138 research outputs found

    Development of improved nickel catalysts for sorption enhanced CO2 methanation

    Get PDF
    Sorption enhanced CO2 methanation is a complex process in which the key challenge lies in the combined optimization of the catalyst activity and water adsorption properties of the zeolite support. In the present work, improved nickel-based catalysts with an enhanced water uptake capacity were designed and catalytically investigated. Two different zeolite frameworks were considered as supports for nanostructured Ni, and studied with defined operation parameters. 5Ni/13X shows significantly increased, nearly three-fold higher, operation time in the sorption enhanced CO2 methanation mode compared to the reference 5Ni/5A, likely due to its higher water sorption capacity. Both catalysts yield comparable CO2 conversion in conventional CO2 methanation (without water uptake). Regeneration of the catalysts performance is possible via a drying step between methanation cycles under both reducing and oxidizing atmospheres; however, operation time of 5Ni/13X increases further after drying under air

    GPR54 (KISS1R) Transactivates EGFR to Promote Breast Cancer Cell Invasiveness

    Get PDF
    Kisspeptins (Kp), peptide products of the Kisspeptin-1 (KISS1) gene are endogenous ligands for a G protein-coupled receptor 54 (GPR54). Previous findings have shown that KISS1 acts as a metastasis suppressor in numerous cancers in humans. However, recent studies have demonstrated that an increase in KISS1 and GPR54 expression in human breast tumors correlates with higher tumor grade and metastatic potential. At present, whether or not Kp signaling promotes breast cancer cell invasiveness, required for metastasis and the underlying mechanisms, is unknown. We have found that kisspeptin-10 (Kp-10), the most potent Kp, stimulates the invasion of human breast cancer MDA-MB-231 and Hs578T cells using Matrigel-coated Transwell chamber assays and induces the formation of invasive stellate structures in three-dimensional invasion assays. Furthermore, Kp-10 stimulated an increase in matrix metalloprotease (MMP)-9 activity. We also found that Kp-10 induced the transactivation of epidermal growth factor receptor (EGFR). Knockdown of the GPCR scaffolding protein, ÎČ-arrestin 2, inhibited Kp-10-induced EGFR transactivation as well as Kp-10 induced invasion of breast cancer cells via modulation of MMP-9 secretion and activity. Finally, we found that the two receptors associate with each other under basal conditions, and FRET analysis revealed that GPR54 interacts directly with EGFR. The stability of the receptor complex formation was increased upon treatment of cells by Kp-10. Taken together, our findings suggest a novel mechanism by which Kp signaling via GPR54 stimulates breast cancer cell invasiveness

    All-flavor constraints on nonstandard neutrino interactions and generalized matter potential with three years of IceCube DeepCore data

    Get PDF
    We report constraints on nonstandard neutrino interactions (NSI) from the observation of atmospheric neutrinos with IceCube, limiting all individual coupling strengths from a single dataset. Furthermore, IceCube is the first experiment to constrain flavor-violating and nonuniversal couplings simultaneously. Hypothetical NSI are generically expected to arise due to the exchange of a new heavy mediator particle. Neutrinos propagating in matter scatter off fermions in the forward direction with negligible momentum transfer. Hence the study of the matter effect on neutrinos propagating in the Earth is sensitive to NSI independently of the energy scale of new physics. We present constraints on NSI obtained with an all-flavor event sample of atmospheric neutrinos based on three years of IceCube DeepCore data. The analysis uses neutrinos arriving from all directions, with reconstructed energies between 5.6 GeV and 100 GeV. We report constraints on the individual NSI coupling strengths considered singly, allowing for complex phases in the case of flavor-violating couplings. This demonstrates that IceCube is sensitive to the full NSI flavor structure at a level competitive with limits from the global analysis of all other experiments. In addition, we investigate a generalized matter potential, whose overall scale and flavor structure are also constrained

    A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors

    Get PDF
    IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment's photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1>1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20%20\% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors

    Multimessenger Gamma-Ray and Neutrino Coincidence Alerts using HAWC and IceCube sub-threshold Data

    Full text link
    The High Altitude Water Cherenkov (HAWC) and IceCube observatories, through the Astrophysical Multimessenger Observatory Network (AMON) framework, have developed a multimessenger joint search for extragalactic astrophysical sources. This analysis looks for sources that emit both cosmic neutrinos and gamma rays that are produced in photo-hadronic or hadronic interactions. The AMON system is running continuously, receiving sub-threshold data (i.e. data that is not suited on its own to do astrophysical searches) from HAWC and IceCube, and combining them in real-time. We present here the analysis algorithm, as well as results from archival data collected between June 2015 and August 2018, with a total live-time of 3.0 years. During this period we found two coincident events that have a false alarm rate (FAR) of <1<1 coincidence per year, consistent with the background expectations. The real-time implementation of the analysis in the AMON system began on November 20th, 2019, and issues alerts to the community through the Gamma-ray Coordinates Network with a FAR threshold of <4<4 coincidences per year.Comment: 14 pages, 5 figures, 3 table

    Search for Quantum Gravity Using Astrophysical Neutrino Flavour with IceCube

    Full text link
    Along their long propagation from production to detection, neutrino states undergo quantum interference which converts their types, or flavours. High-energy astrophysical neutrinos, first observed by the IceCube Neutrino Observatory, are known to propagate unperturbed over a billion light years in vacuum. These neutrinos act as the largest quantum interferometer and are sensitive to the smallest effects in vacuum due to new physics. Quantum gravity (QG) aims to describe gravity in a quantum mechanical framework, unifying matter, forces and space-time. QG effects are expected to appear at the ultra-high-energy scale known as the Planck energy, EP≡1.22×1019E_{P}\equiv 1.22\times 10^{19}~giga-electronvolts (GeV). Such a high-energy universe would have existed only right after the Big Bang and it is inaccessible by human technologies. On the other hand, it is speculated that the effects of QG may exist in our low-energy vacuum, but are suppressed by the Planck energy as EP−1E_{P}^{-1} (∌10−19\sim 10^{-19}~GeV−1^{-1}), EP−2E_{P}^{-2} (∌10−38\sim 10^{-38}~GeV−2^{-2}), or its higher powers. The coupling of particles to these effects is too small to measure in kinematic observables, but the phase shift of neutrino waves could cause observable flavour conversions. Here, we report the first result of neutrino interferometry~\cite{Aartsen:2017ibm} using astrophysical neutrino flavours to search for new space-time structure. We did not find any evidence of anomalous flavour conversion in IceCube astrophysical neutrino flavour data. We place the most stringent limits of any known technologies, down to 10−4210^{-42}~GeV−2^{-2}, on the dimension-six operators that parameterize the space-time defects for preferred astrophysical production scenarios. For the first time, we unambiguously reach the signal region of quantum-gravity-motivated physics.Comment: The main text is 7 pages with 3 figures and 1 table. The Appendix includes 5 pages with 3 figure

    Searches for Neutrinos from LHAASO ultra-high-energy {\gamma}-ray sources using the IceCube Neutrino Observatory

    Full text link
    Galactic PeVatrons are Galactic sources theorized to accelerate cosmic rays up to PeV in energy. The accelerated cosmic rays are expected to interact hadronically with nearby ambient gas or the interstellar medium, resulting in {\gamma}-rays and neutrinos. Recently, the Large High Altitude Air Shower Observatory (LHAASO) identified 12 {\gamma}-ray sources with emissions above 100 TeV, making them candidates for PeV cosmic-ray accelerators (PeVatrons). While at these high energies the Klein-Nishina effect suppresses exponentially leptonic emission from Galactic sources, evidence for neutrino emission would unequivocally confirm hadronic acceleration. Here, we present the results of a search for neutrinos from these {\gamma}-ray sources and stacking searches testing for excess neutrino emission from all 12 sources as well as their subcatalogs of supernova remnants and pulsar wind nebulae with 11 years of track events from the IceCube Neutrino Observatory. No significant emissions were found. Based on the resulting limits, we place constraints on the fraction of {\gamma}-ray flux originating from the hadronic processes in the Crab Nebula and LHAASOJ2226+6057

    Strong Constraints on Neutrino Nonstandard Interactions from TeV-Scale ΜΌ_{Ό} Disappearance at IceCube

    Get PDF
    We report a search for nonstandard neutrino interactions (NSI) using eight years of TeV-scale atmospheric muon neutrino data from the IceCube Neutrino Observatory. By reconstructing incident energies and zenith angles for atmospheric neutrino events, this analysis presents unified confidence intervals for the NSI parameter ΔΌτ. The best-fit value is consistent with no NSI at a p value of 25.2%. With a 90% confidence interval of −0.0041≀ΔΌτ≀0.0031 along the real axis and similar strength in the complex plane, this result is the strongest constraint on any NSI parameter from any oscillation channel to date

    Searching for High-energy Neutrino Emission from Galaxy Clusters with IceCube

    Get PDF
    Galaxy clusters have the potential to accelerate cosmic rays (CRs) to ultrahigh energies via accretion shocks or embedded CR acceleration sites. The CRs with energies below the Hillas condition will be confined within the cluster and eventually interact with the intracluster medium gas to produce secondary neutrinos and gamma rays. Using 9.5 yr of muon neutrino track events from the IceCube Neutrino Observatory, we report the results of a stacking analysis of 1094 galaxy clusters with masses ≳1014^{14} M⊙ and redshifts between 0.01 and ∌1 detected by the Planck mission via the Sunyaev–Zel’dovich effect. We find no evidence for significant neutrino emission and report upper limits on the cumulative unresolved neutrino flux from massive galaxy clusters after accounting for the completeness of the catalog up to a redshift of 2, assuming three different weighting scenarios for the stacking and three different power-law spectra. Weighting the sources according to mass and distance, we set upper limits at a 90% confidence level that constrain the flux of neutrinos from massive galaxy clusters (≳1014^{14} M⊙) to be no more than 4.6% of the diffuse IceCube observations at 100 TeV, assuming an unbroken E−2.5^{2.5} power-law spectrum
    • 

    corecore