1,419 research outputs found

    Entropy dissipative higher order accurate positivity preserving time-implicit discretizations for nonlinear degenerate parabolic equations

    Get PDF
    We develop entropy dissipative higher order accurate local discontinuous Galerkin (LDG) discretizations coupled with Diagonally Implicit Runge–Kutta (DIRK) methods for nonlinear degenerate parabolic equations with a gradient flow structure. Using the simple alternating numerical flux, we construct DIRK-LDG discretizations that combine the advantages of higher order accuracy, entropy dissipation and proper long-time behavior. We theoretically prove the entropy dissipation of the implicit Euler-LDG discretization without any time-step restrictions when no positivity constraint is imposed. Next, in order to ensure the positivity of the numerical solution, we use the Karush–Kuhn–Tucker (KKT) limiter, which achieves a positive solution by coupling the positivity preserving KKT conditions with higher order accurate DIRK-LDG discretizations using Lagrange multipliers. In addition, mass conservation of the positivity-limited solution is ensured by imposing a mass conservation equality constraint to the KKT equations. Under a time step restriction, the unique solvability and entropy dissipation for implicit first order accurate in time, but higher order accurate in space, positivity-preserving LDG discretizations with periodic boundary conditions are proved, which provide a first theoretical analysis of the KKT limiter. Finally, numerical results demonstrate the higher order accuracy and entropy dissipation of the positivity-preserving DIRK-LDG discretizations for problems requiring a positivity limiter. In addition, we can observe from the numerical results that the implicit time-discrete methods alleviate the time-step restrictions needed for the stability of the numerical discretizations, which improves computational efficiency.</p

    Calogero-Vasiliev Oscillator in Dynamically Evolving Curved Spacetime

    Get PDF
    In a recent work, the consequences of quantizing a real scalar field Φ\Phi according to generalized ``quon'' statistics in a dynamically evolving curved spacetime (~which, prior to some initial time and subsequent to some later time, is flat~) were considered. Here a similar calculation is performed; this time we quantize Φ\Phi via the Calogero-Vasiliev oscillator algebra, described by a real parameter ν>−1/2\nu > -1/2. It is found that both conservation ( ν→ν\nu \rightarrow \nu ) and anticonservation ( ν→−ν\nu \rightarrow - \nu ) of statistics is allowed. We find that for mathematical consistency the Bogoliubov coefficients associated with the ii'th field mode must satisfy ∣αi∣2−∣βi∣2=1|\alpha_i |^2 - | \beta_i |^2 = 1 with ∣βi∣2| \beta_i |^2 taking an integer value.Comment: 11 pages ( no figures ), RevTex - To appear in Physics Letters

    Tibetan sheep are better able to cope with low energy intake than Small-tailed Han sheep due to lower maintenance energy requirements and higher nutrient digestibilities

    No full text
    Tibetan sheep are indigenous to the Qinghai-Tibetan Plateau (QTP) and are well-adapted to and even thrive under the harsh alpine conditions. Small-tailed Han sheep were introduced to the plateau because of their high prolificacy and are maintained mainly in feedlots. Because of their different backgrounds, we hypothesised that Tibetan and Small-tailed Han sheep would differ in their utilization of energy intake and predicted that Tibetan sheep would cope better with low energy intake than Small-tailed Han sheep. To test this prediction, we determined nutrient digestibilities, energy requirements for maintenance and blood metabolite and hormone concentrations involved in energy metabolism in these breeds. Sheep of each breed (n = 24 of each, all wethers and 1.5 years of age) were distributed randomly into one of four groups and offered ad libitum diets of different digestible energy (DE) densities: 8.21, 9.33, 10.45 and 11.57 MJ DE/kg Dry matter (DM). Following 42 d of measuring feed intake, a 1-week digestion and metabolism experiment was done. DM intakes did not differ between breeds nor among treatments but, by design, DE intake increased linearly in both breeds as dietary energy level increased (P < 0.001). The average daily gain (ADG) was significantly greater in the Tibetan than Small-tailed Han sheep (P = 0.003) and increased linearly in both breeds (P < 0.001). In addition, from the regression analysis of ADG on DE intake, daily DE maintenance requirements were lower for Tibetan than for Small-tailed Han sheep (0.41 vs 0.50 MJ/BW0.75, P < 0.05). The DE and metabolizable energy (ME) digestibilities were higher in the Tibetan than Small-tailed Han sheep (P < 0.001) and increased linearly as the energy level increased in the diet (P < 0.001). At the lowest energy treatment, Tibetan sheep when compared with Small-tailed Han sheep, had: 1) higher serum glucose and glucagon, but lower insulin concentrations (P < 0.05), which indicated a higher capacity for gluconeogenesis and ability to regulate glucose metabolism; and 2) higher non-esterified fatty acids (NEFA) and lower very low density lipoprotein (VLDL) and triglyceride (TG) concentrations (P < 0.05), which indicated a higher capacity for NEFA oxidation but lower ability for triglyceride (TG) synthesis. We concluded that our prediction was supported as these differences between breeds conferred an advantage for Tibetan over Small-tailed Han sheep to cope better with low energy diets

    Geological Characterization of the Ina Shield Volcano Summit Pit Crater on the Moon:Evidence for Extrusion of Waning-Stage Lava Lake Magmatic Foams and Anomalously Young Crater Retention Ages

    Get PDF
    Ina, a distinctive ~2 × 3 km D-shaped depression, is composed of unusual bulbous-shaped mounds surrounded by optically immature hummocky/blocky floor units. The crisp appearance, optical immaturity, and low number of superposed impact craters combine to strongly suggest a geologically recent formation for Ina, but the specific formation mechanism remains controversial. We reconfirm that Ina is a summit pit crater/vent on a small shield volcano ~3.5 billion years old. Following detailed characterization, we interpret the range of Ina characteristics to be consistent with a two-component model of origin during the waning stages of summit pit eruption activities. The Ina pit crater floor is interpreted to be dominated by the products of late-stage, low-rise rate magmatic dike emplacement. Magma in the dike underwent significant shallow degassing and vesicle formation, followed by continued degassing below the solidified and highly microvesicular and macrovesicular lava lake crust, resulting in cracking of the crust and extrusion of gas-rich magmatic foams onto the lava lake crust to form the mounds. These unique substrate characteristics (highly porous aerogel-like foam mounds and floor terrains with large vesicles and void space) exert important effects on subsequent impact crater characteristics and populations, influencing (1) optical maturation processes, (2) regolith development, and (3) landscape evolution by modifying the nature and evolution of superposed impact craters and thus producing anomalously young crater retention ages. Accounting for these effects results in a shift of crater size-frequency distribution model ages fro

    Constructing Doubly Self-Dual Chiral p-Form Actions in D=2(p+1) Spacetime Dimensions

    Get PDF
    A Siegel-type chiral p-form action is proposed in D=2(p+1) spacetime dimensions. The approach we adopt is to realize the symmetric second-rank Lagrange-multiplier field, introduced in Siegel's action, in terms of a normalized multiplication of two (q+1)-form fields with q indices of each field contracted in the even p case, or of two pairs of (q+1)-form fields with q indices of each pair of fields contracted in the odd p case, where the (q+1)-form fields are of external derivatives of one auxiliary q-form field for the former, or a pair of auxiliary q-form fields for the latter. Using this action, it is straightforward to deduce the recently constructed PST action for q equal to zero. It is found that the Siegel-type chiral p-form action with a fixed p (even or odd) is doubly self-dual in D=2(p+1) spacetime dimensions when the auxiliary field(s) is/are also chosen to be of p-form. This result includes PST's as a special case where only the chiral 0-form action is doubly self-dual in D=2 dimensions.Comment: 13 pages, no figure

    A generic declarative diagnoser for normal logic programs

    Full text link

    Interplay between edge states and simple bulk defects in graphene nanoribbons

    Full text link
    We study the interplay between the edge states and a single impurity in a zigzag graphene nanoribbon. We use tight-binding exact diagonalization techniques, as well as density functional theory calculations to obtain the eigenvalue spectrum, the eigenfunctions, as well the dependence of the local density of states (LDOS) on energy and position. We note that roughly half of the unperturbed eigenstates in the spectrum of the finite-size ribbon hybridize with the impurity state, and the corresponding eigenvalues are shifted with respect to their unperturbed values. The maximum shift and hybridization occur for a state whose energy is inverse proportional to the impurity potential; this energy is that of the impurity peak in the DOS spectrum. We find that the interference between the impurity and the edge gives rise to peculiar modifications of the LDOS of the nanoribbon, in particular to oscillations of the edge LDOS. These effects depend on the size of the system, and decay with the distance between the edge and the impurity.Comment: 10 pages, 15 figures, revtex

    Partial Wave Analysis of J/ψ→γ(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψ→γ(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The K∗Kˉ∗K^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0−+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width ∼500\sim 500 MeV. There is further evidence for a 2−+2^{-+} component peaking at 2.55 GeV. The non-K∗Kˉ∗K^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from K∗K∗ˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL
    • …
    corecore