12 research outputs found

    An increase in livestock density increases forage nutritional value but decreases net primary production and annual forage nutritional yield in the alpine grassland of the Qinghai-Tibetan Plateau

    Get PDF
    Pasture biomass and quality are dependent on herbivore grazing andprecipitation, but the responses of vegetation to the interactive effects ofclimate and grazing regimes remain unclear. We conducted an eight-yearsheep grazing experiment with 4 stocking rates (0, 3.5, 5.5, and 7.5 sheep/ha) inan alpine meadow of the northeastern Tibetan Plateau. The above-ground netprimary productivity (ANPP) and forage nutritional value (FNV) of four dominantspecies (Poa annua, Kobresia humilis, Astragalus adsurgens and Potentillafruticosa) were measured during a wet year (360 mm rainfall) and a droughtyear (216 mm rainfall). The FNV was used as indicator of forage quality and wascalculated from the crude protein (CP) content, in vitro true dry matterdigestibility (IVTD), metabolic energy (ME) yield, and neutral detergent fiber(NDF) content of the plant. The stocking rate explained a minimum of 76% ofthe variations of ANPP, and the precipitation sub-additive effect for ANPPranged from 5% to 12%. The interaction of sheep stocking rate and precipitationaffected ANPP of the 4 species, except for P. fruticosa. The FNV of the pastureincreased with increasing grazing pressure, but ANPP and forage nutritionalyield (FNY) decreased. In calculating FNY, the increase in FNV did notcompensate for the decrease in ANPP. In non-grazed plots, the CP yielddeclined sharply (18%-55%) in response to drought, but there was no effecton ME yield. The interaction between stocking rate and precipitation affected forage quality of the 4 plant species differently. The grassland ANPP and FNYcould be maintained at a grazing intensity of 3.5 sheep/ha in wet and dry years.Our results highlight that stocking density affects pasture ANPP and FNV, and iscontingent on rainfal

    Characteristics of multi-channel intermuscular directional coupling based on time-varying partial directional coherence analysis

    No full text
    Abstract The human body transmits directional information between muscles during upper limb movements, and this will be particularly evident when the dominant muscle changes during movement transitions. By capturing the electromyography (EMG) signals of wrist flexion and extension continuous transition movements, we investigated the characteristics of multichannel intermuscular directional coupling and directional information transmission, and consequently explored the control mechanism of Central nervous system (CNS) and the coordination mechanism of motor muscles. Multi-channel EMG was collected from 12 healthy subjects under continuous translational movements of wrist flexion and extension, and the time-varying biased directional coherence analysis (TVPDC) model was constructed using partial directional coherence analysis (PDC) frequency domain directionality to study the directional information transfer characteristics in the time–frequency domain, screen closely related muscle pairs and perform directional coupling significance analysis. Palmaris longus (PL) played a dominant role under wrist flexion movements(WF), Extensor Carpi Radialis (ECR) played a dominant role under wrist extension movements(WE), and the remaining muscles responded to them with information and Biceps Brachii (BB) played a responsive role throughout the movement; flexor pairs had the highest positive coupling values in the beta band during Conversion action1 (MC1) and WF phases, and extensor pairs had the highest positive coupling values in the gamma band during Conversion action2(MC2) phase and the highest coupling values in the beta band during WE phase. TVPDC can effectively analyze the multichannel intermuscular directional coupling and information transmission relationship of surface electromyography under wrist flexion and extension transition movements, providing a reference for exploring the control mechanism of CNS and abnormal control mechanism in patients with motor dysfunction in a new perspective

    Decade-long unsustainable vegetation management practices increase macronutrient losses from the plant-soil system in the Taklamakan Desert

    No full text
    Arid ecosystems are characterized by low availability and mobility of soil nutrients and slow geochemical cycles. Management of native vegetation in such ecosystems for fuel, livestock grazing, and other agricultural activities (burning and cutting) may threaten semi-natural communities due to the changes in nutrient cycles and soil fertility. Alhagi sparsifolia is a dominant perennial legume in the Taklamakan Desert of northwestern China and has been used as fodder for livestock and plays a crucial ecological role in stabilizing dunes in the oasis-desert ecotone. We evaluated the effects of long-term (12 years) burning and cutting of plant biomass on the mineral nutrition of A. sparsifolia and associated soils at two depths (0–50 and 50–100 cm) in the field conditions following the block design experiment. We found that burning effects tended to be restricted to the topsoil (0–50 cm), and the concentration of many micro-and macronutrients was increased. Burning was associated with a decrease in plant nitrogen (N) and phosphorus (P) concentration, whereas concentrations of other micro-and macronutrients increased; overall, burning reduced foliar stocks of N, P, and potassium (K). Annual cutting elicited smaller increases in soil mineral (total sulfur, total P, calcium, magnesium, and available P and K) concentrations than burning, and soil enzymatic activities increased. There were contrasting response patterns of leaf N and P concentration and macro-and micronutrients between the two management approaches. Burning and cutting reduced leaf N and P concentrations, while changes in root and shoot N and P concentrations depended on treatments. Thus, burning and cutting of A. sparsifolia impact organ nutrient stoichiometry (increased losses of macronutrients from arid plant-soil ecosystems) and nutritional quality (for feeding livestock), particularly due to predicted rises in extreme climatic events under climate change that are expected to increase risks of soil erosion, however, impacts on native trophic webs remain unclear

    Nitrogen deposition drives the intricate changes of fine root traits

    No full text
    Increase in nitrogen (N) deposition will cause changes of root morphological and functional traits, thus deeply affecting ecosystem carbon (C) and N cycles. However, the influence of N deposition to root traits under different climatic conditions, and with different N deposition rate and durations were still unclear. Here, a meta-analysis was conducted to evaluate the effects of simulated increase in N deposition on 11 root traits under different conditions. In general, N addition significantly increased root/shoot ratio, fine root diameter, total root biomass, fine root production, fine root turnover rate, root respiration, fine root N concentration, while decreased fine root C/N at the global scale. Under N addition, the increased extents of fine root biomass and total root biomass were significantly greater in grassland ecosystems, while the increased extent of fine root turnover was greater in forests. N addition significantly increased fine root production in snow climate zone where forests with ectomycorrhizae. A pattern may be inferred that with increases in mean annual temperature (MAT) and mean annual precipitation (MAP), N addition decreased fine root N concentration and fine root C/N, while increased fine root turnover at the high-MAT and high-MAP areas. In addition, it may be ascertained that fine roots became shorter in the low-rate and short-term N addition experiments, while roots became longer in the high-rate and long-term N addition experiments. Our study indicates that increase in N deposition will cause intricate changes of root traits due to the diversity of climatic conditions and the uncertainty of increase rate and duration of N deposition in future

    Pyrolysis of attapulgite clay blended with yak dung enhances pasture growth and soil health: Characterization and initial field trials

    No full text
    Recent studies have shown that the pyrolysis of biomass combined with clay can result in both lower cost and increase in plant yields. One of the major sources of nutrients for pasture growth, as well as fuel and building materials in Tibet is yak dung. This paper reports on the initial field testing in a pasture setting in Tibet using yak dung, biochar, and attapulgite clay/yak dung biochars produced at ratios of 10/90 and 50/50 clay to dung. We found that the treatment with attapulgite clay/yak dung (50/50) biochar resulted in the highest pasture yields and grass nutrition quality. We also measured the properties and yields of mixtures of clay/yak dung biochar used in the field trials produced at 400 °C and 500 °C to help determine a possible optimum final pyrolysis temperature and dung/clay ratio. It was observed that increasing clay content increased carbon stability, overall biochar yield, pore size, carboxyl and ketone/aldehyde functional groups, hematite and ferrous/ferric sulphate/thiosulphate concentration, surface area and magnetic moment. Decreasing clay content resulted in higher pH, CEC, N content and an enhanced ability to accept and donate electrons. The resulting properties were a complex function of both processing temperature and the percentage of clay for the biochars processed at both 400 °C and 500 °C. It is possible that the increase in yield and nutrient uptake in the field trial is related to the higher concentration of C/O functional groups, higher surface area and pore volume and higher content of Fe/O/S nanoparticles of multiple oxidation state in the 50/50 clay/dung. These properties have been found to significantly increase the abundance of beneficial microorganisms and hence improve the nutrient cycling and availability in soil. Further field trials are required to determine the optimum pyrolysis production conditions and application rate on the abundance of beneficial microorganisms, yields and nutrient quality
    corecore