70 research outputs found

    Floating Riverine Litter Flux to the White Sea: Seasonal Changes in Abundance and Composition

    Get PDF
    Arctic rivers bring litter from their basins to the sea, but accurate data for the Arctic do not exist yet. This study presents the first assessment of floating macro litter input (>2.5 cm) from the Northern Dvina and Onega rivers to the White Sea. The observations were performed based on the European Marine Strategy Framework Directive (MSFD) methodology and using the mobile application of the Joint Research Centre (Ispra, Italy). The results of observations from May 2021 to November 2021 show that 77% of floating objects were of natural origin (mainly leaves, wood and bird feathers). Of the particles of anthropogenic origin, 59.6% were represented by various types of plastics, 27.7% were processed wood, 8.5% paper/cardboard, 2.7% metal, 1.1% were rubber and <1% textiles. The average monthly input of anthropogenic macro litter by the Northern Dvina varies from 250 to 1700 items/hour, and by Onega from 520 to 2350 items/hour. The level of pollution of the studied rivers was found to be higher than in some Europeans rivers but lower than in China. The mass discharge of macroplastics in the Northern Dvina River was compared with the estimates of the discharge of meso- and microplastics; that allowed us to show that the discharge of macroplastics in mass units is much higher than of micro- and mesoplastics.publishedVersio

    Forbedring av oksygenforhold ved kunstig omrøring i Oslofjorden

    Get PDF
    Prosjektleder: André StaalstrømIndre Oslofjorden har ca. 11,4 km² med havbunn hvor vannmassen over er periodevis eller permanent anoksisk. I denne rapporten blir effekt av nedpumping av overflatevann på oksygenforholdene modellert. Det blir dokumentert at Paddehavet har anoksiske forhold, og at nedpumping av 250 liter/s med overflatevann i en periode på 9 dager vil gi kunne gi 100 % oksygenmetning i hele vannsøylen, og det er sannsynlig at opp mot 120000 m² av sjøbunnen vil gå fra å være anoksisk til å få tilbake bioturberende organismer. Siden oppholdstiden i dypvannet er gitt av topografiske forhold, vil det være nødvendig å gjenta nedpumping av overflatevann med jevne mellomrom, for å oppnå en varig forbedring av oksygenforholdene.HafslundpublishedVersio

    Biogeochemical structure of the Laptev Sea in 2015-2020 associated with the River Lena plume

    Get PDF
    The discharge of rivers and the subsequent dispersion of their plumes play a pivotal role in the biogeochemical cycling of the Arctic Ocean. Based on the data collected during annual transects conducted in the autumn period (September-October) from 2015-2020, this study explores the effect of River Lena plume dispersion on the seasonal and interannual changes in the hydrophysical and biogeochemical structure of the southeastern Laptev Sea. The temperature-salinity relationship (T-S), Redfield ratio and multiparameter cluster analysis were used to investigate variations in the water mass structure along the transect. The results revealed that the plume’s interannual and seasonal spreading patterns play a crucial role in regulating the local physical, biogeochemical, and biological processes in the southern Laptev Sea. During September-October, the hydrochemical water mass structure along the transects shifted from highly stratified to unstratified as the plume’s mixing intensity increased. Anomalous hydrochemical distributions were observed due to coastal upwelling, which was primarily characterized by high total alkalinity and nitrate levels, and low organic phosphorus, nitrite, and ammonia levels in the seawater. Wind and cold weather conditions drive deep vertical mixing of seawater, causing the resuspension of bottom sediment and the subsequent enrichment of bottom water by nutrients. Multi-parameter cluster analysis is used to describe the details of water mass structures in the highly dynamic southern Laptev Sea, with water mass structures typically undergoing significant changes within two weeks between September and October. The migration and transformation of water masses throughout the seasons are influenced by the volume of river discharge, fall-winter cooling, and atmospheric circulation patterns. Furthermore, the general atmospheric circulation is confirmed to be the primary cause of the interannual variation in the spread of the Lena River plume over the southeast Laptev Sea

    Tilførselsprogrammet 2011. Overvåking av forsuring av norske farvann

    Get PDF
    Denne rapporten gjelder undersøkelser av havforsuring som er utført av IMR, NIVA og BCCR i oppdrag fra Klif i 2011. Den er basert på målinger mellom Bergen-Kirknes og Tromsø-Longyearbyen utført av NIVA. Prøvetaking av vertikalen fra Torungen-Hirtshals, Svinøy-NW, Gimsøy-NW og Fugløya-Bjørnøya er utført av IMR. Resultatene fra Norskehavet viser en klar sesongvariasjon i øvre 100 m av vannsøylen, som for det meste er styrt av styrken på primærproduksjonen. I tillegg påvirkes karboninnholdet av kystvannet som brer seg vestover i løpet av sommeren. Metningsgraden for aragonitt (Ar) er mellom 1.95 til 1.6 på 300 m dyp. I Norskehavet befinner =1.6 seg på 500 m dyp, og i Nordsjøen på ca 200 m. I Norskehavet er det undermetning fra like under 1500 meters dyp av aragonitt og overmetning av kalsitt i hele vannsøylen. I Barentshavet lå Ar mellom 1.07-2.62 med min. verdier i kystområdet mellom Kirkenes og Tromsø i januar (1.07-2.03), mens Ar var 1.49-2.52 i desember, og karakterisert av en stor variasjon fra 1.67 til 2.62 som skyldes en økt biologisk produksjon. Historiske data er sammenlignet på Havforskningens hydrografiske seksjoner i 2011 og CARINA databasen. Primært ble data fra 1997-2011 i nord-vestlig retning fra Gimsøy og Svinøy benyttet for å studere trender i Norskehavet, men analysen omfatter også data fra Barentshavet. Trender viser en økning av karbonkonsentrasjonene målt i 2011 relativt til historiske data. Dette gjenspeiler hovedsakelig havets opptak av menneskeskapt CO2. Konklusjonen er at de fleste områder studert i denne rapporten er mettet i forhold til kalsitt, og undermetning av aragonitt viser seg på 1500 meters dyp i Norskehavet.Kli

    Biogeochemical structure of the Laptev Sea in 2015-2020 associated with the River Lena plume

    Get PDF
    The discharge of rivers and the subsequent dispersion of their plumes play a pivotal role in the biogeochemical cycling of the Arctic Ocean. Based on the data collected during annual transects conducted in the autumn period (September-October) from 2015-2020, this study explores the effect of River Lena plume dispersion on the seasonal and interannual changes in the hydrophysical and biogeochemical structure of the southeastern Laptev Sea. The temperature-salinity relationship (T-S), Redfield ratio and multiparameter cluster analysis were used to investigate variations in the water mass structure along the transect. The results revealed that the plume’s interannual and seasonal spreading patterns play a crucial role in regulating the local physical, biogeochemical, and biological processes in the southern Laptev Sea. During September-October, the hydrochemical water mass structure along the transects shifted from highly stratified to unstratified as the plume’s mixing intensity increased. Anomalous hydrochemical distributions were observed due to coastal upwelling, which was primarily characterized by high total alkalinity and nitrate levels, and low organic phosphorus, nitrite, and ammonia levels in the seawater. Wind and cold weather conditions drive deep vertical mixing of seawater, causing the resuspension of bottom sediment and the subsequent enrichment of bottom water by nutrients. Multi-parameter cluster analysis is used to describe the details of water mass structures in the highly dynamic southern Laptev Sea, with water mass structures typically undergoing significant changes within two weeks between September and October. The migration and transformation of water masses throughout the seasons are influenced by the volume of river discharge, fall-winter cooling, and atmospheric circulation patterns. Furthermore, the general atmospheric circulation is confirmed to be the primary cause of the interannual variation in the spread of the Lena River plume over the southeast Laptev Sea.publishedVersio

    Mercury in the Barents region – River fluxes, sources, and environmental concentrations

    Get PDF
    Arctic rivers are receiving increased attention for their contributing of mercury (Hg) to the Arctic Ocean. Despite this, the knowledge on both the terrestrial release sources and the levels of Hg in the rivers are limited. Within the Arctic, the Barents region has a high industrial development, including multiple potential Hg release sources. This study presents the first overview of potential Hg release sources on Norwegian and Russian mainland draining to the Barents Sea. Source categories cover mining and metallurgy industry; historical pulp and paper production; municipal and industrial solid waste handling; fossil fuel combustion; and past military activities. Available data on Hg in freshwater bodies near the identified potential release sources are reviewed. Levels of Hg were occasionally exceeding the national pollution control limits, thereby posing concern to the local human population and wildlife. However, the studies were sparse and often unsystematic. Finally, we present new data of Hg measured in five Barents rivers. These data reveal strong seasonality in the Hg levels, with a total annual flux constituting 2% of the panarctic total. With this new insight we aspire to contribute to the international efforts of reducing Hg pollution, such as through the effective implementation of the Minamata Convention. Future studies documenting Hg in exposed Barents freshwater bodies are warranted.publishedVersio

    Modelling marine sediment biogeochemistry: Current knowledge gaps, challenges, and some methodological advice for advancement

    Get PDF
    The benthic environment is a crucial component of marine systems in the provision of ecosystem services, sustaining biodiversity and in climate regulation, and therefore important to human society. With the contemporary increase in computational power, model resolution and technological improvements in quality and quantity of benthic data, it is necessary to ensure that benthic systems are appropriately represented in coupled benthic-pelagic biogeochemical and ecological modelling studies. In this paper we focus on five topical challenges related to various aspects of modelling benthic environments: organic matter reactivity, dynamics of benthic-pelagic boundary layer, microphytobenthos, biological transport and small-scale heterogeneity, and impacts of episodic events. We discuss current gaps in their understanding and indicate plausible ways ahead. Further, we propose a three-pronged approach for the advancement of benthic and benthic-pelagic modelling, essential for improved understanding, management and prediction of the marine environment. This includes: (A) development of a traceable and hierarchical framework for benthic-pelagic models, which will facilitate integration among models, reduce risk of bias, and clarify model limitations; (B) extended cross-disciplinary approach to promote effective collaboration between modelling and empirical scientists of various backgrounds and better involvement of stakeholders and end-users; (C) a common vocabulary for terminology used in benthic modelling, to promote model development and integration, and also to enhance mutual understanding

    Nitrous Oxide Dynamics in the Siberian Arctic Ocean and Vulnerability to Climate Change

    Get PDF
    Nitrous oxide (N2O) is a strong greenhouse gas and stratospheric ozone-depleting substance. Around 20% of global emissions stem from the ocean, but current estimates and future projections are uncertain due to poor spatial coverage over large areas and limited understanding of drivers of N2O dynamics. Here, we focus on the extensive and particularly data-lean Arctic Ocean shelves north of Siberia that experience rapid warming and increasing input of land-derived nitrogen with permafrost thaw. We combine water column N2O measurements from two expeditions with on-board incubation of intact sediment cores to assess N2O dynamics and the impact of land-derived nitrogen. Elevated nitrogen concentrations in water column and sediments were observed near large river mouths. Concentrations of N2O were only weakly correlated with dissolved nitrogen and turbidity, reflecting particulate matter from rivers and coastal erosion, and correlations varied between river plumes. Surface water N2O concentrations were on average close to equilibrium with the atmosphere, but varied widely (N2O saturation 38%–180%), indicating strong local N2O sources and sinks. Water column N2O profiles and low sediment-water N2O fluxes do not support strong sedimentary sources or sinks. We suggest that N2O dynamics in the region are influenced by water column N2O consumption under aerobic conditions or in anoxic microsites of particles, and possibly also by water column N2O production. Changes in biogeochemical and physical conditions will likely alter N2O dynamics in the Siberian Arctic Ocean over the coming decades, in addition to reduced N2O solubility in a warmer ocean.publishedVersio
    corecore