
Journal of Computational and Applied Mathematics 441 (2024) 115674

A
0

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Entropy dissipative higher order accurate positivity preserving
time-implicit discretizations for nonlinear degenerate parabolic
equations
Fengna Yan a,b, J.J.W. Van der Vegt b, Yinhua Xia c, Yan Xu c,∗

a School of Mathematics, Hefei University of Technology, Hefei, Anhui, 230000, PR China
b Department of Applied Mathematics, Mathematics of Computational Science Group, University of Twente, Enschede, 7500 AE, The Netherlands
c School of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China

A R T I C L E I N F O

Keywords:
Local discontinuous Galerkin discretizations
DIRK methods
Nonlinear degenerate parabolic equations
Entropy dissipation
KKT limiter

A B S T R A C T

We develop entropy dissipative higher order accurate local discontinuous Galerkin (LDG)
discretizations coupled with Diagonally Implicit Runge–Kutta (DIRK) methods for nonlinear
degenerate parabolic equations with a gradient flow structure. Using the simple alternating
numerical flux, we construct DIRK-LDG discretizations that combine the advantages of higher
order accuracy, entropy dissipation and proper long-time behavior. We theoretically prove the
entropy dissipation of the implicit Euler-LDG discretization without any time-step restrictions
when no positivity constraint is imposed. Next, in order to ensure the positivity of the numerical
solution, we use the Karush–Kuhn–Tucker (KKT) limiter, which achieves a positive solution
by coupling the positivity preserving KKT conditions with higher order accurate DIRK-LDG
discretizations using Lagrange multipliers. In addition, mass conservation of the positivity-
limited solution is ensured by imposing a mass conservation equality constraint to the KKT
equations. Under a time step restriction, the unique solvability and entropy dissipation for
implicit first order accurate in time, but higher order accurate in space, positivity-preserving
LDG discretizations with periodic boundary conditions are proved, which provide a first
theoretical analysis of the KKT limiter. Finally, numerical results demonstrate the higher
order accuracy and entropy dissipation of the positivity-preserving DIRK-LDG discretizations
for problems requiring a positivity limiter. In addition, we can observe from the numerical
results that the implicit time-discrete methods alleviate the time-step restrictions needed for
the stability of the numerical discretizations, which improves computational efficiency.

1. Introduction

Consider the following degenerate parabolic equation [1]
{

𝑢𝑡 = ∇ ⋅ (𝑓 (𝑢)∇(𝛹 (𝑥𝑥𝑥) +𝐻 ′(𝑢))), in 𝛺 × (0, 𝑇 ],
𝑢(𝑥𝑥𝑥, 0) = 𝑢0(𝑥𝑥𝑥), in 𝛺,

(1.1)

with zero-flux boundary condition

∇(𝛹 (𝑥𝑥𝑥) +𝐻 ′(𝑢)) ⋅ 𝜈𝜈𝜈 = 0, on 𝜕𝛺 × (0, 𝑇 ], (1.2)
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where 𝛺 is an open bounded polygonally connected domain in R𝑑 , 𝑑 = 1, 2, with unit outward normal vector 𝜈𝜈𝜈 at the boundary
𝛺, 𝑢(𝑥𝑥𝑥, 𝑡) ⩾ 0 represents a nonnegative density with time derivative denoted as 𝑢𝑡 and initial solution 𝑢0(𝑥𝑥𝑥) ⩾ 0, 𝛹 (𝑥𝑥𝑥) is a given

potential function for 𝑥𝑥𝑥 ∈ R𝑑 , and 𝑓,𝐻 are given functions such that

𝑓 ∶ R+ ←←→ R+, 𝐻 ∶ R+ ←←→ R, 𝑓 (𝑢)𝐻 ′′(𝑢) ⩾ 0, (1.3)

where R+ is the nonnegative real space. Here 𝑓 (𝑢)𝐻 ′′(𝑢) can vanish for certain values of 𝑢, resulting in degenerate cases. The entropy
corresponding to (1.1) is defined by

𝐸(𝑢) = ∫𝛺
(𝑢𝛹 (𝑥𝑥𝑥) +𝐻(𝑢))𝑑𝛺. (1.4)

Multiplying (1.1) with 𝛹 (𝑥𝑥𝑥) + 𝐻 ′(𝑢) and integrating over 𝛺, with the zero-flux boundary condition (1.2), together with (1.4), we
obtain that the time derivative of the entropy satisfies

𝑑
𝑑𝑡

𝐸(𝑢) = −∫𝛺
𝑓 (𝑢)|∇(𝛹 (𝑥𝑥𝑥) +𝐻 ′(𝑢))|2𝑑𝛺 ⩽ 0. (1.5)

ystem (1.1) can represent different physical problems, such as the porous media equation [2,3], the nonlinear nonlocal equation
ith a double-well potential [4], the nonlinear Fokker–Planck model for fermion and boson gases [5–7].

Recently, many numerical discretizations have been proposed for (1.1); e.g. mixed finite element methods [8], finite volume
ethods [1,4], DG methods [9–11] and LDG methods [3]. Regarding positivity preserving discretizations, Liu and Yu developed

n [10,11], respectively, for the linear Fokker–Planck equation a maximum preserving DG scheme and an entropy dissipative DG
cheme, but these discretizations cannot be directly applied to the general case given by (1.1). Liu and Wang subsequently developed
n [9] an explicit Runge–Kutta (RK) time-discrete method for (1.1) in one dimension together with a positivity preserving high order
ccurate DG scheme under some Courant–Friedrichs–Lewy (CFL) constraints. For the porous media equation, an LDG discretization
oupled with an explicit RK method was considered in [3], which is similar to the DG method in [9]. Still, it uses a special numerical
lux to ensure the non-negativity of the numerical solution. Cheng and Shen in [12] propose a Lagrange multiplier approach to
onstruct positivity preserving schemes for a class of parabolic equations, which is different from (1.1), but contains the porous
edia equation.

For the time-step 𝜏 and mesh size ℎ, the condition 𝜏 = 𝑂(ℎ2) is needed for stability in [3,9]. Therefore, these explicit time
iscretizations suffer from severe time step restrictions, but there are currently no feasible positivity preserving time-implicit LDG
iscretizations for (1.1). In this paper, we present higher order accurate Diagonally Implicit Runge–Kutta (DIRK) LDG discretizations,
hich ensure positivity and mass conservation of the numerical solution without the severe time step restrictions of explicit methods.

The LDG method proposed by Cockburn and Shu in [13] has many advantages, including high parallelizability, high order
ccuracy, a simple choice of trial and test spaces and easy handling of complicated geometries. We refer to [14–17] for examples
f applications of the LDG method.

For many physical problems, it is crucial that the numerical discretization preserves the positivity properties of the partial
ifferential equations (PDEs). Not only is this necessary to obtain physically meaningful solutions, but also negative values may
esult in ill-posedness of the problem and divergence of the numerical discretization. Positivity preserving DG methods have been
xtensively studied by many mathematicians. However, most positivity preserving DG methods are combined with explicit time-
iscretizations [9,18–20], for which numerical stability frequently imposes severe time step restrictions. These severe time-step
onstraints make explicit methods impractical for parabolic PDEs, such as (1.1).

Recently, Qin and Shu extended in [21] the general framework for establishing positivity-preserving schemes, proposed
n [19,20], from explicit to implicit time discretizations. They developed a positivity preserving DG method with high-order spatial
ccuracy combined with the first-order backward Euler implicit temporal discretization for one-dimensional conservation laws. This
pproach requires, however, a detailed analysis of the numerical discretization to ensure positivity and it is not straightforward to
xtend this approach to higher order accurate time-implicit methods. Huang and Shen in [22] constructed higher order linear bound
reserving implicit discretizations for the Keller–Segel and Poisson–Nernst–Planck equations. Van der Vegt, Xia and Xu proposed
n [23] the KKT limiter concept to construct positivity preserving time-implicit discretizations. The KKT limiter in [23] is obtained by
oupling the inequality and equality constraints imposed by the physical problem with higher order accurate DIRK-DG discretizations
sing Lagrange multipliers. The resulting semi-smooth nonlinear equations are solved by an efficient active set semi-smooth Newton
ethod.

In this paper, we consider a general class of nonlinear degenerate parabolic equations given by (1.1) and aim at developing higher
rder accurate entropy dissipative and positivity preserving time-implicit LDG discretizations. For the spatial discretization, we use
n LDG method with simple alternating numerical fluxes, which results in entropy dissipation of the semi-discrete LDG discretization.
or the temporal discretization, we consider DIRK methods, which significantly enlarge the time step for stability. Without any time-
tep restrictions, the entropy dissipation of the LDG discretization combined with an implicit Euler time integration method is proved
heoretically. We construct positivity preserving discretizations using the KKT limiter by imposing the positivity constraint on the
umerical discretization using Lagrange multipliers. Under a time-step restriction, the unique solvability of the resulting positivity
reserving KKT system is proved. In addition, we also prove the entropy dissipation of the positivity preserving LDG discretization
hen it is combined with the backward Euler time integration method. Numerical results demonstrate the accuracy and entropy
issipation of the higher order accurate positivity preserving DIRK-LDG discretizations.

This paper is organized as follows. In Section 2, we present the semi-discrete LDG discretization with simple alternating numerical
2

luxes for the nonlinear degenerate parabolic equation stated in (1.1) and prove that the numerical approximation is entropy
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dissipative. Higher order accurate DIRK-LDG discretizations, which enlarge the stable time step to a great extent, are discussed
in Section 3. Without any time-step restrictions, the entropy dissipation of the implicit Euler LDG discretizations is proved in
Section 3.1. In order to ensure the positivity of the numerical solution and mass conservation of the positivity limited numerical
discretizations, we introduce in Section 4.1 the KKT system. The higher order DIRK-LDG discretizations with positivity and mass
conservation constraints are formulated in Section 4.2 as a KKT mixed complementarity problem. Under a time-step restriction,
the unique solvability and entropy dissipation of the algebraic system resulting from a time implicit Euler-LDG discretization with
positivity constraint are proved in Section 4.3. In Section 5, numerical results demonstrate the higher order accuracy, positivity and
entropy dissipation of the positivity preserving DIRK-LDG discretizations. Concluding remarks are given in Section 6.

2. Semi-discrete LDG schemes

2.1. Definitions, notations

Let ℎ be a shape-regular tessellation of 𝛺 ⊂ R𝑑 , 𝑑 = 1, 2, with line or convex quadrilateral elements 𝐾. Given the reference
element 𝐾 = [−1, 1]𝑑 . Let 𝑘(𝐾) denote the space composed of the tensor product of Legendre polynomials 𝑘(𝐾) on [−1, 1] of degree
at most 𝑘 ⩾ 0. The space 𝑘(𝐾) is obtained by using an isoparametric transformation from element 𝐾 to the reference element 𝐾.
The finite element spaces 𝑉 𝑘

ℎ and 𝑊𝑊𝑊 𝑘
ℎ are defined by

𝑉 𝑘
ℎ = {𝑣 ∈ 𝐿2(𝛺) ∶ 𝑣|𝐾 ∈ 𝑘(𝐾), ∀𝐾 ∈ ℎ},

𝑊𝑊𝑊 𝑘
ℎ = {𝑤𝑤𝑤 ∈ [𝐿2(𝛺)]𝑑 ∶ 𝑤𝑤𝑤|𝐾 ∈ [𝑘(𝐾)]𝑑 , ∀𝐾 ∈ ℎ},

and are allowed to have discontinuities across element interfaces. Let 𝑒 be an interior edge connected to the ‘‘left’’ and ‘‘right’’
elements denoted, respectively, by 𝐾𝐿 and 𝐾𝑅. If 𝑢 is a function on 𝐾𝐿 and 𝐾𝑅, we set 𝑢𝐿 ∶=

(

𝑢|𝐾𝐿

)

|𝑒 and 𝑢𝑅 ∶= (𝑢|𝐾𝑅
)|𝑒 for the

left and right trace of 𝑢 at 𝑒.
Note that 𝐿1(𝛺), 𝐿2(𝛺) and 𝐿∞(𝛺) are Lebesgue spaces, ‖𝑢‖𝐿2(𝛺) is the 𝐿2(𝛺)-norm and (⋅, ⋅)𝛺 is the 𝐿2(𝛺) inner product. For

simplicity, we denote the inner product as (𝑢, 𝑣) ∶= (𝑢, 𝑣)𝛺.

2.2. LDG discretization in space

For the LDG discretization of (1.1), we first rewrite this equation as a first order system

𝑢𝑡 =∇ ⋅ 𝑞𝑞𝑞,

𝑞𝑞𝑞 =𝑓 (𝑢)𝑠𝑠𝑠,

𝑠𝑠𝑠 =∇𝑝,

𝑝 =𝛹 (𝑥𝑥𝑥) +𝐻 ′(𝑢).

Then, the LDG discretization can be readily obtained by multiplying the above equations with arbitrary test functions, integrating
by parts over each element 𝐾 ∈ ℎ, and finally a summation of element and face contributions. The LDG discretization can be stated
as: find 𝑢ℎ, 𝑝ℎ ∈ 𝑉 𝑘

ℎ , 𝑞𝑞𝑞ℎ, 𝑠𝑠𝑠ℎ ∈𝑊𝑊𝑊 𝑘
ℎ, such that for all 𝜌, 𝜑 ∈ 𝑉 𝑘

ℎ and 𝜃𝜃𝜃,𝜂𝜂𝜂 ∈𝑊𝑊𝑊 𝑘
ℎ, we have

(𝑢ℎ𝑡, 𝜌) + 𝐿1
ℎ(𝑞𝑞𝑞ℎ; 𝜌) = 0, (2.1a)

(𝑞𝑞𝑞ℎ, 𝜃𝜃𝜃) + 𝐿2
ℎ(𝑢ℎ, 𝑠𝑠𝑠ℎ;𝜃𝜃𝜃) = 0, (2.1b)

(𝑠𝑠𝑠ℎ, 𝜂𝜂𝜂) + 𝐿3
ℎ(𝑝ℎ;𝜂𝜂𝜂) = 0, (2.1c)

(𝑝ℎ, 𝜑) + 𝐿4
ℎ(𝑢ℎ;𝜑) = 0, (2.1d)

where

𝐿1
ℎ(𝑞𝑞𝑞ℎ; 𝜌) ∶=(𝑞𝑞𝑞ℎ,∇𝜌) −

∑

𝐾∈ℎ

(𝑞𝑞𝑞ℎ ⋅ 𝜈𝜈𝜈, 𝜌)𝜕𝐾 , (2.2a)

𝐿2
ℎ(𝑢ℎ, 𝑠𝑠𝑠ℎ;𝜃𝜃𝜃) ∶= − (𝑓 (𝑢ℎ)𝑠𝑠𝑠ℎ, 𝜃𝜃𝜃), (2.2b)

𝐿3
ℎ(𝑝ℎ;𝜂𝜂𝜂) ∶=(𝑝ℎ,∇ ⋅ 𝜂𝜂𝜂) −

∑

𝐾∈ℎ

(𝑝ℎ, 𝜈𝜈𝜈 ⋅ 𝜂𝜂𝜂)𝜕𝐾 , (2.2c)

𝐿4
ℎ(𝑢ℎ;𝜑) ∶= −

(

𝛹 (𝑥𝑥𝑥) +𝐻 ′(𝑢ℎ), 𝜑
)

. (2.2d)

Note that 𝜈𝜈𝜈 is the unit outward normal vector of an element 𝐾 at its boundary 𝜕𝐾. The ‘‘hat’’ terms in 𝐿1
ℎ and 𝐿3

ℎ are the so-called
‘‘numerical fluxes’’, whose choices play an important role in ensuring stability. We remark that the choices for the numerical fluxes
are not unique. Here, we use the alternating numerical fluxes

𝑞̂ 𝑞𝑅 𝐿
3

𝑞𝑞ℎ = 𝑞𝑞ℎ , 𝑝ℎ = 𝑝ℎ , (2.3)
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or

𝑞𝑞𝑞ℎ = 𝑞𝑞𝑞𝐿ℎ , 𝑝ℎ = 𝑝𝑅ℎ . (2.4)

Considering the zero-flux boundary condition ∇(𝛹 (𝑥𝑥𝑥) +𝐻 ′(𝑢)) ⋅ 𝜈𝜈𝜈 = 0, we take

𝑞𝑞𝑞ℎ ⋅ 𝜈𝜈𝜈 = 0, 𝑝ℎ = (𝑝ℎ)𝑖𝑛 (2.5)

at 𝜕𝛺, where ‘‘in’’ refers to the value obtained by taking the boundary trace from the inside of the domain 𝛺.

2.3. Entropy dissipation

Theorem 2.1. For 𝑢ℎ ∈ 𝑉 𝑘
ℎ , 𝑠𝑠𝑠ℎ ∈𝑊𝑊𝑊 𝑘

ℎ, the LDG scheme (2.1)–(2.5) with 𝑓 satisfying (1.3) is entropy dissipative and satisfies

𝑑
𝑑𝑡

𝐸(𝑢ℎ) = −(𝑓 (𝑢ℎ)𝑠𝑠𝑠ℎ, 𝑠𝑠𝑠ℎ) ⩽ 0,

which is consistent with the entropy dissipation property (1.5) of the PDE (1.1).

Proof. By taking

𝜌 = 𝑝ℎ, 𝜃𝜃𝜃 = −𝑠𝑠𝑠ℎ, 𝜂𝜂𝜂 = 𝑞𝑞𝑞ℎ, 𝜑 = −𝑢ℎ𝑡,

in (2.1a)–(2.1d), respectively, and after integration by parts, we have

(𝛹 (𝑥𝑥𝑥) +𝐻 ′(𝑢ℎ), 𝑢ℎ𝑡)

= − (𝑓 (𝑢ℎ)𝑠𝑠𝑠ℎ, 𝑠𝑠𝑠ℎ) − (𝑞𝑞𝑞ℎ,∇𝑝ℎ) +
∑

𝐾∈ℎ

(𝑞𝑞𝑞ℎ ⋅ 𝜈𝜈𝜈, 𝑝ℎ)𝜕𝐾 − (𝑝ℎ,∇ ⋅ 𝑞𝑞𝑞ℎ) +
∑

𝐾∈ℎ

(𝑝ℎ, 𝜈𝜈𝜈 ⋅ 𝑞𝑞𝑞ℎ)𝜕𝐾

= − (𝑓 (𝑢ℎ)𝑠𝑠𝑠ℎ, 𝑠𝑠𝑠ℎ) −
∑

𝐾∈ℎ

(𝑞𝑞𝑞ℎ ⋅ 𝜈𝜈𝜈, 𝑝ℎ)𝜕𝐾 +
∑

𝐾∈ℎ

(𝑞𝑞𝑞ℎ ⋅ 𝜈𝜈𝜈, 𝑝ℎ)𝜕𝐾 +
∑

𝐾∈ℎ

(𝑝ℎ, 𝜈𝜈𝜈 ⋅ 𝑞𝑞𝑞ℎ)𝜕𝐾 . (2.6)

ssume that 𝑒 is an interior edge shared by elements 𝐾𝐿 and 𝐾𝑅, then 𝜈𝜈𝜈𝑅 = −𝜈𝜈𝜈𝐿, and together with the numerical fluxes (2.3), we
obtain

−
∑

𝐾𝐿
⋃

𝐾𝑅

(𝑞𝑞𝑞ℎ ⋅ 𝜈𝜈𝜈, 𝑝ℎ)𝑒 +
∑

𝐾𝐿
⋃

𝐾𝑅

(𝑞𝑞𝑞ℎ ⋅ 𝜈𝜈𝜈, 𝑝ℎ)𝑒 +
∑

𝐾𝐿
⋃

𝐾𝑅

(𝑝ℎ, 𝜈𝜈𝜈 ⋅ 𝑞𝑞𝑞ℎ)𝑒

= − (𝑞𝑞𝑞𝐿ℎ ⋅ 𝜈𝜈𝜈𝐿, 𝑝𝐿ℎ )𝑒 + (𝑞𝑞𝑞𝑅ℎ ⋅ 𝜈𝜈𝜈𝐿, 𝑝𝑅ℎ )𝑒 + (𝑞𝑞𝑞𝑅ℎ ⋅ 𝜈𝜈𝜈𝐿, 𝑝𝐿ℎ )𝑒 − (𝑞𝑞𝑞𝑅ℎ ⋅ 𝜈𝜈𝜈𝐿, 𝑝𝑅ℎ )𝑒

+ (𝑞𝑞𝑞𝐿ℎ ⋅ 𝜈𝜈𝜈𝐿, 𝑝𝐿ℎ )𝑒 − (𝑞𝑞𝑞𝑅ℎ ⋅ 𝜈𝜈𝜈𝐿, 𝑝𝐿ℎ )𝑒 = 0. (2.7)

ombining (2.6)–(2.7), using (1.4), boundary conditions (2.5) and the condition on 𝑓 (1.3), we get
𝑑
𝑑𝑡

𝐸(𝑢ℎ) = (𝛹 (𝑥𝑥𝑥) +𝐻 ′(𝑢ℎ), 𝑢ℎ𝑡) = −(𝑓 (𝑢ℎ)𝑠𝑠𝑠ℎ, 𝑠𝑠𝑠ℎ) ⩽ 0. □

Remark 2.1. For brevity, we will only consider in the remaining article the numerical fluxes (2.3) and omit the discussion of the
numerical fluxes (2.4), but all results also apply to the numerical fluxes (2.4).

Remark 2.2. Compared to the spatial discretizations in [3,9], we choose the simpler alternating numerical fluxes (2.3) and (2.4),
which significantly simplifies the theoretical analysis of the entropy dissipation property of the LDG discretization.

3. Time-implicit LDG schemes

The numerical discretization of the nonlinear parabolic Eqs. (1.1) using explicit time discretization methods suffers from the
rather severe time-step constraint 𝜏 = 𝑂(ℎ2 ), with ℎ the mesh size for the tessellation ℎ. In this section, we will discuss implicit
time discretizations, which will be coupled with positivity constraints in Section 4.

We divide the time interval [0, 𝑇 ] into 𝑁 parts 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇 , with 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1 (𝑛 = 1, 2,… , 𝑁). For 𝑛 = 0, 1,… , 𝑁 ,
let 𝑢𝑛 = 𝑢(⋅, 𝑡𝑛) and 𝑢𝑛ℎ, respectively, denote the exact and approximate values of 𝑢 at time 𝑡𝑛.

3.1. Backward Euler LDG discretization

Discretizing (2.1) in time with the implicit Euler method gives the following discrete system
(

𝑢𝑛+1ℎ − 𝑢𝑛ℎ
𝜏𝑛+1

, 𝜌

)

+ 𝐿1
ℎ(𝑞𝑞𝑞

𝑛+1
ℎ ; 𝜌) = 0, (3.1a)

(𝑞𝑞𝑞𝑛+1ℎ , 𝜃𝜃𝜃) + 𝐿2
ℎ(𝑢

𝑛+1
ℎ , 𝑠𝑠𝑠𝑛+1ℎ ;𝜃𝜃𝜃) = 0, (3.1b)

(𝑠𝑠𝑠𝑛+1, 𝜂𝜂𝜂) + 𝐿3 (𝑝𝑛+1;𝜂𝜂𝜂) = 0, (3.1c)
4

ℎ ℎ ℎ
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(𝑝𝑛+1ℎ , 𝜑) + 𝐿4
ℎ(𝑢

𝑛+1
ℎ ;𝜑) = 0. (3.1d)

Define the discrete entropy as

𝐸ℎ(𝑢𝑛ℎ) = ∫𝛺
(𝑢𝑛ℎ𝛹 (𝑥𝑥𝑥) +𝐻(𝑢𝑛ℎ))𝑑𝑥. (3.2)

We have the following relation for the discrete entropy dissipation.

Theorem 3.1. For all time levels 𝑛, the numerical solutions 𝑢𝑛ℎ, 𝑢
𝑛+1
ℎ ∈ 𝑉 𝑘

ℎ of the LDG discretization (3.1), with boundary condition (2.5)
and conditions on 𝑓,𝐻 stated in (1.3), satisfy the following entropy dissipation relation

𝐸ℎ(𝑢𝑛+1ℎ ) ⩽ 𝐸ℎ(𝑢𝑛ℎ), (3.3)

which implies that the LDG discretization is entropy dissipative without any time-step restrictions.

Proof. By choosing, respectively, in (3.1a)–(3.1d) the following test functions

𝜌 = 𝑝𝑛+1ℎ , 𝜃𝜃𝜃 = −𝑠𝑠𝑠𝑛+1ℎ , 𝜂𝜂𝜂 = 𝑞𝑞𝑞𝑛+1ℎ , 𝜑 = −
𝑢𝑛+1ℎ − 𝑢𝑛ℎ

𝜏𝑛+1
,

e get
(

𝛹 (𝑥𝑥𝑥),
𝑢𝑛+1ℎ − 𝑢𝑛ℎ

𝜏𝑛+1

)

+

(

𝐻 ′(𝑢𝑛+1ℎ ),
𝑢𝑛+1ℎ − 𝑢𝑛ℎ

𝜏𝑛+1

)

= −
(

𝑓 (𝑢𝑛+1ℎ )𝑠𝑠𝑠𝑛+1ℎ , 𝑠𝑠𝑠𝑛+1ℎ
)

−
(

𝑞𝑞𝑞𝑛+1ℎ ,∇𝑝𝑛+1ℎ
)

+
∑

𝐾∈ℎ

(𝑞𝑞𝑞𝑛+1ℎ ⋅ 𝜈𝜈𝜈, 𝑝𝑛+1ℎ )𝜕𝐾

− (𝑝𝑛+1ℎ ,∇ ⋅ 𝑞𝑞𝑞𝑛+1ℎ ) +
∑

𝐾∈ℎ

(𝑝𝑛+1ℎ , 𝜈𝜈𝜈 ⋅ 𝑞𝑞𝑞𝑛+1ℎ )𝜕𝐾

= − (𝑓 (𝑢𝑛+1ℎ )𝑠𝑠𝑠𝑛+1ℎ , 𝑠𝑠𝑠𝑛+1ℎ ) −
∑

𝐾∈ℎ

(𝑞𝑞𝑞𝑛+1ℎ ⋅ 𝜈𝜈𝜈, 𝑝𝑛+1ℎ )𝜕𝐾 +
∑

𝐾∈ℎ

(𝑞𝑞𝑞𝑛+1ℎ ⋅ 𝜈𝜈𝜈, 𝑝𝑛+1ℎ )𝜕𝐾

+
∑

𝐾∈ℎ

(𝑝𝑛+1ℎ , 𝜈𝜈𝜈 ⋅ 𝑞𝑞𝑞𝑛+1ℎ )𝜕𝐾 .

ogether with (2.7), the numerical fluxes (2.3) and the boundary condition (2.5), we obtain then
(

𝛹 (𝑥𝑥𝑥),
𝑢𝑛+1ℎ − 𝑢𝑛ℎ

𝜏𝑛+1

)

+

(

𝐻 ′(𝑢𝑛+1ℎ ),
𝑢𝑛+1ℎ − 𝑢𝑛ℎ

𝜏𝑛+1

)

= −
(

𝑓 (𝑢𝑛+1ℎ )𝑠𝑠𝑠𝑛+1ℎ , 𝑠𝑠𝑠𝑛+1ℎ
)

.

ecause of the following Taylor expansion

𝐻(𝑢𝑛ℎ) = 𝐻(𝑢𝑛+1ℎ ) +𝐻 ′(𝑢𝑛+1ℎ )(𝑢𝑛ℎ − 𝑢𝑛+1ℎ ) + 1
2
𝐻 ′′(𝜉𝑛+1)(𝑢𝑛+1ℎ − 𝑢𝑛ℎ)

2, 𝜉𝑛+1 ∈ (𝑢𝑛ℎ, 𝑢
𝑛+1
ℎ ),

we have, using the conditions on 𝑓,𝐻 stated in (1.3) and the definition of 𝐸ℎ in (3.2),

𝐸ℎ(𝑢𝑛+1ℎ ) − 𝐸ℎ(𝑢𝑛ℎ) =
(

𝛹 (𝑥𝑥𝑥), 𝑢𝑛+1ℎ − 𝑢𝑛ℎ
)

+
(

𝐻(𝑢𝑛+1ℎ ) −𝐻(𝑢𝑛ℎ), 1
)

= − 𝜏𝑛+1
(

𝑓 (𝑢𝑛+1ℎ )𝑠𝑠𝑠𝑛+1ℎ , 𝑠𝑠𝑠𝑛+1ℎ
)

− 1
2

(

𝐻 ′′(𝜉𝑛+1),
(

𝑢𝑛+1ℎ − 𝑢𝑛ℎ
)2)

⩽ 0. □

3.2. Higher order DIRK-LDG discretizations

For higher order accurate implicit in time discretizations of the system (2.1), we use a Diagonally Implicit Runge–Kutta (DIRK)
method [24]. Assuming we know the numerical solution at time level 𝑛, we obtain the solution at time level 𝑛 + 1 with a DIRK
method by solving for each DIRK stage 𝑖, 𝑖 = 1, 2,… , 𝑠 the following equations.

(

𝑢𝑛+1,𝑖ℎ − 𝑢𝑛ℎ
𝜏𝑛+1

, 𝜌

)

+
𝑖

∑

𝑗=1
𝑎𝑖𝑗𝐿

1
ℎ(𝑞𝑞𝑞

𝑛+1,𝑗
ℎ ; 𝜌) = 0, (3.4a)

(𝑞𝑞𝑞𝑛+1,𝑖ℎ , 𝜃𝜃𝜃) + 𝐿2
ℎ(𝑢

𝑛+1,𝑖
ℎ , 𝑠𝑠𝑠𝑛+1,𝑖ℎ ;𝜃𝜃𝜃) = 0, (3.4b)

(𝑠𝑠𝑠𝑛+1,𝑖ℎ , 𝜂𝜂𝜂) + 𝐿3
ℎ(𝑝

𝑛+1,𝑖
ℎ ;𝜂𝜂𝜂) = 0, (3.4c)

(𝑝𝑛+1,𝑖ℎ , 𝜑) + 𝐿4
ℎ(𝑢

𝑛+1,𝑖
ℎ ;𝜑) = 0. (3.4d)

Then the solution at time 𝑡𝑛+1 is

(𝑢𝑛+1ℎ , 𝜌) = (𝑢𝑛ℎ, 𝜌) − 𝜏𝑛+1
𝑠
∑

𝑏𝑖𝐿
1
ℎ(𝑞𝑞𝑞

𝑛+1,𝑖
ℎ ; 𝜌). (3.5)
5

𝑖=1
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The coefficient matrices (𝑎𝑖𝑗 ) in (3.4a) and (𝑏𝑖) in (3.5) for the second, third and fourth order accurate DIRK methods used in this
paper are

• Second order DIRK method [25, Theorem 5]

(𝑎𝑖𝑗 ) =
(

𝛼 0
1 − 𝛼 𝛼

)

, (𝑏𝑖) =
(

1 − 𝛼 𝛼
)

, (𝑐𝑖) =
(

𝛼 1
)

, (3.6)

where 𝛼 = 1 −

√

2
2

.

• Third order DIRK method [26, top of page 2117]

(𝑎𝑖𝑗 ) =
⎛

⎜

⎜

⎝

𝛾 0 0
1∕2 − 𝛾∕2 𝛾 0
1 − 𝛿 − 𝛾 𝛿 𝛾

⎞

⎟

⎟

⎠

, (𝑏𝑖) =
(

1 − 𝛿 − 𝛾 𝛿 𝛾
)

,

(𝑐𝑖) =
(

𝛾 1∕2 + 𝛾∕2 1
)

, (3.7)

where 𝛾 = 0.435866521508, 𝛿 = 0.25(5 − 20𝛾 + 6𝛾2).
• Fourth order DIRK method [26, top of page 2118]

(𝑎𝑖𝑗 ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1∕4 0 0 0 0
−1∕4 1∕4 0 0 0
1∕8 1∕8 1∕4 0 0
−3∕2 3∕4 3∕2 1∕4 0
0 1∕6 2∕3 −1∕12 1∕4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

(𝑏𝑗 ) =
(

0 1∕6 2∕3 −1∕12 1∕4
)

,

(𝑐𝑖) =
(

1∕4 0 1∕2 1 1
)

. (3.8)

or DG discretizations using polynomial basis functions of order 𝑘 we use a DIRK method of order 𝑘 + 1.
The above DIRK methods satisfy 𝑎𝑠𝑖 = 𝑏𝑖, 𝑖 = 1, 2,⋯ , 𝑠, which implies 𝑢𝑛+1ℎ = 𝑢𝑛+1,𝑠ℎ . The above time discretization methods are

easy to implement since the matrix (𝑎𝑖𝑗 ) in the DIRK methods has a lower triangular structure, which means that we can compute
the DIRK stages one after another, starting from 𝑖 = 1 up to 𝑖 = 𝑠. For detailed information about the DIRK time integration method,
we refer to [24].

4. Higher order accurate positivity preserving DIRK-LDG discretizations

The positivity constraints on the LDG solution will be enforced by transforming the DIRK-LDG equations with positivity
constraints into a mixed complementarity problem using the Karush–Kuhn–Tucker (KKT) equations [27]. In the following sections,
we will first define the positivity preserving DIRK-LDG discretization. Next, we will consider the unique solvability and entropy
dissipation of the discrete KKT system.

4.1. KKT-system

For the KKT equations [27], we define the set

K ∶= {𝑈 ∈ R𝑑𝑜𝑓
| ℎ(𝑈 ) = 0, 𝑔(𝑈 ) ⩽ 0}, (4.1)

ith equality constraints ℎ ∶ R𝑑𝑜𝑓 → R𝑙 and inequality constraints 𝑔 ∶ R𝑑𝑜𝑓 → R𝑚 being vector-valued continuously differentiable
functions. In the following 𝑑𝑜𝑓 = 𝑁𝑘 ⋅𝑁𝑒, where 𝑁𝑘 is the number of basis functions in one element and 𝑁𝑒 the number of elements
in the tessellation ℎ of the domain 𝛺. The inequality constraints 𝑔 in (4.8) are used to ensure positivity. The equality constraint
ℎ in (4.9) ensures that the limited DIRK-LDG discretization is mass conservative. Mass conservation is a property of the unlimited
DIRK-LDG discretization, but one has to ensure that this property also holds after applying the positivity preserving limiter.

We assume that 𝐿 is a continuously differentiable function from K to R𝑑𝑜𝑓 . The function 𝐿 representing the LDG discretization
for each DIRK stage 𝑖 = 1, 2,… , 𝑠 is given by (4.5)–(4.6). The corresponding KKT-system [27] then is

𝐿(𝑈 ) + ∇𝑈ℎ(𝑈 )𝑇 𝜇 + ∇𝑈𝑔(𝑈 )𝑇 𝜆 = 0, (4.2a)

ℎ(𝑈 ) = 0, (4.2b)

0 ⩾ 𝑔(𝑈 )⊥𝜆 ⩾ 0, (4.2c)

where 𝜇 ∈ R𝑙 and 𝜆 ∈ R𝑚 are the Lagrange multipliers used to ensure ℎ(𝑈 ) = 0 and 𝑔(𝑈 ) ⩽ 0, respectively, 𝑈 ∈ 𝑅𝑑𝑜𝑓 are the LDG
coefficients in the positivity-preserving DIRK-LDG discretization, and ∇𝑈 denotes the gradient with respect to 𝑈 . The compatibility
condition (4.2c) implies that 𝑔(𝑈 ) ⩽ 0, 𝜆 ⩾ 0 and 𝑔(𝑈 )𝑇 𝜆 = 0, which can be expressed as

̃

6

min(−𝑔𝑗 (𝑈 ), 𝜆𝑗 ) = 0, 𝑗 = 1, 2,⋯ , 𝑚.
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The KKT-system then can be formulated as

𝐹 (𝑧) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐿(𝑈 ) + ∇𝑈ℎ(𝑈 )𝑇 𝜇 + ∇𝑈𝑔(𝑈 )𝑇 𝜆
ℎ(𝑈 )

min(−𝑔1(𝑈 ), 𝜆1)
⋮

min(−𝑔𝑚(𝑈 ), 𝜆𝑚)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 0. (4.3)

Here 𝑧 = (𝑈, 𝜇, 𝜆) ∈ R𝑑𝑜𝑓+𝑙+𝑚, and 𝐹 ∶ R𝑑𝑜𝑓+𝑙+𝑚 → R𝑑𝑜𝑓+𝑙+𝑚 represents the DIRK-LDG discretization combined with the positivity and
mass conservation constraints. Note, the KKT system (4.3) is nonlinear and 𝐹 (𝑧) is not continuously differentiable, as is necessary
or standard Newton methods, but semi-smooth. We will therefore solve (4.3) with the active set semi-smooth Newton method
resented in [23].

.2. Positivity preserving LDG discretizations

In this section, we will provide the details of the higher order accurate positivity preserving DIRK-LDG discretizations (3.4)
oupled with the positivity and mass conservation constraints using Lagrange multipliers as stated in (4.2).

We introduce the following notation for the element-wise positivity preserving LDG solution

𝑈ℎ|𝐾 ∶=
𝑁𝑘
∑

𝑗=1
𝑈𝐾
𝑗 𝜙𝐾

𝑗 , 𝑄𝑄𝑄ℎ|𝐾 ∶=
𝑁𝑘
∑

𝑗=1
𝑄̃𝑄𝑄

𝐾
𝑗 𝜙

𝐾
𝑗

ith 𝐾 ∈ ℎ, 𝜙𝐾
𝑗 the tensor product Legendre basis functions in 𝑘(𝐾), and LDG coefficients 𝑈𝐾

𝑗 ∈ R, 𝑄̃𝑄𝑄
𝐾
𝑗 ∈ R𝑑 . We denote 𝑈 and

̃ by

𝑈 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑈𝐾1
1
⋮

𝑈𝐾1
𝑁𝑘
⋮

𝑈
𝐾𝑁𝑒
1
⋮

𝑈
𝐾𝑁𝑒
𝑁𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ R𝑑𝑜𝑓 , 𝑄̃𝑄𝑄 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑄̃𝑄𝑄
𝐾1
1
⋮

𝑄̃𝑄𝑄
𝐾1
𝑁𝑘
⋮

𝑄̃𝑄𝑄
𝐾𝑁𝑒
1
⋮

𝑄̃𝑄𝑄
𝐾𝑁𝑒
𝑁𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ R𝑑⋅𝑑𝑜𝑓 .

with 𝐾𝑙 ∈ ℎ for all 𝑙 = 1.⋯ , 𝑁𝑒.
Taking in each element 𝐾 ∈ ℎ the test function 𝜌 = 𝜙𝐾

𝑗 , 𝑗 = 1, 2,… , 𝑁𝑘 in the operator 𝐿1
ℎ(𝑄𝑄𝑄ℎ; 𝜌), stated in (2.2a), we can define

L1
ℎ(𝑄̃𝑄𝑄) ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐿1
ℎ(𝑄𝑄𝑄ℎ;𝜙

𝐾1
1 )

⋮
𝐿1
ℎ(𝑄𝑄𝑄ℎ;𝜙

𝐾1
𝑁𝑘

)
⋮

𝐿1
ℎ(𝑄𝑄𝑄ℎ;𝜙

𝐾𝑁𝑒
1 )

⋮

𝐿1
ℎ(𝑄𝑄𝑄ℎ;𝜙

𝐾𝑁𝑒
𝑁𝑘

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ R𝑁𝑘𝑁𝑒 , (4.4)

ith 𝐾𝑙 ∈ ℎ for all 𝑙 = 1.⋯ , 𝑁𝑒. We use similar definitions of L𝑘
ℎ for 𝐿𝑘

ℎ, 𝑘 = 2, 3, 4 stated in (2.2b)–(2.2d).
Representing the block-diagonal mass matrices for the scalar and vector variables as 𝑀 ∈ R𝑁𝑘𝑁𝑒×𝑁𝑘𝑁𝑒 and 𝑀𝑀𝑀 ∈ R𝑑𝑁𝑘𝑁𝑒×𝑑𝑁𝑘𝑁𝑒 ,

espectively, the operator 𝐿 for DIRK stage 𝑖 (𝑖 = 1, 2,… , 𝑠), as stated in (3.4a), can be expressed as

𝐿(𝑈𝑛+1,𝑖) ∶= 𝑀(𝑈𝑛+1,𝑖 − 𝑈𝑛) + 𝜏𝑛+1
𝑖

∑

𝑗=1
𝑎𝑖𝑗L1

ℎ(𝑄̃𝑄𝑄
𝑛+1,𝑗

), (4.5)

ith LDG coefficients 𝑈𝑛+1,𝑖 ∈ R𝑁𝑘𝑁𝑒 . The function 𝐿 in (4.5) is constructed using 𝑄̃𝑄𝑄
𝑛+1,𝑖

, 𝑆𝑆𝑆
𝑛+1,𝑖 and 𝑃 𝑛+1,𝑖, which are obtained using

3.4b), (3.4c) and (3.4d) and are defined as

𝑄̃𝑄𝑄
𝑛+1,𝑖

= −𝑀𝑀𝑀−1L2
ℎ(𝑈

𝑛+1,𝑖,𝑆𝑆𝑆
𝑛+1,𝑖

), (4.6a)

𝑆𝑆𝑆
𝑛+1,𝑖

= −𝑀𝑀𝑀−1L3
ℎ(𝑃

𝑛+1,𝑖), (4.6b)

𝑃 𝑛+1,𝑖 = −𝑀−1L4
ℎ(𝑈

𝑛+1,𝑖), (4.6c)

𝑄̃
𝑛+1,𝑖 𝑑𝑁𝑘𝑁𝑒 𝑆

𝑛+1,𝑖 𝑑𝑁𝑘𝑁𝑒 ̃𝑛+1,𝑖 𝑁𝑘𝑁𝑒
7

ith LDG coefficients 𝑄𝑄 ∈ R , 𝑆𝑆 ∈ R , 𝑃 ∈ R .
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The constraints on the DIRK-LDG discretization can be directly imposed on the DG coefficients for each DIRK stage using the
quality and inequality constraints in the KKT-system (4.3). We obtain for each DIRK stage 𝑖, with 𝑖 = 1, 2,… , 𝑠, the LDG coefficients
𝑈𝑛+1,𝑖 by solving the following KKT system for 𝑈𝑛+1,𝑖,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐿(𝑈𝑛+1,𝑖) + ∇𝑈ℎ(𝑈
𝑛+1,𝑖)𝑇 𝜇 + ∇𝑈𝑔(𝑈

𝑛+1,𝑖)𝑇 𝜆
ℎ(𝑈𝑛+1,𝑖)

min(−𝑔1(𝑈𝑛+1,𝑖), 𝜆1)
⋮

min(−𝑔𝑚(𝑈𝑛+1,𝑖), 𝜆𝑚)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 0, (4.7)

where the positivity preserving inequality constraint 𝑔(𝑈𝑛+1,𝑖) and the mass conservation equality constraint ℎ(𝑈𝑛+1,𝑖) are defined
as follows.

1. Positivity preserving inequality constraint
In each element 𝐾 ∈ ℎ, we define the function 𝑔 stated in (4.7) as

𝑔𝐾𝑝 (𝑈𝑛+1,𝑖) = 𝑢min −
𝑁𝑘
∑

𝑗=1
𝑈𝐾,(𝑛+1,𝑖)
𝑗 𝜙𝐾

𝑗 (𝑥𝑥𝑥𝑝), 𝑝 = 1,⋯ , 𝑁𝑝, (4.8)

with 𝑁𝑝 the number of Gauss–Lobatto quadrature points, and 𝑥𝑥𝑥𝑝 the Gauss–Lobatto quadrature points where the inequality
constraints 𝑈ℎ(𝑥𝑥𝑥𝑝) ⩾ 𝑢min are imposed. The use of Gauss–Lobatto quadrature rules ensures that the positivity constraint is also
imposed in the computation of the numerical fluxes at the element edges where Gauss–Lobatto rules have, next to the element
itself, also quadrature points. Note, the Gauss–Lobatto quadrature points 𝑥𝑥𝑥𝑝 are the only points used in the LDG discretization and
the positivity constraint 𝑢min therefore only needs to be enforced at these points. In practice, one only needs to impose the inequality
constraints on quadrature points where the solution is close to the bounds.

2. Mass conservation equality constraint
In order to ensure mass conservation of the LDG discretization when the positivity constraint is enforced, we impose the following

equality constraint, which is obtained by setting 𝜌 = 1 in (3.4a) and using the numerical flux (2.3) or (2.4).

ℎ(𝑈𝑛+1,𝑖) =
∑

𝐾∈ℎ
∫𝐾

𝑈𝑛
ℎ𝑑𝐾 + 𝜏𝑛+1

𝑖
∑

𝑗=1
𝑎𝑖𝑗

∑

𝐾∈ℎ
𝜕𝐾∩𝜕𝛺≠∅

(𝑄̂𝑄𝑄
𝑛+1,𝑗
ℎ ⋅ 𝜈𝜈𝜈, 1)𝜕𝐾

−
∑

𝐾∈ℎ

𝑁𝑘
∑

𝑗=1
𝑈𝐾,(𝑛+1,𝑖)
𝑗 ∫𝐾

𝜙𝐾
𝑗 (𝑥𝑥𝑥)𝑑𝐾

=1𝑇𝑀(𝑈𝑛 − 𝑈𝑛+1,𝑖) + 𝜏𝑛+1
𝑖

∑

𝑗=1
𝑎𝑖𝑗

∑

𝐾∈ℎ
𝜕𝐾∩𝜕𝛺≠∅

(𝑄̂𝑄𝑄
𝑛+1,𝑗
ℎ ⋅ 𝜈𝜈𝜈, 1)𝜕𝐾 , (4.9)

with 𝑈𝑛 the DG coefficients of 𝑈𝑛
ℎ , the positivity-preserving DIRK-LDG solution at time 𝑡𝑛, 1 = (1𝑁𝑘

,… ,1𝑁𝑘
)𝑇 ∈ R𝑑𝑜𝑓 with

1𝑁𝑘
= (1, 0,… , 0

⏟⏟⏟
𝑁𝑘−1

).

Remark 4.1. We compute ∇𝑈ℎ(𝑈
𝑛+1,𝑖)𝑇 for the term

𝜏𝑛+1
𝑖

∑

𝑗=1
𝑎𝑖𝑗

∑

𝐾∈ℎ
𝜕𝐾∩𝜕𝛺≠∅

(𝑄̂𝑄𝑄
𝑛+1,𝑗
ℎ ⋅ 𝜈𝜈𝜈, 1)𝜕𝐾 ≠ 0,

n (4.9) using the chain rule, the relation between 𝑄̃𝑄𝑄
𝑛+1,𝑖 and 𝑈𝑛+1,𝑖 given by (4.6), and the numerical flux (2.3) or (2.4).

For each DIRK stage 𝑖, the KKT-system (4.7) for the higher order accurate positivity preserving LDG discretization is now defined.
After solving the KKT Eqs. (4.7) for 𝑖 = 1,… , 𝑠, the numerical solution at time 𝑡𝑛+1 is directly obtained from the last DIRK stage,
𝑈𝑛+1
ℎ = 𝑈𝑛+1,𝑠

ℎ since we use DIRK methods with 𝑎𝑠𝑖 = 𝑏𝑖.

Remark 4.2. In order to ensure the positivity of the discrete initial solution 𝑈0
ℎ , we use the 𝐿2-projection coupled with the positivity

constraint (4.8), which is obtained by replacing 𝑈𝑛+1,𝑖 with 𝑈0. The equality constraint ensures mass conservation of the positivity
limited initial solution

ℎ(𝑈0) =
∑

𝐾∈ℎ
∫𝐾

𝑢0(𝑥𝑥𝑥)𝑑𝐾 −
∑

𝐾∈ℎ

𝑁𝑘
∑

𝑗=1
𝑈𝐾,0
𝑗 ∫𝐾

𝜙𝐾
𝑗 (𝑥𝑥𝑥)𝑑𝐾.

he constraints on the 𝐿2-projection are imposed using KKT equations similar to (4.3). To prevent pathological cases, we assume
hat the limited initial solution satisfies

1
|𝛺|

∑

∫ 𝑢0(𝑥𝑥𝑥)𝑑𝐾 ⩾ 𝑢min.
8

𝐾∈ℎ 𝐾
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Remark 4.3. We emphasize that 𝑢min must be chosen strictly positive to ensure that errors do not violate the positivity of the
umerical solution due to the finite precision of the computer arithmetic. For more details, we refer to the test cases in Section 5.

.3. Unique solvability and stability of the positivity preserving LDG discretization

In Section 4.2, we have presented the positivity preserving LDG discretization for (1.1). In this section, we will consider the
nique solvability of the algebraic equations resulting from the positivity-preserving backward Euler LDG discretization. In the
heoretical analysis, we will also consider the entropy dissipation of the positivity preserving backward Euler LDG discretization
nd use periodic boundary conditions.

With (4.5)–(4.9), the positivity preserving backward Euler LDG discretization results now in the following KKT system,

𝐿(𝑈𝑛+1) + ∇𝑈ℎ(𝑈
𝑛+1)𝑇 𝜇𝑛+1 + ∇𝑈𝑔(𝑈

𝑛+1)𝑇 𝜆𝑛+1 = 0, (4.10a)

− ℎ(𝑈𝑛+1) = 0, (4.10b)

min(−𝑔(𝑈𝑛+1), 𝜆𝑛+1) = 0. (4.10c)

ere 𝐿 ∶ R𝑁𝑘𝑁𝑒 → R𝑁𝑘𝑁𝑒 and

𝐿(𝑈𝑛+1) ∶=𝑀(𝑈𝑛+1 − 𝑈𝑛) + 𝜏𝑛+1𝐵𝑄̃𝑄𝑄
𝑛+1

, (4.11)

𝑀𝑀𝑀𝑄̃𝑄𝑄
𝑛+1

=𝐶𝑑 (𝑈𝑛+1)𝑆𝑆𝑆
𝑛+1

, (4.12)

𝑀𝑀𝑀𝑆𝑆𝑆
𝑛+1

=𝐴𝑃 𝑛+1, (4.13)

𝑀𝑃 𝑛+1 =𝐷(𝑈𝑛+1). (4.14)

rom (4.4)–(4.6), we obtain that

𝐵𝑄̃𝑄𝑄
𝑛+1

=L1
ℎ(𝑄̃𝑄𝑄

𝑛+1
) ∈ R𝑁𝑘𝑁𝑒 , (4.15)

𝐶𝑑 (𝑈𝑛+1)𝑆𝑆𝑆
𝑛+1

= − L2
ℎ(𝑈

𝑛+1,𝑆𝑆𝑆
𝑛+1

) ∈ R𝑑𝑁𝑘𝑁𝑒 , (4.16)

𝐴𝑃 𝑛+1 = − L3
ℎ(𝑃

𝑛+1) ∈ R𝑑𝑁𝑘𝑁𝑒 , (4.17)

𝐷(𝑈𝑛+1) = − L4
ℎ(𝑈

𝑛+1) ∈ R𝑁𝑘𝑁𝑒 , (4.18)

here

𝐶𝑑 (𝑈𝑛+1) =
⎛

⎜

⎜

⎝

𝐶(𝑈𝑛+1)
⋱

𝐶(𝑈𝑛+1)

⎞

⎟

⎟

⎠

∈ R𝑑𝑁𝑘𝑁𝑒×𝑑𝑁𝑘𝑁𝑒 , 𝐶(𝑈𝑛+1) ∈ R𝑁𝑘𝑁𝑒 . (4.19)

he constraints ℎ ∶ R𝑁𝑘𝑁𝑒 → R, 𝑔 ∶ R𝑁𝑘𝑁𝑒 → R𝑁𝑝𝑁𝑒 are defined by

ℎ(𝑈𝑛+1) =
∑

𝐾∈ℎ
∫𝐾

𝑈0
ℎ𝑑𝐾 −

∑

𝐾∈ℎ

𝑁𝑘
∑

𝑗=1
𝑈𝐾,(𝑛+1)
𝑗 ∫𝐾

𝜙𝐾
𝑗 (𝑥𝑥𝑥)𝑑𝐾 = 1𝑇𝑀(𝑈0 − 𝑈𝑛+1), (4.20)

𝑔(𝑈𝑛+1) =(𝑔𝐾1
1 (𝑈𝑛+1),… , 𝑔𝐾1

𝑁𝑝
(𝑈𝑛+1),… , 𝑔

𝐾𝑁𝑒
1 (𝑈𝑛+1),… , 𝑔

𝐾𝑁𝑒
𝑁𝑝

(𝑈𝑛+1)), (4.21)

with the definition of the constraints 𝑔
𝐾𝑗
𝑝 , 1 ⩽ 𝑝 ⩽ 𝑁𝑝, 1 ⩽ 𝑗 ⩽ 𝑁𝑒, given in (4.8), and 1 = (1𝑁𝑘

,… ,1𝑁𝑘
)𝑇 ∈ R𝑑𝑜𝑓 with

1𝑁𝑘
= (1, 0,… , 0

⏟⏟⏟
𝑁𝑘−1

).

4.3.1. Auxiliary results used to prove the solvability of the KKT-system
In this section, we will introduce some auxiliary results, which will be used in Section 4.3.2 to prove the unique solvability of

the KKT-system (4.10).

Definition 4.4 ([27, Sections 1.1, 3.2]). Let K be given by (4.1). Given a map 𝐿 ∶ K → R𝑑𝑜𝑓 , the Variational Inequality (VI(K, 𝐿))
is to find 𝑈 ∈ K such that

(𝑦 − 𝑈 )𝑇𝐿(𝑈 ) ⩾ 0, 𝑦 ∈ K. (4.22)

The set of solutions for VI(K, 𝐿)(4.22) is denoted by SOL(K, 𝐿).

Lemma 4.1 ([27, Proposition 1.3.4]). Let 𝑈 ∈ SOL(K, 𝐿) solve (4.22) with K given by (4.1). If Abadie’s Constraint Qualification holds
at 𝑈 , then there exist vectors 𝜇 ∈ R𝑙 and 𝜆 ∈ R𝑚 satisfying the KKT system (4.10).

Lemma 4.2 ([27, Proposition 1.3.4]). If (𝑈, 𝜇, 𝜆) satisfies (4.10), and if each function ℎ𝑗 (1 ⩽ 𝑗 ⩽ 𝑙) is affine and each function
̃

9

𝑔𝑖 (1 ⩽ 𝑖 ⩽ 𝑚) is convex, then 𝑈 solves VI(K, 𝐿) given by (4.22) with K given by (4.1).
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For the inequality constraints (4.8), the set K given by (4.1), with equality constraint ℎ ≡ 0, reduces to the following box
constraint problem

K𝑏 ∶= {𝑈 ∈ R𝑑𝑜𝑓
| 𝑈min

𝑖 ⩽ 𝑈𝑖 ⩽ 𝑈max
𝑖 , 𝑖 ∈ {1,… , 𝑑𝑜𝑓}}. (4.23)

The values of the LDG coefficients 𝑈min
𝑖 follow from the inequality constraints 𝑔 in (4.8), where 𝑢min depends on the physical

onstraint to be satisfied. A similar constraint can also be imposed for 𝑈max
𝑖 using 𝑢max for the maximum allowed physical constraints.

Depending on the problem considered, 𝑈max
𝑖 can be infinity.

Remark 4.5. Abadie’s Constraint Qualification states that the tangent cone at 𝑈 ∈ K must be equal to the linearization cone of K
at 𝑈 . This is true for K𝑏 since the domain K𝑏 is a box (or polyhedral) domain, see [27, Section 1.3.1].

We write K𝑏 as

K𝑏 =
𝑁
∏

𝜗=1
K𝑛𝜗 , (4.24)

where K𝑛𝜗 is a subset of R𝑛𝜗 with
𝑁
∑

𝜗=1
𝑛𝜗 = 𝑑𝑜𝑓 . Thus for a vector 𝑈 ∈ K𝑏, we write 𝑈 = (𝑈𝜗), where each 𝑈𝜗 belongs to K𝑛𝜗 .

Definition 4.6 ([27, Section 3.5.2]). Let K𝑏 be given by (4.23). A map 𝐿 ∶ K𝑏 → R𝑑𝑜𝑓 is said to be
(a) a P-function on K𝑏 if for all pairs of distinct vectors 𝑈 and 𝑈 ′ in K𝑏,

max
1⩽𝜗⩽𝑁

(𝑈𝜗 − 𝑈 ′
𝜗)

𝑇 (𝐿𝜗(𝑈 ) − 𝐿𝜗(𝑈 ′)) > 0,

(b) a uniformly P-function on K𝑏 if there exists a constant 𝜛 > 0 such that for all pairs of distinct vectors 𝑈 and 𝑈 ′ in K𝑏,

max
1⩽𝜗⩽𝑁

(𝑈𝜗 − 𝑈 ′
𝜗)

𝑇 (𝐿𝜗(𝑈 ) − 𝐿𝜗(𝑈 ′)) ⩾ 𝜛‖𝑈 − 𝑈 ′
‖

2.

Lemma 4.3 ([27, Proposition 3.5.10]). Let K𝑏 be given by (4.23).
(a) If 𝐿 is a P-function on K𝑏, then VI(K𝑏, 𝐿) has at most one solution.
(b) If each K𝑛𝜗 is a closed convex set and 𝐿 is a continuous uniformly P-function on K𝑏, then the VI(K𝑏, 𝐿) has a unique solution.

4.3.2. Existence and uniqueness of LDG discretization with positivity and mass conservation constraints
In this section, we will prove the existence and uniqueness of the KKT system (4.10)–(4.21) using the unique solvability conditions

discussed in Section 4.3.1.

Lemma 4.4. For periodic boundary conditions, the matrices 𝐵 in (4.15) and 𝐴 in (4.17) satisfy 𝐵𝑇 = 𝐴.

Proof. In order to prove the symmetry of 𝐵 in (4.15) and 𝐴 in (4.17), we define the bilinear function 𝑎 ∶ (𝑉 𝑘
ℎ ×𝑊𝑊𝑊 𝑘

ℎ)×(𝑉
𝑘
ℎ ×𝑊𝑊𝑊 𝑘

ℎ) → R
by

𝑎(𝑃 𝑛+1
ℎ ,𝑄𝑄𝑄𝑛+1

ℎ ; 𝜌,𝜃𝜃𝜃) =(𝑄𝑄𝑄𝑛+1
ℎ ,∇𝜌) −

∑

𝐾∈ℎ

(𝑄̂𝑄𝑄
𝑛+1
ℎ ⋅ 𝜈𝜈𝜈, 𝜌)𝜕𝐾

− (𝑃 𝑛+1
ℎ ,∇ ⋅ 𝜃𝜃𝜃) +

∑

𝐾∈ℎ

(𝑃 𝑛+1
ℎ , 𝜈𝜈𝜈 ⋅ 𝜃𝜃𝜃)𝜕𝐾 .

Based on the definition of 𝐵 in (4.15) using (2.2a), 𝐴 in (4.17) using (2.2c), we rewrite the above bilinear function 𝑎 as follows:

𝑎(𝑃 𝑛+1
ℎ ,𝑄𝑄𝑄𝑛+1

ℎ ; 𝜌,𝜃𝜃𝜃) = (𝜚,𝛩)
(

0 𝐵
𝐴 0

)

(𝑃 𝑛+1, 𝑄̃𝑄𝑄
𝑛+1

)𝑇 ,

with 𝜚,𝛩 the LDG coefficients of 𝜌,𝜃𝜃𝜃 and 𝑃 𝑛+1, 𝑄̃𝑄𝑄
𝑛+1 the LDG coefficients of 𝑃 𝑛+1

ℎ ,𝑄𝑄𝑄𝑛+1
ℎ , respectively.

Interchanging the arguments of 𝑎, we get

𝑎(𝜌,𝜃𝜃𝜃;𝑃 𝑛+1
ℎ ,𝑄𝑄𝑄𝑛+1

ℎ ) =(𝜃𝜃𝜃,∇𝑃 𝑛+1
ℎ ) −

∑

𝐾∈ℎ

(𝜃𝜃𝜃 ⋅ 𝜈𝜈𝜈, 𝑃 𝑛+1
ℎ )𝜕𝐾

− (𝜌,∇ ⋅𝑄𝑄𝑄𝑛+1
ℎ ) +

∑

𝐾∈ℎ

(𝜌,𝜈𝜈𝜈 ⋅𝑄𝑄𝑄𝑛+1
ℎ )𝜕𝐾

= − (𝑃 𝑛+1
ℎ ,∇ ⋅ 𝜃𝜃𝜃) +

∑

𝐾∈ℎ

(𝜃𝜃𝜃 ⋅ 𝜈𝜈𝜈, 𝑃 𝑛+1
ℎ )𝜕𝐾 −

∑

𝐾∈ℎ

(𝜃𝜃𝜃 ⋅ 𝜈𝜈𝜈, 𝑃 𝑛+1
ℎ )𝜕𝐾

+ (𝑄𝑄𝑄𝑛+1
ℎ ,∇𝜌) −

∑

𝐾∈ℎ

(𝜌,𝜈𝜈𝜈 ⋅𝑄𝑄𝑄𝑛+1
ℎ )𝜕𝐾 +

∑

𝐾∈ℎ

(𝜌,𝜈𝜈𝜈 ⋅𝑄𝑄𝑄𝑛+1
ℎ )𝜕𝐾 .
10
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Using equality (2.7), the alternating numerical fluxes for 𝜃𝜃𝜃 and 𝜌 in (2.3) or (2.4), and the periodic boundary conditions, we obtain
∑

𝐾∈ℎ

(𝜃𝜃𝜃 ⋅ 𝜈𝜈𝜈, 𝑃 𝑛+1
ℎ )𝜕𝐾 −

∑

𝐾∈ℎ

(𝜃𝜃𝜃 ⋅ 𝜈𝜈𝜈, 𝑃 𝑛+1
ℎ )𝜕𝐾 =

∑

𝐾∈ℎ

(𝑃 𝑛+1
ℎ , 𝜈𝜈𝜈 ⋅ 𝜃𝜃𝜃)𝜕𝐾 ,

−
∑

𝐾∈ℎ

(𝜌,𝜈𝜈𝜈 ⋅𝑄𝑄𝑄𝑛+1
ℎ )𝜕𝐾 +

∑

𝐾∈ℎ

(𝜌,𝜈𝜈𝜈 ⋅𝑄𝑄𝑄𝑛+1
ℎ )𝜕𝐾 = −

∑

𝐾∈ℎ

(𝑄̂𝑄𝑄
𝑛+1
ℎ ⋅ 𝜈𝜈𝜈, 𝜌)𝜕𝐾 .

Hence,

𝑎(𝑃 𝑛+1
ℎ ,𝑄𝑄𝑄𝑛+1

ℎ ; 𝜌,𝜃𝜃𝜃) = 𝑎(𝜌,𝜃𝜃𝜃;𝑃 𝑛+1
ℎ ,𝑄𝑄𝑄𝑛+1

ℎ ),

which implies

(𝜚,𝛩)
(

0 𝐵
𝐴 0

)

(𝑃 𝑛+1, 𝑄̃𝑄𝑄
𝑛+1

)𝑇 =(𝑃 𝑛+1, 𝑄̃𝑄𝑄
𝑛+1

)
(

0 𝐵
𝐴 0

)

(𝜚,𝛩)𝑇

=(𝜚,𝛩)
(

0 𝐴𝑇

𝐵𝑇 0

)

(𝑃 𝑛+1, 𝑄̃𝑄𝑄
𝑛+1

)𝑇 . (4.25)

Since (𝑃 𝑛+1
ℎ ,𝑄𝑄𝑄𝑛+1

ℎ ) ∈ 𝑉 𝑘
ℎ ×𝑊𝑊𝑊 𝑘

ℎ and (𝜌,𝜃𝜃𝜃) ∈ 𝑉 𝑘
ℎ ×𝑊𝑊𝑊 𝑘

ℎ are arbitrary functions, relation (4.25) implies that 𝐴 = 𝐵𝑇 . □

Using (4.12)–(4.14) and Lemma 4.4, the operator 𝐿(𝑈𝑛+1) in (4.11) can be written as

𝐿(𝑈𝑛+1) = 𝑀(𝑈𝑛+1 − 𝑈𝑛) + 𝜏𝑛+1𝐵𝑀𝑀𝑀−1𝐶𝑑 (𝑈𝑛+1)𝑀𝑀𝑀−1𝐵𝑇𝑀−1𝐷(𝑈𝑛+1). (4.26)

Lemma 4.5. Given 𝑈𝑛, the operator 𝐿 in (4.26) is a uniformly P-function on K𝑏 for 0 < 𝜏𝑛+1 ⩽ 𝜎
4𝑐

, with 𝜎 the smallest eigenvalue of
he symmetric positive definite mass matrix 𝑀 , and 𝑐 a positive constant independent of 𝑈 .

roof. Using relation (4.26) for 𝐿, for arbitrary 𝑈𝑛+1
𝐼 , 𝑈𝑛+1

𝐼𝐼 ∈ K𝑏, there holds

𝐿(𝑈𝑛+1
𝐼 ) − 𝐿(𝑈𝑛+1

𝐼𝐼 ) =𝑀(𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 ) + 𝜏𝑛+1𝐵𝑀𝑀𝑀−1𝐶𝑑 (𝑈𝑛+1
𝐼 )𝑀𝑀𝑀−1𝐵𝑇𝑀−1𝐷(𝑈𝑛+1

𝐼 )

− 𝜏𝑛+1𝐵𝑀𝑀𝑀−1𝐶𝑑 (𝑈𝑛+1
𝐼𝐼 )𝑀𝑀𝑀−1𝐵𝑇𝑀−1𝐷(𝑈𝑛+1

𝐼𝐼 ). (4.27)

fter subtracting and adding 𝜏𝑛+1𝐵𝑀𝑀𝑀−1𝐶𝑑 (𝑈𝑛+1
𝐼 )𝑀𝑀𝑀−1𝐵𝑇𝑀−1𝐷(𝑈𝑛+1

𝐼𝐼 ) in (4.27), we obtain

𝐿(𝑈𝑛+1
𝐼 ) − 𝐿(𝑈𝑛+1

𝐼𝐼 )

=𝑀(𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 ) + 𝜏𝑛+1𝐵𝑀𝑀𝑀−1𝐶𝑑 (𝑈𝑛+1
𝐼 )𝑀𝑀𝑀−1𝐵𝑇𝑀−1(𝐷(𝑈𝑛+1

𝐼 ) −𝐷(𝑈𝑛+1
𝐼𝐼 ))

+ 𝜏𝑛+1𝐵𝑀𝑀𝑀−1(𝐶𝑑 (𝑈𝑛+1
𝐼 ) − 𝐶𝑑 (𝑈𝑛+1

𝐼𝐼 ))𝑀𝑀𝑀−1𝐵𝑇𝑀−1𝐷(𝑈𝑛+1
𝐼𝐼 ). (4.28)

ith the definition of 𝐷 in (4.18) using (2.2d), we obtain that

(𝐷(𝑈𝑛+1
𝐼 ) −𝐷(𝑈𝑛+1

𝐼𝐼 ))𝑖 = ∫𝛺

(

𝐻 ′

(𝑁𝑘𝑁𝑒
∑

𝑗=1
𝑈𝑛+1
𝐼,𝑗 𝜙𝑗

)

−𝐻 ′

(𝑁𝑘𝑁𝑒
∑

𝑗=1
𝑈𝑛+1
𝐼𝐼,𝑗𝜙𝑗

))

𝜙𝑖𝑑𝛺

=
𝑁𝑘𝑁𝑒
∑

𝑗=1
(𝑈𝑛+1

𝐼,𝑗 − 𝑈𝑛+1
𝐼𝐼,𝑗 )∫𝛺

𝐻 ′′(𝜉𝑛+11 )𝜙𝑗𝜙𝑖𝑑𝛺, 𝑖 ∈ {1,… , 𝑁𝑘𝑁𝑒}, 𝜉𝑛+11 ∈ (𝑈𝑛+1
ℎ,𝐼 , 𝑈𝑛+1

ℎ,𝐼𝐼 ),

nd write

𝐷(𝑈𝑛+1
𝐼 ) −𝐷(𝑈𝑛+1

𝐼𝐼 ) ∶= 𝐷𝑈 (𝜉
𝑛+1
1 )(𝑈𝑛+1

𝐼 − 𝑈𝑛+1
𝐼𝐼 ). (4.29)

imilarly, from the definition of 𝐶𝑑 in (4.16), (4.19) using (2.2b), we obtain that

𝐶𝑑 (𝑈𝑛+1
𝐼 ) − 𝐶𝑑 (𝑈𝑛+1

𝐼𝐼 ) =
⎛

⎜

⎜

⎝

𝐶(𝑈𝑛+1
𝐼 ) − 𝐶(𝑈𝑛+1

𝐼𝐼 )
⋱

𝐶(𝑈𝑛+1
𝐼 ) − 𝐶(𝑈𝑛+1

𝐼𝐼 )

⎞

⎟

⎟

⎠

,

(𝐶(𝑈𝑛+1
𝐼 ) − 𝐶(𝑈𝑛+1

𝐼𝐼 ))𝑖𝑗 = ∫𝛺

(

𝑓

(𝑁𝑘𝑁𝑒
∑

𝑘=1
𝑈𝑛+1
𝐼,𝑘 𝜙𝑘

)

− 𝑓

(𝑁𝑘𝑁𝑒
∑

𝑘=1
𝑈𝑛+1
𝐼𝐼,𝑘𝜙𝑘

))

𝜙𝑗𝜙𝑖𝑑𝛺

=
𝑁𝑘𝑁𝑒
∑

𝑘=1
(𝑈𝑛+1

𝐼,𝑘 − 𝑈𝑛+1
𝐼𝐼,𝑘)∫𝛺

𝑓 ′(𝜉𝑛+12 )𝜙𝑘𝜙𝑗𝜙𝑖𝑑𝛺, 𝑖, 𝑗, 𝑘 ∈ {1,… , 𝑁𝑘𝑁𝑒}, 𝜉𝑛+12 ∈ (𝑈𝑛+1
ℎ,𝐼 , 𝑈𝑛+1

ℎ,𝐼𝐼 ),

nd write

𝐶(𝑈𝑛+1
𝐼 ) − 𝐶(𝑈𝑛+1

𝐼𝐼 ) ∶=
𝑁𝑘𝑁𝑒
∑

[𝐶𝑑𝑈 (𝜉
𝑛+1
2 )]𝑘(𝑈𝑛+1

𝐼,𝑘 − 𝑈𝑛+1
𝐼𝐼,𝑘). (4.30)
11

𝑘=1
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Assume for arbitrary 𝑈 ∈ K𝑏 in (4.23), that

|𝐶(𝑈 )𝑖𝑗 | ⩽𝑐, |𝐷(𝑈 )𝑖| ⩽ 𝑐,

|[𝐶𝑈 (𝑈 )𝑖𝑗 ]𝑘| ⩽𝑐, |𝐷𝑈 (𝑈 )𝑖𝑗 | ⩽ 𝑐, 𝑖, 𝑗, 𝑘 ∈ {1,… , 𝑁𝑘𝑁𝑒}, (4.31)

with 𝑐 a positive constant, independent of 𝑈 . In the remainder of this section, 𝑐 is a positive constant, but not necessarily the same.
Using (4.29)–(4.30) and assumption (4.31), we obtain the following two estimates

(𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 )𝑇𝐵𝑀𝑀𝑀−1𝐶𝑑 (𝑈𝑛+1
𝐼 )𝑀𝑀𝑀−1𝐵𝑇𝑀−1(𝐷(𝑈𝑛+1

𝐼 ) −𝐷(𝑈𝑛+1
𝐼𝐼 ))

⩽‖𝐵‖‖𝑀𝑀𝑀−1
‖‖𝐶𝑑 (𝑈𝑛+1

𝐼 )‖‖𝑀𝑀𝑀−1
‖‖𝐵𝑇

‖‖𝑀−1
‖‖𝐷𝑈 (𝜉

𝑛+1
1 )‖‖𝑈𝑛+1

𝐼 − 𝑈𝑛+1
𝐼𝐼 ‖

2

⩽𝑐‖𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 ‖

2,

and

(𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 )𝑇𝐵𝑀𝑀𝑀−1(𝐶𝑑 (𝑈𝑛+1
𝐼 ) − 𝐶𝑑 (𝑈𝑛+1

𝐼𝐼 ))𝑀𝑀𝑀−1𝐵𝑇𝑀−1𝐷(𝑈𝑛+1
𝐼𝐼 )

⩽‖𝐵‖‖𝑀𝑀𝑀−1
‖

𝑁𝑘𝑁𝑒
∑

𝑘=1
‖[𝐶𝑑𝑈 (𝜉

𝑛+1
2 )]𝑘‖‖𝑀𝑀𝑀−1

‖‖𝐵𝑇
‖‖𝑀−1

‖‖𝐷(𝑈𝑛+1
𝐼𝐼 )‖‖𝑈𝑛+1

𝐼 − 𝑈𝑛+1
𝐼𝐼 ‖

2

⩽𝑐‖𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 ‖

2.

Then multiplying (4.28) with (𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 )𝑇 gives

(𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 )𝑇 (𝐿(𝑈𝑛+1
𝐼 ) − 𝐿(𝑈𝑛+1

𝐼𝐼 )) = (𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 )𝑇𝑀(𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 )

+ 𝜏𝑛+1(𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 )𝑇𝐵𝑀𝑀𝑀−1𝐶𝑑 (𝑈𝑛+1
𝐼 )𝑀𝑀𝑀−1𝐵𝑇𝑀−1(𝐷(𝑈𝑛+1

𝐼 ) −𝐷(𝑈𝑛+1
𝐼𝐼 ))

+ 𝜏𝑛+1(𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 )𝑇𝐵𝑀𝑀𝑀−1(𝐶𝑑 (𝑈𝑛+1
𝐼 ) − 𝐶𝑑 (𝑈𝑛+1

𝐼𝐼 ))𝑀𝑀𝑀−1𝐵𝑇𝑀−1𝐷(𝑈𝑛+1
𝐼𝐼 )

⩾𝜎‖𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 ‖

2 − 2𝑐𝜏𝑛+1‖𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼𝐼 ‖

2, (4.32)

where 𝜎 > 0 is the smallest eigenvalue of the symmetric positive mass matrix 𝑀 .
Choosing 0 < 𝜏𝑛+1 ⩽ 𝜎

4𝑐
, we obtain that

(𝑈𝑛+1
𝐼 − 𝑈𝑛+1

𝐼 )𝑇 (𝐿(𝑈𝑛+1
𝐼 ) − 𝐿(𝑈𝑛+1

𝐼𝐼 )) ⩾ 𝜎
2
‖𝑈𝑛+1

𝐼 − 𝑈𝑛+1
𝐼𝐼 ‖

2, ∀𝑈𝑛+1
𝐼 , 𝑈𝑛+1

𝐼𝐼 ∈ K𝑏, (4.33)

which implies that for 𝜏𝑛+1 sufficiently small 𝐿(𝑈𝑛+1) is a uniformly function of K𝑏, □

From Lemmas 4.1, 4.2, 4.3 and 4.5, we obtain the main result of this section.

Theorem 4.6. Given the DG coefficients 𝑈𝑛 and the positivity preserving backward Euler LDG discretization (4.10)–(4.21) with equality
constraint ℎ ≡ 0. Given a time step 𝜏𝑛+1 satisfying 0 < 𝜏𝑛+1 ≤ 𝜎

4𝑐 , with 𝜎 the smallest eigenvalue of the symmetric positive definite mass
matrix 𝑀 . If assumption (4.31) is satisfied, then the KKT system (4.10)–(4.21) has only one solution.

Proof. From Lemmas 4.3 and 4.5, we have that the VI(K𝑏, 𝐿) has a unique solution denoted by 𝑈𝑛+1 with K𝑏 given by (4.23) and
𝐿 given by (4.11). Then from Lemma 4.1, there exists a solution 𝑈𝑛+1, and vectors 𝜇 ∈ R𝑙 and 𝜆 ∈ R𝑚 satisfying the KKT system
(4.10)–(4.21) with equality constraint ℎ ≡ 0.

Since in (4.20)–(4.21), each function ℎ𝑗 (1 ⩽ 𝑗 ⩽ 𝑙) is affine and each function 𝑔𝑖 (1 ⩽ 𝑖 ⩽ 𝑚) is convex (linear), the KKT system
(4.10)–(4.21) has only one solution, which follows from Lemma 4.2 and the uniqueness of the solution for VI(K𝑏, 𝐿). □

Corollary 4.7. Given the DG coefficients 𝑈𝑛. Given a time step 𝜏𝑛+1 satisfying 0 < 𝜏𝑛+1 ≤ 𝜎
4𝑐 , with 𝜎 the smallest eigenvalue of the

symmetric positive definite mass matrix 𝑀 . If assumption (4.31) is satisfied, then for the degenerate parabolic Eq. (1.1) with periodic
boundary conditions, there exists only one solution satisfying the higher order accurate in time, positivity preserving DIRK-LDG discretizations
(4.7) with equality constraint ℎ ≡ 0.

Proof. Since the DIRK coefficient matrix (𝑎𝑖𝑗 ) introduced in Section 3.2 is a lower triangular matrix, the structure of the DIRK-
LDG discretizations is similar to the form obtained for the backward Euler LDG discretization. The analysis therefore is completely
analogous to Theorem 4.6. □

4.3.3. Stability of the positivity preserving DIRK-LDG discretization

Theorem 4.8. Given the numerical solution 𝑈𝑛
ℎ ∈ 𝑉 𝑘

ℎ of the positivity preserving backward Euler LDG discretization (4.10)–(4.21). Given
a time step 𝜏𝑛+1 satisfying 0 < 𝜏𝑛+1 ⩽ 𝜎

4𝑐
, with 𝜎 the smallest eigenvalue of the symmetric positive definite mass matrix 𝑀 , and 𝑐 a strictly

ositive constant. If assumption (4.31) is satisfied, then the discrete entropy 𝐸ℎ stated in (3.2) satisfies for 𝑛 = 0, 1,…,

𝐸ℎ(𝑈𝑛+1
ℎ ) ⩽ 𝐸ℎ(𝑈𝑛

ℎ ), (4.34)

hich implies that the positivity preserving backward Euler LDG discretization is entropy dissipative.
12
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Proof. From Lemma 4.2, we obtain that the LDG coefficients 𝑈𝑛+1 of the positivity preserving solution 𝑈𝑛+1
ℎ solve

(𝑦 − 𝑈𝑛+1)𝑇𝐿(𝑈𝑛+1) ⩾ 0, ∀𝑦 ∈ K, (4.35)

with 𝐿 given by (4.26) and K given by (4.1).
From assumption (4.31), we have that there exists a positive constant 𝑐 ⩾ 𝑐0 > 0 such that

𝑈𝑛+1 − 𝑐𝑀−1𝐷(𝑈𝑛+1) ∈ K. (4.36)

Next, we choose 𝑦 = 𝑈𝑛+1 − 𝑐𝑀−1𝐷(𝑈𝑛+1) in (4.35), which implies

− 𝑐(𝑀−1𝐷(𝑈𝑛+1))𝑇𝐿(𝑈𝑛+1) ⩾ 0. (4.37)

Using (4.26) and the fact that 𝑐 > 0, we obtain that (4.37) implies the inequality

𝐷(𝑈𝑛+1)𝑇 (𝑈𝑛+1 − 𝑈𝑛)

+𝜏𝑛+1𝐷(𝑈𝑛+1)𝑇𝑀−1𝐵𝑀𝑀𝑀−1𝐶𝑑 (𝑈𝑛+1)𝑀𝑀𝑀−1𝐵𝑇𝑀−1𝐷(𝑈𝑛+1) ⩽ 0. (4.38)

rom the definition of 𝐶𝑑 in (4.16), (4.19) using (2.2b) and the conditions on 𝑓 stated in (1.3), we obtain that 𝐶𝑑 (𝑈𝑛+1) is symmetric
positive definite. Hence using 𝜏𝑛+1 > 0, we have

𝜏𝑛+1𝐷(𝑈𝑛+1)𝑇𝑀−1𝐵𝑀𝑀𝑀−1𝐶𝑑 (𝑈𝑛+1)𝑀𝑀𝑀−1𝐵𝑇𝑀−1𝐷(𝑈𝑛+1) ⩾ 0,

which with (4.38) yields

𝐷(𝑈𝑛+1)𝑇 (𝑈𝑛+1 − 𝑈𝑛) ⩽ 0. (4.39)

From the definition of 𝐷 in (4.18) using (2.2d) and (4.39), we obtain the bound
(

𝛹 (𝑥𝑥𝑥), 𝑈𝑛+1
ℎ − 𝑈𝑛

ℎ
)

+
(

𝐻 ′(𝑈𝑛+1
ℎ ), 𝑈𝑛+1

ℎ − 𝑈𝑛
ℎ
)

⩽ 0. (4.40)

Using the following Taylor expansion

𝐻(𝑈𝑛
ℎ ) =𝐻(𝑈𝑛+1

ℎ ) +𝐻 ′(𝑈𝑛+1
ℎ )(𝑈𝑛

ℎ − 𝑈𝑛+1
ℎ )

+ 1
2
𝐻 ′′(𝜉𝑛+13 )(𝑈𝑛+1

ℎ − 𝑈𝑛
ℎ )

2, 𝜉𝑛+13 ∈ (𝑈𝑛
ℎ , 𝑈

𝑛+1
ℎ ),

e obtain that (4.40) gives
(

𝛹 (𝑥𝑥𝑥), 𝑈𝑛+1
ℎ − 𝑈𝑛

ℎ
)

+
(

𝐻(𝑈𝑛+1
ℎ ) −𝐻(𝑈𝑛

ℎ ), 1
)

+ 1
2

(

𝐻 ′′(𝜉𝑛+13 ),
(

𝑈𝑛+1
ℎ − 𝑈𝑛

ℎ
)2) ⩽ 0,

which implies, using the definition of 𝐸ℎ in (3.2), that

𝐸ℎ(𝑈𝑛+1
ℎ ) − 𝐸ℎ(𝑈𝑛

ℎ ) =
(

𝛹 (𝑥𝑥𝑥), 𝑈𝑛+1
ℎ − 𝑈𝑛

ℎ
)

+
(

𝐻(𝑈𝑛+1
ℎ ) −𝐻(𝑈𝑛

ℎ ), 1
)

⩽ 0,

since (1.3) gives 𝐻 ′′(𝜉𝑛+13 ) ⩾ 0. This proves (4.34). □

5. Numerical tests

In this section, we will discuss several numerical experiments to demonstrate the performance of the positivity preserving DIRK-
LDG algorithm for the degenerate parabolic Eq. (1.1). In the computations, we will consider the porous medium equation, the
nonlinear diffusion equation with a double-well potential and the nonlinear Fokker–Planck equation for fermion and boson gases.
Firstly, we will present in Section 5.1 the order of accuracy of the DIRK-LDG discretizations with and without positivity preserving
limiter to investigate if the limiter negatively affects the accuracy of the discretizations. Next, we will present in Sections 5.2–5.5
test cases for which the positivity preserving limiter is essential. Without the positivity constraint, obtaining a numerical solution
is not possible or only for extremely small time steps.

In the computations, we take 𝜏 = 𝛼 ⋅ ℎ with ℎ the mesh size for the tessellation ℎ. For numerical efficiency, it is important
to have a good balance between the number of Newton iterations and the time step size. If the Newton method during strongly
nonlinear stages requires a large number of iterations, it is generally more efficient to reduce the time step to 1

2
𝜏 and restart the

ewton iterations. When the Newton method converges well, then 𝜏 is increased each time step to 1.2𝜏, till the maximum predefined
ime step is obtained.

In order to avoid round-off effects, a positivity bound 𝑢min = 10−10 is used in the numerical simulations, except for Section 5.1
here 𝑢min = 10−14. If it is not stated otherwise, the numerical results for 1D problems are obtained on a mesh containing 100
lements and Legendre polynomials of order 2. For 2D problems, a mesh consisting of 30 × 30 square elements and tensor product
egendre polynomial basis functions of order 2 are used.
13
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Table 5.1
Error in 𝐿∞− and 𝐿1− norms for Example 5.1 at time 𝑇 = 1 without positivity preserving limiter.
𝑘 M ‖𝑢𝑛 − 𝑢𝑛ℎ‖𝐿∞ (𝛺) Order ‖𝑢𝑛 − 𝑢𝑛ℎ‖𝐿1 (𝛺) Order min 𝑢𝑛ℎ

40 7.33E−003 – 1.03E−003 – −8.87e−005
1 80 1.24e−003 2.56 2.27e−004 2.18 −1.08e−005

160 2.63e−004 2.24 5.44e−005 2.06 −4.41e−007
320 6.05e−005 2.12 1.35e−005 2.01 −1.57e−008

40 1.70E−003 – 8.73E−005 – −1.60e−005
2 80 1.43e−004 3.57 8.07e−006 3.44 −1.79e−007

160 1.36e−005 3.39 9.40e−007 3.10 −6.24e−009
320 1.34e−006 3.34 1.16e−007 3.02 −2.07e−010

40 1.45e−004 – 6.00e−006 – −2.14e−006
3 80 9.87e−006 3.88 3.11e−007 4.27 −9.56e−008

160 5.51e−007 4.16 1.76e−008 4.14 −3.51e−009
320 3.50e−008 3.98 1.11e−009 3.99 −1.19e−010

Table 5.2
Error in 𝐿∞− and 𝐿1− norms for Example 5.1 at time 𝑇 = 1 with positivity preserving limiter.
𝑘 M ‖𝑢𝑛 − 𝑈 𝑛

ℎ‖𝐿∞ (𝛺) Order ‖𝑢𝑛 − 𝑈 𝑛
ℎ‖𝐿1 (𝛺) Order min𝑈 𝑛

ℎ

40 7.33E−003 – 1.05E−003 – 2.05e−005
1 80 1.24e−003 2.56 2.27e−004 2.21 8.15e−007

160 2.63e−004 2.24 5.44e−005 2.06 2.77e−008
320 6.05e−005 2.12 1.35e−005 2.01 8.55e−010

40 1.70E−003 – 8.73E−005 – 6.15e−008
2 80 1.43e−004 3.57 8.08e−006 3.43 3.03e−007

160 1.36e−005 3.39 9.40e−007 3.10 1.08e−008
320 1.34e−006 3.34 1.16e−007 3.02 4.55e−010

40 1.45e−004 – 6.02e−006 – 1.00e−014
3 80 9.87e−006 3.88 3.13e−007 4.27 4.45e−008

160 5.51e−007 4.16 1.77e−008 4.14 1.21e−009
320 3.50e−008 3.98 1.11e−009 4.00 2.55e−011

5.1. Accuracy tests

For the accuracy test, we use a uniform mesh with M elements and positivity bound 𝑢min = 10−14.

Example 5.1. We consider (1.1) on the domain 𝛺 = (−1, 1) with Dirichlet boundary conditions based on the exact solution and
select the following parameters

𝑓 (𝑢) = 𝑢, 𝐻 ′(𝑢) = 𝑢2, 𝛹 (𝑥) = 0, 𝑥 ∈ 𝛺.

Then (1.1) with a properly chosen source term has the nonnegative solution

𝑢(𝑥, 𝑡) = exp(−𝑡)(1 − 𝑥4)5, 𝑥 ∈ 𝛺.

We take 𝛼 in the definition of the time step as 𝛼 = 1. Tables 5.1–5.2 show that the DIRK-LDG discretizations with and without
positivity preserving limiter are convergent at the rate 𝑂(ℎ𝑘+1 ) for basis functions with polynomial order ranging from 1 to 3. Note,
for polynomials 𝑘 of order 𝑘 the DIRK methods, see Section 3.2, have order of accuracy 𝑘 + 1. The errors and orders of accuracy
presented in Tables 5.1–5.2 indicate that the positivity preserving limiter is necessary and does not negatively affect accuracy.

5.2. Porous media equation

For the porous media equation, 𝑓 (𝑢)𝐻 ′′(𝑢) can locally vanish, resulting in degenerate cases [1]. We test the asymptotic behavior of
the numerical solution and will show that the KKT limiter is necessary. The entropy defined in (1.4), which should be non-increasing,
is also computed.

Example 5.2. In order to test degenerate cases, we choose the following parameters in (1.1) on the domain 𝛺 = (0, 1) with zero-flux
boundary condition (1.2)

𝑓 (𝑢) = 𝑢, 𝐻 ′(𝑢) = 4
3

(

𝑢 − 1
2

)3
max

(

𝑢, 1
2

)

, 𝛹 (𝑥) = 0, 𝑥 ∈ 𝛺,

and initial data

𝑢(𝑥, 0) = 1
2
− 1

2
cos(2𝜋𝑥), 𝑥 ∈ 𝛺.
14
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Fig. 5.1. (Example 5.2) Numerical solution 𝑈ℎ for different orders of polynomial basis functions 1-3 with the KKT limiter enforced and Lagrange multiplier
𝜆 (red dots).

Fig. 5.2. (Example 5.2) Entropy 𝐸ℎ for 3 basis functions with the KKT limiter enforced.

During the computations, the value of 𝛼 for optimal convergence of the semi-smooth Newton algorithm is usually close to 0.1.
We present the numerical solution in Fig. 5.1 for basis functions with polynomial order ranging from 1 to 3 and with the KKT limiter
enforced. Values of the Lagrange multiplier 𝜆 larger than 10−10 are shown in Fig. 5.1, which indicate that the positivity constraint
works well since it is only active at locations where the solution is close to the minimum value. The entropy decay using the KKT
limiter and polynomial basis functions of order 3 is presented in Fig. 5.2, which the result is consistent with the entropy analysis.
In Fig. 5.3, the numerical solution without KKT limiter and for polynomial basis functions with order 3 is plotted. This computation
breaks down due to unphysical oscillations.

Example 5.3. We consider a 2D test case on the domain 𝛺 = (−6, 6)2 with zero-flux boundary condition (1.2) by choosing in (1.1)
the following parameters

𝑓 (𝑢) = 𝑢, 𝐻 ′(𝑢) = 2𝑢, 𝛹 (𝑥𝑥𝑥) = 0, 𝑥𝑥𝑥 ∈ 𝛺,

and initial data

𝑢(𝑥𝑥𝑥, 0) = exp
(

−1
2
|𝑥𝑥𝑥|2

)

, 𝑥𝑥𝑥 ∈ 𝛺.

In this case, the value of 𝛼 in the definition of the time step ranges between 0.1 and 1. Fig. 5.4 presents the numerical solution
with the KKT limiter active and also the Lagrange multiplier 𝜆. Considering the position of the non-zero Lagrange multipliers, we
can see that the limiter also works well in the two-dimensional case since it is only active in areas where positivity must be enforced.
The entropy decay is plotted in Fig. 5.5, which is consistent with the stability result of the numerical solution. Without the KKT
limiter, there will be unphysical oscillations, and the computation will break down at some point in the computations.
15
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Fig. 5.3. (Example 5.2) Numerical solution 𝑈ℎ for 3 basis functions without KKT limiter just before blow up.

Fig. 5.4. (Example 5.3) Numerical solution 𝑈ℎ for 2 basis functions with KKT limiter enforced (Left) and Lagrange multiplier 𝜆 (Right).

5.3. Nonlinear diffusion with a double-well potential

Consider the nonlinear diffusion equation with double-well potential [28] on the domain 𝛺 = (−1.4, 1.4), which is obtained by
choosing in (1.1) zero-flux boundary condition (1.2) and the following parameters

𝑓 (𝑢) = 𝑢, 𝐻 ′(𝑢) = 𝑢, 𝛹 (𝑥) = 1
4
𝑥4 − 1

2
𝑥2, 𝑥 ∈ 𝛺. (5.1)

This model is taken from [4]. We will test the evolution of the numerical solution with and without KKT limiter, and also the decay
of the entropy (1.4). The value of 𝛼 to compute the time step ranges between 0.01 to 0.1.

Example 5.4. We consider (1.1) with (5.1) and the initial data

𝑢(𝑥, 0) = 0.2
√

0.4𝜋
exp

(

− 𝑥2

0.4

)

, 𝑥 ∈ 𝛺.

The numerical solution with the KKT limiter enforced and the values of the Lagrange multiplier 𝜆 larger than 10−10 are shown
in Fig. 5.6. These results indicate that the numerical solution tends to a steady state and that the KKT limiter is only active at
places where the positivity constraint needs to be imposed. The entropy dissipation is presented in Fig. 5.7, in which uniform decay
coincides with our theoretical analysis. For the numerical solution without the KKT limiter, we observe that violating the positivity
constraint will result in discontinuities in the solution and a computation breakdown, even for a very small CFL number.
16
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Fig. 5.5. (Example 5.3) Entropy 𝐸ℎ for 2 basis functions with KKT limiter enforced.

Fig. 5.6. (Example 5.4) Numerical solution 𝑈ℎ for 2 basis functions with KKT limiter enforced and Lagrange multiplier 𝜆 (red dots).

.4. Nonlinear fokker–planck equation for fermion gases

xample 5.5. We consider the nonlinear Fokker–Planck equation for fermion gases [1] on the domain 𝛺 = (−10, 10)2, for which
e select the following parameters in (1.1)

𝑓 (𝑢) = 𝑢(1 − 𝑢), 𝐻 ′(𝑢) = log 𝑢
1 − 𝑢

, 𝛹 (𝑥𝑥𝑥) = 1
2
|𝑥𝑥𝑥|2, 𝑥𝑥𝑥 ∈ 𝛺, (5.2)

ogether with zero-flux boundary condition (1.2). The initial data is given by

𝑢(𝑥𝑥𝑥, 0) = 1

2
√

2𝜋

(

exp
(

−1
2
|𝑥𝑥𝑥 − (2, 2)|2

)

+ exp
(

−1
2
|𝑥𝑥𝑥 − (2,−2)|2

)

+ exp
(

−1
2
|𝑥𝑥𝑥 − (−2, 2)|2

)

+ exp
(

−1
2
|𝑥𝑥𝑥 − (−2,−2)|2

))

, 𝑥𝑥𝑥 ∈ 𝛺.

During the computations, the value of 𝛼 in the definition of the time step ranges between 0.1 and 1, but for most time steps
𝛼 = 1. The numerical solutions at several time levels with the KKT limiter enforced and the entropy dissipation are presented in
Figs. 5.8 and 5.9, respectively, showing the time-asymptotic convergence of the numerical solution towards a steady state. Without
the KKT limiter, the computations break down, even for very small CFL numbers.
17
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Fig. 5.7. (Example 5.4) Entropy 𝐸ℎ for 2 basis functions with KKT limiter enforced.

Fig. 5.8. (Example 5.5) Numerical solution 𝑈ℎ for 2 basis functions with KKT limiter enforced.
18



Journal of Computational and Applied Mathematics 441 (2024) 115674F. Yan et al.

5

E
d

s
a
m
e

t

a

i
a
r

6

n
l
p

Fig. 5.9. (Example 5.5) Entropy 𝐸ℎ for 2 basis functions with KKT limiter enforced.

.5. Nonlinear fokker–planck equation for boson gases

xample 5.6. We consider a nonlinear Fokker–Planck equation for boson gases with zero-flux boundary condition (1.2) on a
omain 𝛺 = (−10, 10), which requires the following parameters in (1.1)

𝑓 (𝑢) = 𝑢(1 + 𝑢3), 𝐻 ′(𝑢) = log 𝑢

(1 + 𝑢3)
1
3

, 𝛹 (𝑥) = 𝑥2

2
, 𝑥 ∈ 𝛺.

The initial data is [1,9]

𝑢(𝑥, 0) = 𝑀

2
√

2𝜋

(

exp
(

−
(𝑥 − 2)2

2

)

+ exp
(

−
(𝑥 + 2)2

2

))

, 𝑥 ∈ 𝛺,

where 𝑀 ⩾ 0 is the mass of 𝑢(𝑥, 0).

For most time steps, the value of 𝛼 in the definition of the time step is 1. For the case 𝑀 = 1, Fig. 5.10 displays the numerical
olution at various times. Also, the locations and values of the Lagrange multiplier 𝜆 and the entropy with the KKT limiter enforced
re shown. The results in Figs. 5.10 and 5.11 indicate that the numerical solution tends to a steady state, and that the Lagrange
ultiplier 𝜆 is needed to ensure that the positivity constraint is satisfied. Without the KKT limiter, the computations break down,

ven for very small CFL numbers.
We also compute the entropy for the mass 𝑀 = 1 using the second order non-algebraic stable DIRK method

(𝑎𝑖𝑗 ) =
(

0 0
1∕2 1∕2

)

, (𝑏𝑖) =
(

1∕2 1∕2
)

, (𝑐𝑖) =
(

0 1
)

, (5.3)

he second order algebraic stable DIRK method

(𝑎𝑖𝑗 ) =
(

1∕2 0
1∕2 1∕2

)

, (𝑏𝑖) =
(

1∕2 1∕2
)

, (𝑐𝑖) =
(

1∕2 1
)

, (5.4)

nd the second order DIRK method (3.6). Fig. 5.12 shows that the entropy for all three DIRK methods is dissipative.
For this model equation, there is a critical mass phenomenon [5], which states that solutions with a large initial mass blow-up

n a finite time, while solutions with a small mass at an initial time will not. The numerical solutions with sub-critical mass 𝑀 = 1
t times 𝑡 = 5 and 𝑡 = 10 and with super-critical mass 𝑀 = 10 at times 𝑡 = 0.2 and 𝑡 = 1 are shown in Fig. 5.13 and Fig. 5.14,
espectively, and agree with the results shown in [5] and the numerical observation in [1,9].

. Conclusions

The main topic of this paper is the formulation of higher order accurate positivity preserving DIRK-LDG discretizations for the
onlinear degenerate parabolic Eq. (1.1). The presented numerical discretizations allow the combination of a positivity preserving
imiter and time-implicit numerical discretizations for PDEs and alleviate the time step restrictions of currently available positivity
19

reserving DG discretizations, which generally require the use of explicit time integration methods. For the spatial discretization an
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Fig. 5.10. (Example 5.6: mass M=1): Numerical solution 𝑈ℎ for 2 basis functions with KKT limiter enforced.

Fig. 5.11. (Example 5.6: mass M=1): Entropy 𝐸ℎ for 2 basis functions with KKT limiter enforced.
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Fig. 5.12. (Example 5.6: mass M=1): Entropy 𝐸ℎ for 1 basis functions with KKT limiter enforced.

Fig. 5.13. (Example 5.6: mass 𝑀 = 1): Numerical solution 𝑈ℎ for 2 basis functions with KKT limiter enforced.

Fig. 5.14. (Example 5.6: mass 𝑀 = 10) Numerical solution 𝑈ℎ for 2 basis functions with KKT limiter enforced.

LDG method combined with a simple alternating numerical flux is used, which simplifies the theoretical analysis for the entropy
dissipation. For the temporal discretization, the numerical results show that implicit DIRK methods enlarge the time-step required
for stability of the numerical discretization. Under a time-step restriction, we prove existence, uniqueness and entropy dissipation
21
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of the positivity preserving high order accurate LDG discretization combined with an implicit Euler time discretization. Numerical
results are presented to demonstrate the accuracy of the higher order accurate positivity preserving DIRK-LDG discretizations, which
are of optimal order and not affected by the positivity preserving KKT limiter. The numerical solutions satisfy the entropy decay
condition.
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