1,430 research outputs found

    A finite element method for time fractional partial differential equations

    Get PDF
    This is the authors' PDF version of an article published in Fractional calculus and applied analysis© 2011. The original publication is available at www.springerlink.comThis article considers the finite element method for time fractional differential equations

    3D Printing of Scaffolds for Tissue Engineering

    Get PDF
    Three-dimensional (3D) printing has demonstrated its great potential in producing functional scaffolds for biomedical applications. To facilitate tissue regeneration, scaffolds need to be designed to provide a suitable environment for cell growth, which generally depends on the selection of materials and geometrical features such as internal structures and pore size distribution. The mechanical property match with the original tissue to be repaired is also critical. In this chapter, the specific request of materials and structure for tissue engineering is briefly reviewed, and then an overview of the recent research in 3D printing technologies for tissue engineering will be provided, together with a discussion of possible future directions in this area

    Identifying Online Streaming User Value in the Netflix Recommendation System

    Get PDF
    Netflix is one of the most successful providers of Over-The-Top content, delivered via the internet. By using a massive amount of data generated by its streaming users, a personalized recommendation system is one of Netflix’s value propositions. However, due to a lack of publically available data and studies, it is difficult to determine whether its recommendation system has brought true value to streaming users, and how important this feature is to its users. The purpose of this study is to evaluate the recommendation system from the streaming users’ point of view. By collecting survey results from 119 participants, this study will attempt to reveal the relationship between streaming users and the personalized recommendation system, and to show whether or not streaming users are satisfied with this feature.M.S., TV Management -- Drexel University, 201

    Recovering articulated non-rigid shapes, motions and kinematic chains from video

    Get PDF
    Recovering articulated shape and motion, especially human body motion, from video is a challenging problem with a wide range of applications in medical study, sport analysis and animation, etc. Previous work on articulated motion recovery generally requires prior knowledge of the kinematic chain and usually does not concern the recovery of the articulated shape. The non-rigidity of some articulated part, e.g. human body motion with non-rigid facial motion, is completely ignored. We propose a factorization-based approach to recover the shape, motion and kinematic chain of an articulated object with non-rigid parts altogether directly from video sequences under a unified framework. The proposed approach is based on our modeling of the articulated non-rigid motion as a set of intersecting motion subspaces. A motion subspace is the linear subspace of the trajectories of an object. It can model a rigid or non-rigid motion. The intersection of two motion subspaces of linked parts models the motion of an articulated joint or axis. Our approach consists of algorithms for motion segmentation, kinematic chain building, and shape recovery. It is robust to outliers and can be automated. We test our approach through synthetic and real experiments and demonstrate how to recover articulated structure with non-rigid parts via a single-view camera without prior knowledge of its kinematic chain

    Stability of a numerical method for a fractional telegraph equation

    Get PDF
    In this paper, we introduce a numerical method for solving the time-space fractional telegraph equations. The numerical method is based on a quadrature formula approach and a stability condition for the numerical method is obtained. Two numerical examples are given and the stability regions are plotted

    Early Detection of the Wear of Coriolis Flowmeters through In Situ Stiffness Diagnosis

    Get PDF
    Coriolis flowmeters have been widely employed in a variety of industrial applications. There is a potential that the measuring tube of a Coriolis flowmeter may be eroded when it is used to measure abrasive fluid such as slurry flow. However, it is challenging to verify the structural health of the flowmeter without process interruptions or using on-site calibration devices such as meter provers. This paper presents an in-situ structural health monitoring technique through stiffness diagnosis to identify the potential wear occurring on the measuring tube. To measure the frequency response of a Coriolis flowmeter which strongly depends on the structural characteristics of the tube, the tube is not only excited at a resonant frequency but also at two additional off-resonant frequencies. Through digital processing of the drive and sensor signals, the frequency response is obtained and a stiffness related diagnostic parameter (SRDP) is extracted from a Coriolis flowmeter. The proposed stiffness diagnosis technique was experimentally evaluated on a commercial bent-tube Coriolis flowmeter with dilute sand-water slurry flow. The results illustrate that the slight tube erosion is successfully identified when a relative change in SRDP reaches −1%, showing a good capability for an early detection of tube wear. In addition, the outcomes from recalibration with water suggest that, after the erosion occurs, the flowmeter overestimates the mass flowrate and underestimates the flow density

    Approximation of Images via Generalized Higher Order Singular Value Decomposition over Finite-dimensional Commutative Semisimple Algebra

    Full text link
    Low-rank approximation of images via singular value decomposition is well-received in the era of big data. However, singular value decomposition (SVD) is only for order-two data, i.e., matrices. It is necessary to flatten a higher order input into a matrix or break it into a series of order-two slices to tackle higher order data such as multispectral images and videos with the SVD. Higher order singular value decomposition (HOSVD) extends the SVD and can approximate higher order data using sums of a few rank-one components. We consider the problem of generalizing HOSVD over a finite dimensional commutative algebra. This algebra, referred to as a t-algebra, generalizes the field of complex numbers. The elements of the algebra, called t-scalars, are fix-sized arrays of complex numbers. One can generalize matrices and tensors over t-scalars and then extend many canonical matrix and tensor algorithms, including HOSVD, to obtain higher-performance versions. The generalization of HOSVD is called THOSVD. Its performance of approximating multi-way data can be further improved by an alternating algorithm. THOSVD also unifies a wide range of principal component analysis algorithms. To exploit the potential of generalized algorithms using t-scalars for approximating images, we use a pixel neighborhood strategy to convert each pixel to "deeper-order" t-scalar. Experiments on publicly available images show that the generalized algorithm over t-scalars, namely THOSVD, compares favorably with its canonical counterparts.Comment: 20 pages, several typos corrected, one appendix adde

    Finite element analysis of rapid canine retraction through reducing resistance and distraction

    Get PDF
    Objective: The aims of this study were to compare different surgical approaches to rapid canine retraction by designing and selecting the most effective method of reducing resistance by a three-dimensional finite element analysis. Material and Methods: Three-dimensional finite element models of different approaches to rapid canine retraction by reducing resistance and distraction were established, including maxillary teeth, periodontal ligament, and alveolar. The models were designed to dissect the periodontal ligament, root, and alveolar separately. A 1.5 N force vector was loaded bilaterally to the center of the crown between first molar and canine, to retract the canine distally. The value of total deformation was used to assess the initial displacement of the canine and molar at the beginning of force loading. Stress intensity and force distribution were analyzed and evaluated by Ansys 13.0 through comparison of equivalent (von Mises) stress and maximum shear stress. Results: The maximum value of total deformation with the three kinds of models occurred in the distal part of the canine crown and gradually reduced from the crown to the apex of the canine; compared with the canines in model 3 and model 1, the canine in model 2 had the maximum value of displacement, up to 1.9812 mm. The lowest equivalent (von Mises) stress and the lowest maximum shear stress were concentrated mainly on the distal side of the canine root in model 2. The distribution of equivalent (von Mises) stress and maximum shear stress on the PDL of the canine in the three models was highly concentrated on the distal edge of the canine cervix. . Conclusions: Removal of the bone in the pathway of canine retraction results in low stress intensity for canine movement. Periodontal distraction aided by surgical undermining of the interseptal bone would reduce resistance and effectively accelerate the speed of canine retraction
    • …
    corecore