(x) exist, where σ2
k =

∫
x2K(x)dx, and

they are the same in the first term.

This implies that as N → ∞

E2[f̂(x) − f̃(x, θ̂)] = o(h4). (3.9)

From standard results in kernel estimator, the mean square error of f̂(x) is

MSE{f̂(x)} = E{f̂(x) − f(x)}2

=
1

4
h4f ′′2(x)σ4

k +
f(x)R(k)

Nh
+ o(h4) + O(N−1), (3.10)

where R(K) =
∫

K2(u)du which is < ∞.

Then the optimal local bandwidth that minimizes the leading term (first two terms)

of MSE is

h∗ = (
f(x)R(K)

f ′′2(x)σ4
k

)1/5N−1/5.

Finally, we get the optimal mean square error

MSE∗{f̂(x)} =
5

4
{f(x)R(K)}4/5{f ′′(x)σ2

k}3/5N−4/5.

On the other hand, Äıt-Sahalia’s (1996a) test statistic was based on f̂(x)−f(x, θ̂),

which measures directly the difference f̂(x) and f(x, θ̂). It can be shown that under

H0,

E2[f̂(x) − f(x, θ̂)] = O(h4). (3.11)

This means that it has the same order as the variance of f̂(x) if h is chosen to be

O(N−1/5). Thus, to obtain an asymptotically normal distribution with zero mean,
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h has to be smaller order than N−1/5. This implies undersmoothing. By contrast,

it can be seen from (3.9) that the use of the difference f̂(x) − f̃(x, θ̂) can avoid

undersmoothing. In other words, one can still use h at order of N−1/5 and means

that we also can use the Cross-Validation method to choose h.

In the following, we formulate the empirical likelihood ratio for the marginal

density. At an arbitrary x ∈ S where S is a compact set, let pt(x) be nonnegative

numbers representing weights allocated to Xt. The empirical likelihood for f̃(x, θ̂)

is

L{f̃(x, θ̂)} = max
N∏

t=1

pt(x) (3.12)

subject to
N∑

t=1

pt(x) = 1 and
N∑

t=1

pt(x)Qt(x) = 0, where Qt(x) = [Kh(x − Xt) −

f̃(x, θ̂)]. The idea of the empirical likelihood is to find the optimal pt(x) at each

Xt in order to maximize
N∏

t=1

pt(x) under the two restrictions.

We apply the method of Lagrange multipliers to work out the optimal problem

with restrictions (see Owen (2000)). Introducing the Lagrange multiplier λ(x) and

γ(x), we suppose

G =
N∑

t=1

logpt(x) − Nλ(x)
N∑

t=1

pt(x)Qt(x) + γ(x){
N∑

t=1

pt(x) − 1}.

Setting to zero the partial derivative of G with respect to pt(x) gives

∂G

∂pt

=
1

pt

− Nλ(x)Qt(x) + γ(x) = 0.

Applying the restriction
N∑

t=1

pt(x)Qt(x) = 0 and
N∑

t=1

pt(x) = 1,

0 =
N∑

t=1

pt
∂G

∂pt

= N + γ(x).
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So γ = −N . Therefore we may write

pt(x) =
1

N
{1 + λ(x)Qt(x)}−1, t = 1, · · · , N, (3.13)

where λ(x) is the root of

N∑

t=1

Qt(x)

1 + λ(x)Qt(x)
= 0. (3.14)

The case where pt(x) =
1

N
corresponds to the conventional kernel density estimate.

Finally, we get the log empirical likelihood ratio for the marginal density

`{f̃(x, θ̂)} = −2log[L{f̃(x, θ̂)}NN ]

= 2
N∑

t=1

log[1 + λ(x){Kh(x − Xt) − f̃(x, θ̂)}]. (3.15)

Clearly the computation of `{f̃(x, θ̂)} involves solving λ(x) as a root of a non-

linear equation (3.14). People use the conjugation gradient method which requires

derivative calculations and one-dimensional sub-minimization, which is quite com-

putation intensive. This is on top of the fact that we need to evaluate `{f̃(x, θ̂)}

at many x points when formulating the empirical likelihood test statistic.

3.2.2 The Least Squares Empirical Likelihood

To overcome the computational difficulty of the empirical likelihood, Brown

and Chen (1998) proposed a ”least-squares” version of the empirical likelihood.

The empirical likelihood actually maximizes such function
∑

t

log(Npt) whereas

the least squares empirical likelihood maximizes the function −
∑

t

(Npt(x) − 1)2

under some restriction. It is also called the Euclidean likelihood (Owen 2001).
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Brown and Chen (1998) showed that the least squares empirical likelihood curves

followed those of the full empirical likelihood closely under some mild conditions. In

particular, the least squares empirical likelihood has a close form and this character

makes its computation straightforward.

We provide here the details of the method in a general setting following Brown

and Chen (1998) because the least squares empirical likelihood for the marginal

density is based on this theory. We assume the dimension of the parameter θ ( which

has a true value θ0 ) is p. Let Z1(θ), Z2(θ), · · · , ZN(θ) be k dimensional independent

but not necessarily identically distributed random vectors and E{Zi(θ0)} = 0, i =

1, · · · , N . The least squares empirical likelihood for θ is defined as

lsl(θ) = min
N∑

t=1

(Npt(x) − 1)2, (3.16)

subject to
N∑

t=1

pt(x) = 1 and
N∑

t=1

pt(x)Zt(θ) = 0.

Actually lsl(θ) = N2min
∑

t

p2
t − 2Nmin

∑

t

pt + N = N2min
∑

t

p2
t − N . Let

M(θ) = min
∑

t

p2
t , then we just should compute M(θ) directly.

Applying Lagrange multipliers α = (α1, · · · , αp)
T , the objective function is

G =
∑

t

p2
t + α0

∑

t

pt + αT
∑

t

ptZt(θ).

Setting to zero the partial derivative of G with respect to pt gives

∂G

∂pt

= 2pt + α0 +
∑

j

αjZtj(θ) = 0.

Therefore, we get

pt = −1

2
{α0 +

∑

t

αjZtj(θ)}. (3.17)
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Let αT = (α0, α1, · · · , αk), from the structural constraints we write

(10 · · ·0)T = −1

2




N V T

V R


 α

where V T = (V1, V2, · · · , Vk), Vj =
∑

t

Ztj(θ) and R = (Rjj′)k×k, Rjj′ =
∑

t

Ztj(θ)Ztj′(θ).

Then we get the optimal pt which is

pt = N−1 + N−1(N−1V − Zt(θ))
T H−1V, (3.18)

where H = R−N−1V V T . Therefore, the least squares empirical likelihood for the

mean parameter is

lsl(θ) = V T H−1V. (3.19)

Now we turn to our interest, the marginal density. At an arbitrary x ∈ S,

let pt(x) be nonnegative numbers representing weights allocated to Xt. The least

squares empirical likelihood for the marginal density is

lsl{f̃(x, θ̂)} = min
N∑

t=1

(Npt(x) − 1)2, (3.20)

subject to
N∑

t=1

pt(x) = 1 and
N∑

t=1

pt(x)Qt(x) = 0, where Qt(x) = [Kh(x − Xt) −

f̃(x, θ̂)].

Let V =
∑

t

Qt(x), R =
∑

t

Q2
t (x) and H = R − N−1V 2, plugging (3.18) we

have

pt = N−1 + N−1(N−1V − Qt)H
−1V

= N−1H−1{N−1V 2 − QtV + H}

= N−1H−1{R − V Qt}, (3.21)
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and the least squares empirical likelihood for the marginal density is

lsl{f̃(x, θ̂)} = N2min
∑

t

p2
t − n =

V 2

H

= (
∑

t

Qt)
2{

∑

t

Q2
t − N−1(

∑

t

Qt)
2}−1

= {
∑

t

Q2
t (

∑

t

Qt)
−2 − N−1}−1. (3.22)

Compared with the full empirical likelihood, the least squares empirical like-

lihood for the marginal density needs only two simple statistics
∑

t

Qt(x) and

∑

t

Q2
t (x) while computation of the full empirical likelihood is more complicated.

3.3 Goodness-of-fit Test

Based on the full empirical likelihood and the least squares empirical likelihood

for the marginal density given in Section 3.2, we define the full empirical likelihood

and least squares empirical likelihood test statistics as

N̂(h) =
∫

`{f̃(x, θ̂)}π(x)dx,

N̂LS(h) =
∫

lsl{f̃(x, θ̂)}π(x)dx, (3.23)

where π(x) is a probability weight function satisfying
∫

π(x)dx = 1 and
∫

π2(x)dx <

∞, for example simple function.

Let γ(x) be a random process with x ∈ S. Denote γ(x) = õp(δn) for the fact

that sup
x∈S

|γ(x)| = op(δn) for a sequence δn. Using the technique proposed by Chen

(1996), one can develop the expansion for the log EL ratio for the marginal density
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as

`{f̃(x, θ̂)} = −2log[L{f̃(x, θ̂)}NN ]

= (Nh)
(f̂(x) − f̃(x, θ))2

R(K)f(x)
+ õp{(Nh)−1/2log(N)}. (3.24)

Hence, the test statistic for the full empirical likelihood for the marginal density is

N̂(h) =
∫

`{f̃(x, θ̂)}π(x)dx

= (Nh)
∫

(f̂(x) − f̃(x, θ))2

R(K)f(x)
π(x)dx + op{(Nh)−1/2log(N)}. (3.25)

Brown and Chen (1998) pointed out that both the full empirical likelihood and

the least squares empirical likelihood have the same first order term. Therefore,

we have

`(f̃(x, θ̂)) = lsl(f̃(x, θ̂)) + õp((Nh)−1/2logN). (3.26)

More details refer to Brown and Chen (1998).

Hence

∫
`(f̃(x, θ̂))π(x)dx =

∫
lsl(f̃(x, θ̂))π(x)dx + op((Nh)−1/2logN). (3.27)

The test statistic of the least squares empirical likelihood for the marginal density

is

N̂LS(h) =
∫

lsl{f̃(x, θ̂)}π(x)dx

= N̂(h) + op{(Nh)−1/2log(N)}. (3.28)

It is clear that the full empirical likelihood test statistic N̂(h) and the least squares

empirical likelihood test statistic N̂LS(h) are same in the first order. However, the
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computation of the least squares empirical likelihood test statistic is more efficient

than that of the full empirical likelihood test statistic. Therefore, we will use it for

our test of the marginal density in this thesis.

Let the standard test statistic be L̂ =
N̂LS(h) − 1

σh
, where σ2

h = 2hC(K, π) and

C(K, π) = R−2(K)K(4)(0)
∫

π2(x)dx. Then under some assumptions for instance

these given in Chen (1996) and H0 in (3.1), we have

L̂ =
N̂LS(h) − 1

σh

→D N(0, 1) (3.29)

as N → ∞.

In the following, we discuss how to get a critical value for the test statistic

based on the least squares empirical likelihood. The exact α-level critical value,

lα(0 < α < 1) is the 1 − α quantile of the exact finite-sample distribution of the

test statistic. However, lα can not be evaluated in practice because the distribution

of the test statistic is unknown. We get an asymptotic α-level critical value, say

l∗α, by the bootstrap. The bootstrap procedure is:

1. Use the data set {Xt; t = 1, 2, · · · , N} to estimate θ by θ̂ = argmaxθL(θ; ∆),

where

L(θ; ∆) =
1

N

N∑

t=1

log{pθ(Xt+1|Xt, ∆)} (3.30)

is the likelihood under H0. Denote the resulting estimate by θ̂.

2. Compute the test statistic N̂LS(h) for a given h.

3. Generate a bootstrap resample {X∗
t ; t = 1, 2, · · · , N} from the transition

density pθ̂(X
∗
t+1|X∗

t , ∆) with X∗
0 generated from f(x, θ̂). Use the new data set
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{X∗
t ; t = 1, 2, · · · , N} and the function L(θ̂, ∆) =

1

N

N∑

t=1

log{pθ̂(X
∗
t+1|X∗

t , ∆)} to

re-estimate θ̂. Denote the resulting estimate by θ̂∗. Compute the statistic N̂∗
LS(h)

that is obtained by replacing Xt and θ̂ with X∗
t and θ̂∗.

4. Repeat the above steps B times for example B = 300 and produce B versions

of N̂∗1
LS, · · ·, N̂∗m

LS , · · ·,N̂∗B
LS for m = 1, 2, · · · , B. Use the B values of N̂∗

LS(h) to con-

struct their empirical bootstrap distribution function, that is , F (u) =
1

B
I(N̂∗

LS ≤

u). Use the Ordered statistic, we have N̂
∗(1)
LS ,≤, · · · ,≤, N̂

∗(B)
LS . Hence the asymp-

totic critical value is l∗α = N̂
∗(T )
LS where T = N(1 − α).

In fact, under some assumptions and H0 in (3.1) it may be showed

lim
N→∞

P (N̂∗
LS(h) > l∗α) = α. (3.31)

The main result on the behavior of the test statistic N̂LS under H0 is that l∗α is an

asymptotically correct α-level critical value under the null hypothesis.
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Chapter 4

Simulation Studies

4.1 Introduction

In this chapter we report results from simulation studies designed to evaluate

the performance of the proposed empirical likelihood goodness-of-fit test for a dif-

fusion process. We also compare our test with the test proposed by Äıt-Sahalia

(1996a).

In Section 4.2, we discuss the details on the simulation procedure including

some practical issues such as the parameters estimation, bandwidth selection, initial

value and the generation of a diffusion process. Many diffusion models have been

developed so far. Similar to Pritsker (1998), we only focus on the simplest and the

most important model, the Vasicek (1977) model, in this thesis. We discuss the

computation of the test statistic and how to obtain the critical value for the test

statistic. The simulation results including the empirical size and power of the test



CHAPTER 4. SIMULATION STUDIES 42

for both the IID case and the diffusion models are presented in Section 4.3. Finally,

we reevaluate the performance of the test proposed by Äıt-Sahalia (1996a).

4.2 Simulation Procedure

Under the null hypothesis H0 in (3.1), the conditional likelihood of θ based on

the observed data {Xt}N
t=1 is

L(θ; ∆) =
1

N

N∑

t=1

log {pθ(Xt+1|Xt; ∆)} , (4.1)

in which pθ(·|·, ∆) is transition density specified by H0. Hence, the maximum

likelihood estimator of θ is θ̂ = arg max
θ

L(θ; ∆).

In this thesis, the simulation is focused on the Vasicek (1977) model which has

the form

dXt = κ(α − Xt)dt + σdBt, (4.2)

where the parameters κ and σ are restricted to be positive, and value of α is finite.

Under the diffusion process (4.2), the marginal and transition densities of the

diffusion process are Gaussian. The marginal density of X is

f(x|κ, α, σ) =
1√

2πVE

exp
−0.5( x−α√

VE
)2

, (4.3)

where VE =
σ2

2κ
. The transition density of X is

p(Xt+1, |Xt, ∆, κ, α, σ) =
1√

2πV (Xt+1|Xt)
exp

−0.5(
Xt+1−µ(Xt+1|Xt)√

V (Xt+1|Xt)
)2

, (4.4)

where µ(Xt+1|Xt) = α + (Xt − α)e−κ∆ and V (Xt+1|Xt) = VE(1 − e−2κ∆).
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Following the formula (4.1), the conditional likelihood of θ on the observed

Vasicek process {Xt}N
t=1 is

L(θ; ∆) =
1

N

N∑

t=1

{−1

2
log(2πV (Xt+1|Xt)) −

1

2

(Xt+1 − µ(Xt+1|Xt))
2

V (Xt+1|Xt))
}. (4.5)

The maximum likelihood estimator of θ, say θ̂, can be obtained by maximizing

(4.5).

In the simulation study, we use the parameters which are applied in the simu-

lation study of Pritsker (1998). To be consistent, we also call these Vasicek models

as model -2, model -1, model 0, model 1 and model 2 which all have the same mar-

ginal density but different levels of dependence. Model -2 has the least persistent

and model 2 has the most persistent.

Now we turn to bandwidth selection in the simulation. The choice of bandwidth

is important to the kernel density estimate and the test statistic under considera-

tion. Small values of bandwidth make the estimate look ”wiggly” and show spurious

features, whereas too big values of bandwidth lead to too much smoothing and may

not reveal structural features for the observations. In general, a bandwidth should

be chosen to minimize the Integrated Squared Error (ISE) or the Mean Integrated

Squared Error (MISE). There are a number of bandwidth selection methods which

have been proposed by researchers over the years, for example the reference to

a standard distribution approach, the Cross-Validation and the Plug-in Method.

Berwin (1993) gave a review on bandwidth selection in kernel density estimation.

Our interest in the simulation is the Vasicek model whose marginal density is Nor-
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mal, it is favorable for us to employ the reference to a normal distribution approach

for bandwidth selection. Based on the Mean Integrated Squared Error, the optimal

global bandwidth is

h∗ = { R(K)

σ4
kR(f (2))

}
1
5 N− 1

5 (4.6)

where R(K) =
∫

K2(t)dt, σ2
k =

∫
K(t)t2dt (see Chapter 3 for details) and N is the

sample size.

Usually the term R(f (2)) is unknown in the expression. The reference to a

normal distribution approach replaces the unknown density function f in (4.6) by

a normal density function, which matches the empirical mean and variance of the

data.

If we use Gaussian kernel K(u) =
1

2π
e−

u2

2 , the reference to a normal distribution

approach yields the optimal bandwidth

h∗ = 1.06σ̂N− 1
5 ,

where σ̂2 is the sample variance and N is the sample size. In our simulation, we

employ the Biweight kernel K(u) =
15

16
(1−u2)I(u) where I(·) signifies the indicator

function and get the optimal bandwidth

h∗ = 2.78σ̂N− 1
5 .

Table 4.1 lists the optimal bandwidth for a variety of sample sizes considered in

the simulation. We would like to highlight that bandwidths for IID are same as

those for dependent observations generated from a diffusion model as long as IID
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and dependent observations have the same marginal density. This is due to the so

called ”prewhitening” effect by a bandwidth in the kernel smoothing of dependent

data. The effect of dependence is only felt in the second order.

Optimal Bandwidth

Sample size n=100 n=120 n=200 n=250 n=500 n=1000 n=2000

h∗ 0.0398 0.0384 0.0347 0.0332 0.0289 0.0251 0.219

Table 4.1: Optimal bandwidth corresponding different sample size

To simulate a diffusion process, the first step is generating the starting value

X0. As mentioned above, our interest is the Vasicek model where the exact mar-

ginal distribution is Normal. Therefore, we simulate X0 simply from the Normal

stationary distribution.

After generating the initial value X0, we can generate a diffusion process. As

the transition distribution of Xt+1 given Xt is available from the transition density

p(Xt+1|Xt, ∆) under H0, we can simulate Xt+1 from the transition distribution

given Xt, whiles X1 is simulated based on X0 given above. For the Vasicek model,

the transition density follows a conditional normal density where the mean is α +

(Xt − α)e−κ∆ and the variance is VE(1 − e−2κ∆).

To profile the finite sample distribution of the test statistic, we employ the

bootstrap procedure which is known to be time-consuming. If we choose ∆ =
1

250

(daily), the calculation of the test statistic will take long time. To improve the

computing efficiency of the test statistic, we choose another reasonable interval
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∆ =
1

12
(monthly) in simulation study.

Since the support of the density function f(·) may not be compact, we choose

the weight function π(·) to be compactly supported to truncate out the tail regions

of the marginal density, in particular we may use

π(x) =





(R2 − R1)
−1 if x ∈ [R1, R2],

0 otherwise,

where 0 ≤ R1 < R2 for some constant R1 and R2, which should be chosen properly

so that the two tail regions (0, R1) and (R2,∞) cover around 10% of data. In the

simulation, we use the Biweight kernel function.

Let {tl}Q
l=1 be equally spaced points within [R1, R2]. At each fixed points tl, l =

1, · · · , Q, the likelihood goodness-of-fit is lsl{f̃(tl, θ̂}. Then a discretization of the

test statistic for a bandwidth h is N̂LS(h) =
1

Q

Q∑

l=1

lsl{f̃(tl, θ̂)}.

Lastly, we find critical value l∗α following the bootstrap procedure which is al-

ready completely described in Chapter 3.

4.3 Simulation Result

4.3.1 Simulation Result For IID Case

Before we start to evaluate the performance of the proposed empirical likeli-

hood goodness-of-fit test for diffusion models, we first consider the test for IID case

to make sure that the method we proposed works for IID. We generate X which fol-

lows a Normal distribution with mean 0.089102 and variance 0.001273052, and also
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has the same marginal density as dependent observations generated from diffusion

models which are considered in the later simulation. We apply MLE to estimate

the mean and variance parameters from the IID. The process of computation of

test statistics and critical values is the same as that of diffusion models which had

already discussed in the early section.

To estimate the empirical size of the test for IID case, we performed 500 sim-

ulations on 19 spaced bandwidths ranging from 0.003 to 0.048. The range of

bandwidths includes the optimal bandwidth given by Table 4.1 and offers a wide

range of smoothness. In order to learn the trend with increased sample size, we

consider three different sample sizes which are 100, 200 and 500 respectively. Ta-

ble 4.2 lists the size of the bootstrap based least squares empirical likelihood test

for IID case for a set of bandwidth values and their sample sizes. Figure 4.1 is

a graphical illustration of Table 4.2 where h∗ is the optimal bandwidth given in

Table 4.1 and is indicated by the vertical line. It is obviously that the empirical

rejection frequencies become more stable around 0.05 with increased sample size.

In the case the sample size is 100, the empirical size first increases with increased

bandwidth. When the bandwidth equals 0.009, the empirical size reaches 0.04.

After that, the empirical size is decreasing with increased bandwidth. The per-

formance of our test is improved when the sample size is doubled. The empirical

size remains steady around 0.05 but it decreases rapidly with the bandwidth in-

creasing after bandwidth equals 0.04. When the sample size is as large as n=500,

the empirical size rates are steadily around 0.05 for a wide range of bandwidths.
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Therefore, the empirical likelihood goodness-of-fit test we proposed has reasonable

empirical rejection frequencies for IID case when the critical value is generated via

the bootstrap.

bandwidth Sample Size bandwidth Sample Size

100 200 500 100 200 500

0.003 0.08 0.04 0.054 0.03 0.056 0.046 0.052

0.006 0.068 0.038 0.05 0.032 0.054 0.05 0.052

0.009 0.04 0.052 0.054 0.034 0.05 0.048 0.052

0.012 0.052 0.056 0.05 0.036 0.048 0.048 0.052

0.015 0.056 0.05 0.048 0.038 0.046 0.05 0.056

0.018 0.06 0.05 0.048 0.04 0.044 0.048 0.058

0.021 0.07 0.052 0.056 0.042 0.044 0.04 0.054

0.024 0.064 0.052 0.058 0.044 0.04 0.034 0.058

0.027 0.058 0.05 0.056 0.046 0.04 0.036 0.054

0.048 0.034 0.032 0.046

Table 4.2: Size of the bootstrap based LSEL Test for IID for a set of bandwidth

values and their sample sizes of 100, 200 and 500
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a)  IID case , n=100 and h*=0.0398 
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 b) IID case , n=200 and h*=0.0347
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c)  IID case , n=500 and h*=0.0289
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Figure 4.1: Graphical illustrations of Table 4.2, where h* are the optimal band-

widths given in Table 4.1 and are indicated by vertical lines.
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4.3.2 Simulation Result For Diffusion Processes

We then carry out simulations on our empirical likelihood goodness-of-fit test

for the marginal density for each of the Vasicek models, from model -2 to model

2 on 10 equally spaced bandwidths ranging from 0.005 to 0.05. This range of

bandwidths includes the optimal bandwidth given in Table 4.1 and offers a wide

range of smoothness. On the whole, the empirical likelihood goodness-of-fit test

we proposed has reasonable empirical rejection rates for diffusion models when the

critical value is generated by the bootstrap and the performance of our test is

much better than that of Pritsker (1998). The performance of the test improves

with increased sample size. On the other hand, these tests for the Vasicek models

with low persistence (model -2 and model -1) have better performance than those

with high persistence (model 2 and model 1). In the case the Vasicek model -2

which has the least persistence, the test has reasonable size even when the sample

size is as small as n=120 (about ten years). The empirical size is about 0.05

when the bandwidth changes from 0.005 to 0.03 and it decreases sharply to 0.006

when the larger bandwidth is applied. The empirical size is about 0.016 when the

bandwidth equals 0.04 which is near the optimal bandwidth. The trends for sample

sizes n=250 (about 20 years), 500 (about 40 years) and 1000 (about 80 years) are

similar with that of sample size n=120 but the empirical sizes are steady around

0.05. The range of bandwidth where the test has reasonable sizes also extends and

has reasonable size around the optimal bandwidth. In the case the Vasicek model
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2 which has the highest persistence in five models, the empirical size is decreasing

with increased bandwidth. When the bandwidth is 0.005, the empirical size is as

large as 0.164 which is worse comparing with the result of the Vasicek model -2.

Only when the bandwidth is around 0.025, the test has a reasonable size. With

the sample sizes increasing, the performance of tests improves and has reasonable

sizes around the optimal bandwidth.

bandwidth Size

model-2 n=120 n=250 n=500 n=1000

0.005 0.044 0.064 0.044 0.034

0.01 0.044 0.078 0.052 0.058

0.015 0.058 0.086 0.048 0.064

0.02 0.06 0.076 0.048 0.06

0.025 0.06 0.072 0.052 0.06

0.03 0.042 0.066 0.046 0.064

0.035 0.03 0.066 0.044 0.058

0.04 0.016 0.052 0.044 0.046

0.045 0.01 0.038 0.036 0.034

0.05 0.006 0.022 0.024 0.028

h∗ 0.02 0.072 0.048

Table 4.3: Size of the bootstrap based LSEL Test for the Vasicek model -2 for a

set of bandwidth values and their sample sizes of 120, 250, 500 and 1000
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bandwidth Size

model-1 n=120 n=250 n=500 n=1000

0.005 0.04 0.062 0.062 0.048

0.01 0.046 0.068 0.058 0.052

0.015 0.046 0.072 0.06 0.048

0.02 0.056 0.062 0.06 0.05

0.025 0.058 0.064 0.062 0.048

0.03 0.036 0.06 0.062 0.054

0.035 0.018 0.048 0.058 0.052

0.04 0.012 0.03 0.052 0.048

0.045 0.004 0.016 0.044 0.042

0.05 0.002 0.008 0.028 0.020

h∗ 0.012 0.044 0.066 0.052

Table 4.4: Size of the bootstrap based LSEL Test for the Vasicek model -1 for a

set of bandwidth values and their sample sizes of 120, 250, 500 and 1000
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bandwidth Size

model0 n=120 n=250 n=500 n=1000

0.005 0.06 0.072 0.074 0.068

0.01 0.074 0.07 0.082 0.064

0.015 0.066 0.068 0.072 0.068

0.02 0.062 0.064 0.068 0.070

0.025 0.052 0.064 0.072 0.074

0.03 0.036 0.054 0.064 0.074

0.035 0.014 0.03 0.048 0.068

0.04 0.006 0.01 0.036 0.062

0.045 0.004 0.004 0.03 0.046

0.05 0.002 0 0.016 0.03

h∗ 0.008 0.038 0.062 0.074

Table 4.5: Size of the bootstrap based LSEL Test for the Vasicek model 0 for a set

of bandwidth values and their sample sizes of 120, 250, 500 and 1000
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bandwidth Size

model1 n=120 n=250 n=500 n=1000 n=2000

0.005 0.092 0.084 0.064 0.054 0.054

0.01 0.106 0.068 0.062 0.052 0.052

0.015 0.102 0.076 0.06 0.06 0.05

0.02 0.106 0.076 0.058 0.062 0.058

0.025 0.074 0.066 0.046 0.056 0.06

0.03 0.038 0.028 0.024 0.05 0.064

0.035 0.014 0.014 0.016 0.04 0.062

0.04 0.008 0.004 0.004 0.028 0.056

0.045 0.002 0.002 0.004 0.016 0.034

0.05 0 0 0.004 0.012 0.014

h∗ 0.008 0.02 0.03 0.06 0.052

Table 4.6: Size of the bootstrap based LSEL Test for the Vasicek model 1 for a set

of bandwidth values and their sample sizes of 120, 250, 500, 1000 and 2000
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bandwidth Size

model2 n=120 n=250 n=500 n=1000 n=2000

0.005 0.164 0.104 0.078 0.05 0.042

0.01 0.158 0.084 0.088 0.046 0.042

0.015 0.152 0.084 0.076 0.056 0.04

0.02 0.092 0.07 0.06 0.064 0.042

0.025 0.042 0.038 0.036 0.038 0.032

0.03 0.022 0.012 0.01 0.022 0.026

0.035 0.012 0.004 0.004 0.008 0.022

0.04 0.002 0.004 0.004 0 0.016

0.045 0.002 0.002 0 0 0.006

0.05 0.002 0 0 0 0.002

h∗ 0.006 0.01 0.016 0.038 0.038

Table 4.7: Size of the bootstrap based LSEL Test for the Vasicek model 2 for a set

of bandwidth values and their sample sizes of 120, 250, 500, 1000 and 2000
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(d) n=1000 and h*=0.0251

Figure 4.2: Graphical illustrations of Table 4.3 for the Vasicek model -2, where

h* are the optimal bandwidth given in Table 4.1 and are indicated by the vertical

lines.
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(d) n=1000 and h*=0.0251

Figure 4.3: Graphical illustrations of Table 4.4 for the Vasicek model -1, where

h* are the optimal bandwidth given in Table 4.1 and are indicated by the vertical

lines.
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(c) n=500 and h*=0.0289
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(d) n=1000 and h*=0.0251

Figure 4.4: Graphical illustrations of Table 4.5 for the Vasicek model 0, where h*

are the optimal bandwidth given in Table 4.1 and are indicated by the vertical

lines.
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(d) n=1000 and h*=0.0251
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(e) n=2000 and h*=0.0219

Figure 4.5: Graphical illustrations of Table 4.6 for the Vasicek model 1, where h*

are the optimal bandwidth given in Table 4.1 and are indicated by the vertical

lines.
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Figure 4.6: Graphical illustrations of Table 4.7 for the Vasicek model 2, where h*

are the optimal bandwidth given in Table 4.1 and are indicated by the vertical

lines.



CHAPTER 4. SIMULATION STUDIES 61

To investigate the power of the test, we simulate data from the following Cox-

Ingersoll-Ross (CIR, 1985) Model

dXt = κ(α − Xt)dt + σ
√

XtdBt, (4.11)

where κ, α, σ are all positive.

The marginal density of CIR is a gamma distribution. It is

f(x|κ, α, σ) =
wυ

Γ(υ)
xυ−1e−wx,

where w = 2κ/σ2 and υ = 2κα/σ2.

The transition density of CIR is

pθ(Xt+1|Xt; ∆) = ce−u−v(v/u)q/2Iq(2(uv)1/2), (4.12)

where c = 2κ/(σ2{1− e−κ∆}), u = cXte
κ∆, v = cXt+1 and Iq is the modified Bessel

function of the first kind of order q =
2κα

σ2
− 1. Therefore, we can generate the

CIR process via its transition density.

In our simulation, we select the same parameters as the Vasicek model 0 in

empirical size study: (κ, α, σ2) = (0.85837, 0.089102, 0.002185). The procedure of

simulation is similar to the empirical study just described for the Vasicek model.

Table 4.9 shows the empirical rejection frequencies when the critical value is from

the bootstrap for the Vasicek model. The power of the empirical likelihood test

fairly equal 1 when these bandwidths are larger than 0.02.
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bandwidth Size

CIR model n=120 n=250 n=500

0.005 0.104 0.164 0.15

0.01 0.384 0.224 0.314

0.015 0.782 0.828 0.914

0.02 0.98 0.992 1

0.025 1 1 1

0.03 1 1 1

0.035 1 1 1

0.04 1 1 1

0.045 1 1 1

0.05 1 1 1

Table 4.8: Power of the bootstrap based LSEL Test for the CIR model for a set of

bandwidth values and their sample sizes of 120, 250, 500
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4.4 Comparing With Early Study

4.4.1 Pritsker’s Studies

In this part, we simulate the test statistic proposed by Äıt-Sahalia(1996a)

again. Similar to Pritsker (1998) simulation study, we also perform 500 Monte Carlo

simulations for each parameterization of the Vasicek model. For each simulation we

generated 22 years of daily data for a total 5500 observations. We estimated f̂(x)

using the standard kernel density estimation with a Gaussian kernel function. X

changes from -0.07 to 0.25 and the range of X is 0.32 covered about all generated

data. Table 4.9 lists the empirical rejecting frequencies of the test proposed by

Äıt-Sahalia (1996a). The result is similar with the Pritsker study. In Pritsker’s

study, he got the highest rejection frequency for model -1. However, we get the

highest rejection frequency for model 0. This may due to some small difference in

the simulation.

4.4.2 Simulation On Aı̈t-Sahalia(1996a)’s Test

Pritsker (1998) used 1.645 as the asymptotic value of the test statistic at the

confidence levels of 5%. We reformulate Äıt-Sahalia’s (1996a) test corresponding

to our design. We perform 500 Monte Carlo simulations for each of the Vasicek

model. In each simulation we generated observations about 10 years, 20 years and

40 years respectively for a total of sample size is 120, 250 and 500. Figure 4.7

presents the size of the Äıt-Sahalia (1996a) test for the Vasicek models for a set
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Model Rej.freq (5%) Optimal Bandwidth

-2 46.40% 0.0140979

-1 48.40% 0.0175509

0 52.50% 0.0217661

1 45.80% 0.0268048

2 32.60% 0.0325055

Table 4.9: Empirical rejection frequencies using asymptotic critical values at 5%

level from Normal distribution.

of bandwidths. The performance of the empirical size is again very poor. In case

of the Vasicek model -2 which has the least persistence, the empirical size is less

than 0.02. It decreases with increased bandwidth. The performance is improved

in model -1 and model 0.
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Figure 4.7: Size of Äıt-Sahalia(1996a) Test for the Vasicek models for a set of

bandwidth values and their sample sizes of 120, 250, 500
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Chapter 5

Case Study

In early chapters, we have proposed a version of empirical likelihood goodness-

of-fit test and have carried out simulation study on its empirical performance.

We know that there are many existing models which are applied to capture the

dynamics of the spot interest rate. It is an important work to evaluate these

parametric models for the spot interest rate. Therefore in this chapter, we apply

the least squares empirical likelihood specification test to evaluate five important

diffusion models which are widely used to model the dynamics of the interest rate

in the literature.

5.1 The Data

The interest spot rate data used here are the monthly Fed Fund Rates between

January 1963 and December 1998 with a total of N=432 observed rates. The source
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Figure 5.1: The Federal Fund Rate Series between January 1963 and December

1998.

for the data is H-15 Federal Reserve Statistical Release. The raw interest rate series

are displayed in Figure 5.1.
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5.2 Early Study

Äıt-Sahalia (1999) used the monthly Fed Fund Rates data to carry out the

maximum likelihood estimation of parameters based on either the exact or the

approximate transition density functions for the following five diffusion models.

1) Vasicek (1977) Model

dXt = κ(α − Xt)dt + σdBt, (5.1)

where the parameters κ and σ are restricted to be positive and the value of α is

finite. In the Vasicek model, the volatility of the spot rate process is constant and its

mean term structure is a linear function. It is generally thought that the constant

diffusion structure is too simple to capture the real variability of the interest rate

process.

2) Cox, Ingersoll and Ross (CIR, 1985) Model

dXt = κ(α − Xt)dt + σ
√

XtdBt, (5.2)

where the parameters κ, α and σ are all positive. It also contains the linear drift

function but improves the constant diffusion function to the linear structure which

may describe the higher variation of the interest rate.

3) Ahn and Gao’s (1999) Inverse CIR Model

dXt = Xt{κ − (σ2 − κα)Xt}dt + σXt
3/2dBt. (5.3)

If Xt follows the CIR Model, 1/Xt satisfies the above process. Therefore, it is
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called inversion of the CIR Model. In this model, it is clear that the parameter of

diffusion also affects the parameter of the drift.

4) Constant Elasticity of Volatility (CEV) Model

dXt = κ(α − Xt)dt + σXt
ρdBt, (5.4)

where ρ > 1/2. This model is proposed by Chan,et al. (1992) and it relaxes

the diffusion function to a general power function while still keeps the linear drift

structure.

5) Äıt-Sahalia (1996a) Nonlinear Drift Model (NDM)

dXt = (α−1X
−1
t + α0 + α1Xt + α2X

2
t )dt + σXt

3/2dBt. (5.5)

It is well known for improving the general linear drift function to a quadratic form

and the diffusion function is regarded as a scale of X
3/2
t .

First, we measure the goodness-of-fit for these five models for the interest data.

In this thesis, the Biweight kernel K(u) =
15

16
(1−u2)I(u), where I(·) is the indicator

function on [−1, 1], has been employed in all the numerical studies. We still apply

the reference to a normal distribution approach to select the bandwidth. This

method gives the optimal bandwidth h = 0.0264 with the sample size N=432.

In Figure 5.2-5.6, we plot the nonparametric kernel estimates of the marginal

density f̂(x), the parametric marginal density f(x, θ̂) and the smoothed parametric

density f̃(x, θ̂) with three different bandwidths, where θ̂ are maximum likelihood

estimates given in Table VI of Äıt-Sahalia (1999). In the figures, R1 and R2,

which are indicated by the vertical lines, are 0.031 and 0.138 respectively. Each
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of two tail regions (0, R1) and (R2,∞) cover around 5% of the Federal Fund Rate

data. The effect of smoothing on the parametric density is prominent especially for

model (5.3)-(5.6). It reduced the discrepancies between the nonparametric kernel

estimates and the parametric estimates for models (5.3)-(5.5). For the Vasicek

model (5.1), it is clear that the nonparametric kernel estimate of the marginal

density does not agree well with the smoothed parametric specifications in the range

of [R1, R2]. With the increased bandwidth, the discrepancies of these two estimates

do not change much. As will be reported shortly, this is strongly supported by the

testing results. For the CIR model (5.2), the performance is better than the Vasicek

model. In Figure 5.3, the nonparametric kernel estimates of the marginal density

agree reasonably well with the smoothed parametric specifications in the range of

[0.10, 0.20]. Also, the discrepancies between these two estimates in other regions

are also smaller than that of model (5.3) and model (5.4). In the case of model (5.3)

and (5.4), the situations are similar. The nonparametric kernel estimates of the

marginal density agree reasonably well with the smoothed parametric specifications

in the range of [0.10, 0.2] but have large discrepancies in other range. For Äıt-

Sahalia (1996a) nonlinear drift model (5.5), the nonparametric kernel estimates

of the marginal density agree well with the smoothed parametric specifications

almost in the whole range while the nonparametric kernel estimates do not fit well

with the parametric specifications. On the whole, the discrepancies between the

nonparametric kernel estimates and the smoothed parametric estimates become

smaller than that between the nonparametric kernel estimates and the parametric
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estimates. Secondly, among these five models, the behavior of Äıt-Sahalia (1996a)

nonlinear drift model is the best one and the Vasicek model may be improper for

mimicing the dynamics of the interest rate.
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Figure 5.2: Nonparametric kernel estimates, parametric and smoothed parametric

estimates of the marginal density for the Federal Fund Rate Data and R1=0.031,

R2=0.138.
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Figure 5.3: Nonparametric kernel estimates, parametric and smoothed parametric

estimates of the marginal density for the Federal Fund Rate Data and R1=0.031,

R2=0.138.
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Figure 5.4: Nonparametric kernel estimates, parametric and smoothed parametric

estimates of the marginal density for the Federal Fund Rate Data and R1=0.031,

R2=0.138.
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Figure 5.5: Nonparametric kernel estimates, parametric and smoothed parametric

estimates of the marginal density for the Federal Fund Rate Data and R1=0.031,

R2=0.138.
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Figure 5.6: Nonparametric kernel estimates, parametric and smoothed parametric

estimates of the marginal density for the Federal Fund Rate Data and R1=0.031,

R2=0.138.
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5.3 Test

We carry out the least squares empirical likelihood goodness-of-fit test for the

marginal density for five diffusion model with 10 equally spaced bandwidths ranging

from 0.005 to 0.05 and one optimal bandwidth. The optimal bandwidth is included

in this range of bandwidths and this range offers a wide range of smoothness. The

weight function is π(x) = I(R1 < x < R2) = I(0.031 < x < 0.138) which implies

a constant weight in the range that contains about 90% of the Federal Fund Rate

data.

Table 5.1 contains the p-value of the test for the Vasicek and the CIR model.

It is observed that for the Vasicek model, while the bandwidth changes from 0.005

to 0.04, the p-value is steadily around 0.1. The p-value is 0.10 when the optimal

bandwidth 0.0264 is applied. In this test, we get much larger p-value than those

early empirical studies which almost strongly reject the Vasicek model. Therefore,

it may be the first one that shows we can not strongly reject the Vasicek model for

the spot interest rate.

The p-values of the test for the CIR model are much larger than those of the Va-

sicek model. When the bandwidth is 0.0264, the p-value of the test already reaches

0.496. The p-value of the test still keeps increasing with increased bandwidth.

From the early measurement of the goodness-of-fit, we know the reasonable agree-

ment between the nonparametric kernel estimates and the smoothed parametric

estimates, which may justify the large p-value.
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Table 5.2 lists the p-value of the test for the inverse CIR model and CEV model.

The p-value of the test is increasing with increased bandwidth. For the inverse CIR

model, the p-values of the test are smaller than those of the CIR model but larger

than those of Vasicek model. When the optimal bandwidth 0.264 is applied, the

p-value of the test reaches 0.424, litter smaller than that of the CIR model which

is 0.46. For the CEV model, the p-values of the test are larger than those of the

CIR model. The p-value of the test is 0.894 when the optimal bandwidth 0.264 is

used.

Table 5.3 lists the p-values of the test for the nonlinear drift model. The p-values

of the test are the largest than those of other four diffusion models. The p-value of

the test reaches 0.942 when the bandwidth is 0.264. From the measurement of the

goodness-of-fit in early section, we know the behavior of the nonlinear drift model

is the best one, which may justify the largest p-value.

Furthermore, testing of the marginal density is not conclusive for the specifi-

cation of diffusion models as pointed out in Äı-Sahalia (1996a). The transition

density describes the short-run time-series behavior to the diffusion process so it

captures the full dynamics of the diffusion process. Whereas the marginal density

of the process describes the long-run behavior of the diffusion processes. Therefore,

further specification study on the transition density is required. In the test, these

results show that we may not strongly reject the Vasicek model and the nonlinear

drift model may be the most satisfying model for the interest rate.
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We also compute the standard test statistic L̂ =
N̂LS(h) − 1

σh

where σ2
h =

2hC(K, π) and C(K, π) = R−2(0)K(4)(0)
∫

π2(x)dx which is asymptotically stan-

dard Normal distribution under some assumptions. We observe that the p-values

for the Vasicek model, the CIR Model, the inverse CIR model and the CEV model

are all almost 0. For the nonlinear drift model, the p-value is 0.0003 when the

bandwidth is 0.264. The p-values for the nonlinear drift model are also very small.

It means we would reject all these models if we applied the asymptotic normal

distribution. This was unfortunately a test similar to that proposed in Äı-Sahalia

(1996a) and studied in Pritsker (1998). These very contrasting p-values indicate

that we have to excercise cares when we carry out the specification test for the

diffusion models. They also highlight the danger of using a test based on the

asymptotically normality.
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Vasicek Model (5.1) CIR Model (5.2)

Bandwidth Test Statistic P-V1 P-V2 Test Statistic P-V1 P-V2

0.005 6.56 0.128 0(10.10) 5.25 0.312 0(7.72)

0.01 13.88 0.114 0(16.54) 9.08 0.336 0(10.37)

0.015 19.02 0.112 0(18.90) 11.00 0.346 0(10.49)

0.02 22.97 0.11 0(19.95) 11.90 0.374 0(9.90)

0.025 26.01 0.102 0(20.32) 12.23 0.46 0(9.12)

0.0264 26.70 0.10 0(20.32) 12.24 0.496 0(8.88)

0.03 28.17 0.098 0(20.15) 12.11 0.60 0(8.24)

0.035 29.65 0.092 0(19.67) 11.73 0.698 0(7.37)

0.04 30.65 0.124 0(19.05) 11.39 0.792 0(6.67)

0.045 30.66 0.186 0(18.32) 11.48 0.826 0(6.35)

0.05 31.26 0.334 0(17.49) 12.68 0.866 0(6.71)

Table 5.1: Test statistics and P-values (P-V1) of Vasicek Model and CIR Model of

the empirical tests for the marginal density for the Fed fund rate data, and P-values

(P-V2) when the asymptotic normal distribution is applied and the corresponding

standard test statistics show in brackets.
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INVCIR Model (5.3) CEV Model (5.4)

Bandwidth Test Statistic P-V1 P-V2 Test Statistic P-V1 P-V2

0.005 6.86 0.294 0(10.64) 4.38 0.453 0(6.15)

0.01 11.97 0.312 0(14.08) 6.74 0.515 0(7.37)

0.015 15.05 0.330 0(14.74) 7.54 0.671 0(6.86)

0.02 17.35 0.334 0(14.85) 8.08 0.79 0(6.43)

0.025 19.52 0.41 0(15.04) 8.77 0.88 0(6.31)

0.0264 20.11 0.424 0(15.11) 8.97 0.894 0(6.3)

0.03 21.53 0.53 0(15.22) 9.43 0.916 0(6.25)

0.035 23.23 0.628 0(15.26) 9.98 0.95 0(6.16)

0.04 24.85 0.726 0(15.32) 10.78 0.962 0(6.28)

0.045 27.19 0.816 0(15.86) 12.84 0.966 0(7.17)

0.05 31.54 0.852 0(17.54) 17.72 0.952 0(9.61)

Table 5.2: Test statistics and P-values (P-V1) of Inverse CIR Model and CEV

Model of the empirical tests for the marginal density for the Fed fund rate data,

and P-values (P-V2) when the asymptotic normal distribution is applied and the

corresponding standard test statistics show in brackets.
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NDM Model (5.5)

Bandwidth Test Statistic P-V1 P-V2

0.005 3.60 0.552 0(4.72)

0.01 6.13 0.552 0(6.59)

0.015 6.42 0.718 0(5.68)

0.02 6.04 0.86 0(4.58)

0.025 5.57 0.93 0.0001(3.71)

0.0264 5.42 0.942 0.0003(3.5)

0.03 5.02 0.966 0.0014(3.00)

0.035 4.58 0.986 0.0065(2.46)

0.04 4.67 0.992 0.0086(2.35)

0.045 5.96 0.992 0.0013(3.00)

0.05 9.60 0.984 0(4.94)

Table 5.3: Test statistics and P-values (P-V1) of Nonlinear Drift Model of the

empirical tests for the marginal density for the Fed fund rate data, and P-values

(P-V2) when the asymptotic normal distribution is applied and the corresponding

standard test statistics show in brackets.



BIBLIOGRAPHY 83

Bibliography

[1] Ahn, D.H., and B. Gao, (1999), A Parametric Nonlinear Model of Term Struc-

ture Dynamics, Review of Financial Studies, 12, 721-762.
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