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Summary.
A space-time discontinuous Galerkin (DG) finite element method for nonlinear

water waves in an inviscid and incompressible fluid is presented. The space-time DG
method results in a conservative numerical discretization on time dependent deform-
ing meshes which follow the free surface evolution. The dispersion and dissipation
errors of the scheme are investigated and the algorithm is demonstrated with the
simulation of waves generated by a wave maker.
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1 Introduction

Large amplitude nonlinear water waves are frequently modeled by considering
the fluid as inviscid, incompressible and irrotational. This makes it possible to
describe the flow field with a potential function φ, which satisfies the Laplace
equation. In addition, the potential function must satisfy a kinematic and
dynamic boundary condition at the free surface:

∂ζ

∂t
+∇sφ · ∇sζ −

∂φ

∂z
= 0 (1)

∂φ

∂t
+

1
2
∇φ · ∇φ+ z = 0, (2)

with ζ the wave height, t time, and ∇ = ( ∂∂x ,
∂
∂y ,

∂
∂z )

T , ∇s = ( ∂∂x ,
∂
∂y )T

defined with respect to a Cartesian coordinate system (x, y, z), where z is the
coordinate direction pointing upward from the flat water surface. At a wave
maker a prescribed normal velocity is imposed and at other solid surfaces a
zero normal velocity. The equations are made dimensionless with an average
water depth and the gravitational constant.

The numerical solution of large amplitude nonlinear water waves is non-
trivial since the free surface boundary conditions must be imposed at the
actual free surface, which must be determined as part of the solution process.
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The free surface experiences large deformations during the wave evolution, in
particular due to wave interactions. An additional complication is that the
mathematical model has no inherent dissipation, which makes it difficult to
ensure sufficient stability and robustness of the numerical scheme.

In this paper we will present a new space-time discontinuous Galerkin
finite element algorithm to compute large amplitude nonlinear waves. The al-
gorithm uses basis functions which are discontinuous both in space and time,
and discretizes the equations directly in four dimensional space, with time as
the fourth dimension. This approach combines the benefits of discontinuous
Galerkin methods, for instance their suitability for hp-mesh adaptation and
parallel computing, with an accurate representation of the time-dependent
boundary using deforming elements. The space-time DG algorithm is closely
related to the so called arbitrary Lagrangian Eulerian technique, which pro-
vides more flexibility in the mesh deformation algorithm, see e.g. [2], but the
space-time DG method ensures that the discretization remains conservative on
deforming meshes. The space-time discontinuous Galerkin method discussed
in this paper is an extension to nonlinear waves of the spatial discretization
discussed in [1] for linear waves using the space-time techniques presented in
[2].

2 Space-time discontinuous Galerkin formulation

In this section we summarize the space-time discontinuous Galerkin finite
element discretization.

We consider the space-time domain Eh ⊂ R4 split into space-time slabs
Enh with the free-surface boundary ΓnS for the time intervals (tn, tn+1) with
n = 0, 1, · · · . We introduce a finite element tessellation Tnh with space-time
elements K on Enh and define the finite element spaces V np and Σn

p associated
with the tessellation Tnh as:

V np :={v ∈ L2(Enh) | v|K ∈ Pp(K), ∀K ∈ Tnh},

Σn
p :={σ ∈ [L2(Enh)]

3
∣∣∣ σ|K ∈ [Pp(K)]3, ∀K ∈ Tnh},

with L2(Enh) the space of Lebesgue square integrable functions on Enh and
Pp(K) the space of polynomials of degree p on K. The finite element space
Wn
p associated with the free surface is defined as

Wn
p :={v ∈ L2(ΓnS ) | v|Fn

S
∈ Pp(FnS), ∀FnS ⊂ ΓnS },

where L2(ΓnS ) is the space of Lebesgue square integrable functions on ΓnS .
Next, we define some trace operators to manipulate the numerical fluxes

in the discontinuous Galerkin formulation. For v ∈ V np we define the average
〈v〉 and jump [[v ]] operators of v at an internal face F ∈ FnI as follows:
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〈v〉 :=
1
2

(vL + vR) , [[v ]] := vLn̄L + vRn̄R, (3)

with vL := v|∂KL
and vR := v|∂KR

, and KL, KR the elements connected to
the face F ∈ FnI with outward space normal vectors n̄L and n̄R, respectively.
For q ∈ Σn

p we similarly define qL, qR, 〈q〉 and [[q ]].
The novel ingredient in the finite element formulation discussed in this

paper is the incorporation of the kinematic condition at the free surface (1)
as a natural boundary condition in the finite element formulation. The space-
time finite element discretization then will automatically account for the mesh
movement necessary to follow the free surface waves. In order to accomplish
this we need to establish a relation between the function f = ζ−z, describing
the free surface, the wave height ζ and the space-time normal vector n. A
straightforward calculation using (1) shows that

n = (nt, n̄)T =
∇f
|∇f |

=
(∂f∂t ,∇f)T

|∇f |
=

1
|∇(ζ − z)|

(
∂ζ

∂t
,
∂ζ

∂x
,
∂ζ

∂y
,−1)T , (4)

with ∇ the space-time nabla operator defined as ∇ = ( ∂∂t ,
∂
∂x ,

∂
∂y ,

∂
∂z )

T . We
can rewrite the kinematic condition (1) as:

1
|∇f |

∂f

∂t
+∇φ · ∇f

|∇f |
= 0, (5)

which implies using (4) that the space component of the normal velocity at
the free surface ΓS is equal to

n̄ · ∇φ =
−1

|∇(ζ − z)|
∂ζ

∂t
. (6)

This relation can be used directly in the DG formulation of the Laplace equa-
tion, which is defined as:

Find a (φh, ζh) ∈ V np ×Wn
p , such that for all (v1, v2) ∈ V np ×Wn

p ,

Bh(φh, v1) + (
∂ζh

∂t

|∇h(ζh − z)|
, v1)Γn

S
+ (

ζ+
h − ζ

−
h

|∇h(ζ+
h − z)|

, v+
1 )ΓS(t+n ) = Lh(v1), (7)

(
∂φh
∂t

, v2)Γn
S

+ (ζh, v2)Γn
S

+ (φ+
h − φ

−
h , v

+
2 )ΓS(t+n ) (8)

+ (
1
2
(∇hφh −

∑
F∈Fn

I

RF([[φh ]])) · (∇hφh −
∑

F∈Fn
I

RF([[φh ]])), v2)Γn
S

= 0,

where ΓS(t+n ) = lim
ε↓0

ΓS(tn + ε), φ±h = lim
ε↓0

φh(tn ± ε), ζ±h = lim
ε↓0

ζh(tn ± ε), with

φ−h and ζ−h the known potential and wave height at t = tn. The operators
Bh : V np × V np → R and Lh : V np → R are defined as:

Bh(u, v) =
∫

En
h

∇hu · ∇hvdx−
∫
Γn

0

(
[[u ]] ·

〈
∇hv

〉
+ [[v ]] ·

〈
∇hu

〉)
ds
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+
∑

F∈Fn
I

(ηF + nf )
∫

En
h

RF([[u ]]) · RF([[v ]])dx, (9)

Lh(v) =
∫
Γn

N

vgNds,

with the local lifting operator RF :
[
L2 (F)

]3 → Σn
p :∫

En
h

RF (q) · σdx =
∫

F

q · 〈σ〉 ds, ∀σ ∈ Σn
p . (10)

The resulting nonlinear equations are solved with a Newton method with
special attention given to the discretization of the free surface terms. During
each time step and Newton iteration the mesh is adjusted to accommodate for
the free surface motion. For more details about the scheme and the numerical
implementation, we refer the reader to [3].

3 Fourier analysis of discrete scheme

In this section, we conduct a Fourier analysis of the two-dimensional space-
time discretization for the linear water wave equations as in [1]. This will
provide us with information on the dissipation and dispersion error in the
wave motion due to the numerical discretization.

We assume a two-dimensional domain with a uniform mesh with Nx×Nz
coordinates xj = j∆x, zm = m∆z and periodic boundary conditions in the
x-direction. For the linear water wave equations, the space-time DG scheme
(7)–(8) reduces to the following form

Bh(φh, v1) + (
∂ζh
∂t

, v1)Γn
S

+ (ζ+
h − ζ

−
h , v

+
1 )ΓS(t+n ) = Lh(v1), (11)

(
∂φh
∂t

, v2)Γn
S

+ (φ+
h − φ

−
h , v

+
2 )ΓS(t+n ) + (ζh, v2t)Γn

S
= 0. (12)

We use the Fourier ansatz for the coefficients φ̂j and ζ̂j in the space-time DG
discretization at time level tn = n∆t:

φ̂j(z, tn) = λn exp(ikj∆x)φ̂F (z), ζ̂j(tn) = λn exp(ikj∆x)ζ̂F (13)

with λn = exp(−iωn∆t) the amplification factor, k the wavenumber and
i =
√
−1.

If we introduce (13) into the space-time discretization for the linear case
(11)–(12), then we obtain the following generalized eigenvalue problem:

λ

 MF 0
P

0 H S


 φ̂FD
φ̂FS
ζ̂F

 =

 0
0
Y

0 V 0


 φ̂FD
φ̂FS
ζ̂F

 (14)
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Fig. 1. Dispersion (left) and dissipation (right) for the space-time DG method with
quadratic polynomial basis functions.

with φ̂FD ∈ RNp(Nz−1), φ̂FS ∈ RNp , ζ̂F ∈ RNs , where Np = (p+ 1)3, Ns = (p+
1)2 and p the order of the polynomials. The suffix S refers to the coefficients in
elements connected to the free surface and D to elements not connected to the
free surface. The matrices P, Y ∈ RNp×Ns , H, V ∈ RNs×Np and S ∈ RNs×Ns

are related to the free surface. The matrix MF ∈ RNpNz×NpNz is a Hermitian
positive definite block-tridiagonal matrix.

The eigenvalue λ is computed with MATLAB for a wide range of ∆t values
and k ∈ (0, 2π]. For all cases, the modulus of λ is always less than or equal to
one, hence the numerical discretization is unconditionally stable.

We also use Fourier analysis to compute the dispersion and dissipation
error of the numerical scheme by comparing the frequency and dissipation of
the discrete modes with the exact harmonic wave solution. The results for
quadratic polynomial basis functions are shown in Fig. 1.

4 Numerical example

As an illustration of the numerical scheme, we consider nonlinear free-surface
waves generated by a wave maker at x = 0 with time-harmonic frequency
ωw = 2 in a domain Ω = [0, 4] × [−1, 0]. Homogeneous Neumann boundary
conditions are assumed at the bottom z = −1 and at the end of the domain at
x = 4. The initial free-surface height and velocity potential are zero and the
computational mesh is constantly updated to follow the free surface motion.
The wave profiles in the domain at T = 7.5 and T = 20 are presented in Figs.
2. The wave profiles compare well for different meshes and different polynomial
order indicating that the wave motion is computed accurately.
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Fig. 2. Wave profile at T = 7.5 (left) and T = 20 (right) generated by a wave maker
at x = 0 for polynomial basis functions of degree p = 1 and 2 using the space-time
DG method.

5 Concluding remarks

In this paper we have presented a space-time discontinuous Galerkin method
for nonlinear water waves. This technique results in a higher order accurate
conservative numerical scheme on time dependent deforming meshes which
are necessary to follow the free surface evolution. A Fourier analysis is given
for the linear water wave equations indicating that the discretization is un-
conditionally stable and shows that the dispersion and dissipation errors of
the scheme are minimal. Numerical examples for nonlinear free-surface waves
show that the space-time DG method can accurately compute the nonlinear
waves generated by a wave maker.
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