272 research outputs found

    Cardiac myocyte-specific knock-out of calcium-independent phospholipase A2γ (iPLA2γ) decreases oxidized fatty acids during ischemia/reperfusion and reduces infarct size

    Get PDF
    Calcium-independent phospholipase A(2)γ (iPLA(2)γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA(2)γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA(2)γ knock-out (CMiPLA(2)γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA(2)γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA(2)γKO mice demonstrated attenuated Ca(2+)-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA(2)γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA(2)γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca(2+) by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA(2)γ, these results are consistent with salvage of myocardium after I/R by iPLA(2)γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion

    Malaria surveillance from both ends: concurrent detection of Plasmodium falciparum in saliva and excreta harvested from Anopheles mosquitoes

    Get PDF
    Background: Malaria is the most important vector-borne disease in the world. Epidemiological and ecological studies of malaria traditionally utilize detection of Plasmodium sporozoites in whole mosquitoes or salivary glands by microscopy or serological or molecular assays. However, these methods are labor-intensive, and can over- or underestimate mosquito transmission potential. To overcome these limitations, alternative sample types have been evaluated for the study of malaria. It was recently shown that Plasmodium could be detected in saliva expectorated on honey-soaked cards by Anopheles stephensi, providing a better estimate of transmission risk. We evaluated whether excretion of Plasmodium falciparum nucleic acid by An. stephensi correlates with expectoration of parasites in saliva, thus providing an additional sample type for estimating transmission potential. Mosquitoes were exposed to infectious blood meals containing cultured gametocytes, and excreta collected at different time points post-exposure. Saliva was collected on honey-soaked filter paper cards, and salivary glands were dissected and examined microscopically for sporozoites. Excreta and saliva samples were tested by real time polymerase chain reaction (RT-rtPCR). Results: Plasmodium falciparum RNA was detected in mosquito excreta as early as four days after ingesting a bloodmeal containing gametocytes. Once sporogony (the development of sporozoites) occurred, P. falciparum RNA was detected concurrently in both excreta and saliva samples. In the majority of cases, no difference was observed between the Ct values obtained from matched excreta and saliva samples, suggesting that both samples provide equally sensitive results. A positive association was observed between the molecular detection of the parasites in both samples and the proportion of mosquitoes with sporozoites in their salivary glands from each container. No distinguishable parasites were observed when excreta samples were stained and microscopically analyzed. Conclusions: Mosquito saliva and excreta are easily collected and are promising for surveillance of malaria-causing parasites, especially in low transmission settings or in places where arboviruses co-circulate

    Global reconstruction reduces the uncertainty of oceanic nitrous oxide emissions and reveals a vigorous seasonal cycle

    Get PDF
    Assessment of the global budget of the greenhouse gas nitrous oxide ([Formula: see text]O) is limited by poor knowledge of the oceanic [Formula: see text]O flux to the atmosphere, of which the magnitude, spatial distribution, and temporal variability remain highly uncertain. Here, we reconstruct climatological [Formula: see text]O emissions from the ocean by training a supervised learning algorithm with over 158,000 [Formula: see text]O measurements from the surface ocean-the largest synthesis to date. The reconstruction captures observed latitudinal gradients and coastal hot spots of [Formula: see text]O flux and reveals a vigorous global seasonal cycle. We estimate an annual mean [Formula: see text]O flux of 4.2 ± 1.0 Tg N[Formula: see text], 64% of which occurs in the tropics, and 20% in coastal upwelling systems that occupy less than 3% of the ocean area. This [Formula: see text]O flux ranges from a low of 3.3 ± 1.3 Tg N[Formula: see text] in the boreal spring to a high of 5.5 ± 2.0 Tg N[Formula: see text] in the boreal summer. Much of the seasonal variations in global [Formula: see text]O emissions can be traced to seasonal upwelling in the tropical ocean and winter mixing in the Southern Ocean. The dominant contribution to seasonality by productive, low-oxygen tropical upwelling systems (>75%) suggests a sensitivity of the global [Formula: see text]O flux to El Niño-Southern Oscillation and anthropogenic stratification of the low latitude ocean. This ocean flux estimate is consistent with the range adopted by the Intergovernmental Panel on Climate Change, but reduces its uncertainty by more than fivefold, enabling more precise determination of other terms in the atmospheric [Formula: see text]O budget

    Isolation of a wide range of minerals from a thermally treated plant: Equisetum arvense, a Mare’s tale

    Get PDF
    Silica is the second most abundant biomineral being exceeded in nature only by biogenic CaCO3. Many land plants (such as rice, cereals, cucumber, etc.) deposit silica in significant amounts to reinforce their tissues and as a systematic response to pathogen attack. One of the most ancient species of living vascular plants, Equisetum arvense is also able to take up and accumulate silica in all parts of the plant. Numerous methods have been developed for elimination of the organic material and/or metal ions present in plant material to isolate biogenic silica. However, depending on the chemical and/or physical treatment applied to branch or stem from Equisetum arvense; other mineral forms such glass-type materials (i.e. CaSiO3), salts (i.e. KCl) or luminescent materials can also be isolated from the plant material. In the current contribution, we show the chemical and/or thermal routes that lead to the formation of a number of different mineral types in addition to biogenic silica

    Exploring the Diversity of Groups at 0.1<z<0.8 with X-ray and Optically Selected Samples

    Full text link
    We present the global group properties of two samples of galaxy groups containing 39 high quality X-ray selected systems and 38 optically (spectroscopically) selected systems in coincident spatial regions at 0.12<z<0.79. Only nine optical systems are associable with X-ray systems. We discuss the confusion inherent in the matching of both galaxies to extended X-ray emission and of X-ray emission to already identified optical systems. Extensive spectroscopy has been obtained and the resultant redshift catalog and group membership are provided here. X-ray, dynamical, and total stellar masses of the groups are also derived and presented. We explore the effects of applying three different kinds of radial cut to our systems: a constant cut of 1 Mpc and two r200 cuts, one based on the velocity dispersion of the system and the other on the X-ray emission. We find that an X-ray based r200 results in less scatter in scaling relations and less dynamical complexity as evidenced by results of the Anderson-Darling and Dressler-Schectman tests, indicating that this radius tends to isolate the virialized part of the system. The constant and velocity dispersion based cuts can overestimate membership and can work to inflate velocity dispersion and dynamical and stellar mass. We find Lx-sigma and Mstellar-Lx scaling relations for X-ray and optically selected systems are not dissimilar. The mean fraction of mass found in stars for our systems is approximately 0.014 with a logarithmic standard deviation of 0.398 dex. We also define and investigate a sample of groups which are X-ray underluminous given the total group stellar mass. For these systems the fraction of stellar mass contributed by the most massive galaxy is typically lower than that found for the total population of groups implying that there may be less IGM contributed from the most massive member in these systems. (Abridged)Comment: Accepted for publication in the Astrophysical Journal (ApJ). 27 pages, 14 figures, 12 table

    Characterisation and correction of signal fluctuations in successive acquisitions of microarray images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are many sources of variation in dual labelled microarray experiments, including data acquisition and image processing. The final interpretation of experiments strongly relies on the accuracy of the measurement of the signal intensity. For low intensity spots in particular, accurately estimating gene expression variations remains a challenge as signal measurement is, in this case, highly subject to fluctuations.</p> <p>Results</p> <p>To evaluate the fluctuations in the fluorescence intensities of spots, we used series of successive scans, at the same settings, of whole genome arrays. We measured the decrease in fluorescence and we evaluated the influence of different parameters (PMT gain, resolution and chemistry of the slide) on the signal variability, at the level of the array as a whole and by intensity interval. Moreover, we assessed the effect of averaging scans on the fluctuations. We found that the extent of photo-bleaching was low and we established that 1) the fluorescence fluctuation is linked to the resolution e.g. it depends on the number of pixels in the spot 2) the fluorescence fluctuation increases as the scanner voltage increases and, moreover, is higher for the red as opposed to the green fluorescence which can introduce bias in the analysis 3) the signal variability is linked to the intensity level, it is higher for low intensities 4) the heterogeneity of the spots and the variability of the signal and the intensity ratios decrease when two or three scans are averaged.</p> <p>Conclusion</p> <p>Protocols consisting of two scans, one at low and one at high PMT gains, or multiple scans (ten scans) can introduce bias or be difficult to implement. We found that averaging two, or at most three, acquisitions of microarrays scanned at moderate photomultiplier settings (PMT gain) is sufficient to significantly improve the accuracy (quality) of the data and particularly those for spots having low intensities and we propose this as a general approach. For averaging and precise image alignment at sub-pixel levels we have made a program freely available on our web-site <url>http://bioinfome.cgm.cnrs-gif.fr</url> to facilitate implementation of this approach.</p

    Using human induced pluripotent stem cells to investigate neurodevelopmental effects of human cytomegalovirus

    Get PDF
    Human cytomegalovirus (HCMV) is one of the leading prenatal causes of mental retardation and congenital deformities, world-wide. Its pathogenesis has generally been investigated using animal models. Human studies in vitro have been limited to neurospheres prepared using forebrain tissues from fetal abortuses. This approach is limited and does not permit analysis of individual specific cells. We generated iPS cells from adult human fibroblasts. iPS cells were differentiated into neurospheres, that were expanded as monolayer culture of neuroprogenitors (NPs). Furthermore, neurospheres were differentiated into neurons that could be stained for Tuj1, tyrosine hydroxylase and NR4A2. Functional competency was confirmed by live imaging of intracellular calcium. NPs and neurons were infected with HCMV (MOI = 3). Cell viability was assessed by FACS analysis. Cytopathic effects of HCMV were observed on the 10th day post infection in neuroprogenitor cells. Earlier, the adherence of these cells to the matrix was reduced. Neurons were much more refractory. Reduced cell density and shortening of neuritic processes was only observed at day 15 after infection. We are presently examining the intracellular effects of HCMV. Human iPS cells can efficiently generate neurospheres, which can be expanded as almost pure cultures of neuroprogenitors or differentiated into neurons. iPS cells-derived NP and neurons offer powerful cellular models to investigate the effect of neurotropic viral agents on neurodevelopment

    Impact of the spotted microarray preprocessing method on fold-change compression and variance stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The standard approach for preprocessing spotted microarray data is to subtract the local background intensity from the spot foreground intensity, to perform a log2 transformation and to normalize the data with a global median or a lowess normalization. Although well motivated, standard approaches for background correction and for transformation have been widely criticized because they produce high variance at low intensities. Whereas various alternatives to the standard background correction methods and to log2 transformation were proposed, impacts of both successive preprocessing steps were not compared in an objective way.</p> <p>Results</p> <p>In this study, we assessed the impact of eight preprocessing methods combining four background correction methods and two transformations (the log2 and the glog), by using data from the MAQC study. The current results indicate that most preprocessing methods produce fold-change compression at low intensities. Fold-change compression was minimized using the Standard and the Edwards background correction methods coupled with a log2 transformation. The drawback of both methods is a high variance at low intensities which consequently produced poor estimations of the p-values. On the other hand, effective stabilization of the variance as well as better estimations of the p-values were observed after the glog transformation.</p> <p>Conclusion</p> <p>As both fold-change magnitudes and p-values are important in the context of microarray class comparison studies, we therefore recommend to combine the Edwards correction with a hybrid transformation method that uses the log2 transformation to estimate fold-change magnitudes and the glog transformation to estimate p-values.</p
    corecore