924 research outputs found

    A Kinetic Model for Cell Damage Caused by Oligomer Formation

    Get PDF
    It is well-known that the formation of amyloid fiber may cause invertible damage to cells, while the underlying mechanism has not been fully uncovered. In this paper, we construct a mathematical model, consisting of infinite ODEs in the form of mass-action equations together with two reaction-convection PDEs, and then simplify it to a system of 5 ODEs by using the maximum entropy principle. This model is based on four simple assumptions, one of which is that cell damage is raised by oligomers rather than mature fibrils. With the simplified model, the effects of nucleation and elongation, fragmentation, protein and seeds concentrations on amyloid formation and cell damage are extensively explored and compared with experiments. We hope that our results can provide a valuable insight into the processes of amyloid formation and cell damage thus raised.Comment: 16 pages+ 5 figures for maintext; 8 pages+ 4 figures for Supporting Material

    Statistical Mechanics and Kinetics of Amyloid Fibrillation

    Full text link
    Amyloid fibrillation is a protein self-assembly phenomenon that is intimately related to well-known human neurodegenerative diseases. During the past few decades, striking advances have been achieved in our understanding of the physical origin of this phenomenon and they constitute the contents of this review. Starting from a minimal model of amyloid fibrils, we explore systematically the equilibrium and kinetic aspects of amyloid fibrillation in both dilute and semi-dilute limits. We then incorporate further molecular mechanisms into the analyses. We also discuss the mathematical foundation of kinetic modeling based on chemical mass-action equations, the quantitative linkage with experimental measurements, as well as the procedure to perform global fitting.Comment: 68 pages, 18 figures, 201 reference

    Characterizations of alphaalpha-well-posedness for parametric quasivariational inequalities defined by bifunctions

    Get PDF
    The purpose of this paper is to investigate the well-posedness issue of parametric quasivariational inequalities defined by bifunctions. We generalize the concept of alphaalpha-well-posedness to parametric quasivariational inequalities having a unique solution and derive some characterizations of alphaalpha-well-posedness. The corresponding concepts of alphaalpha-well-posedness in the generalized sense are also introduced and investigated for the problems having more than one solution. Finally, we give some sufficient conditions for alphaalpha-well-posedness of parametric quasivariational inequalities

    A Novel Approach for Solving Semidefinite Programs

    Get PDF

    Enhancing thermoelectric figure-of-merit by low-dimensional electrical transport in phonon-glass crystals

    Full text link
    Low-dimensional electronic and glassy phononic transport are two important ingredients of highly-efficient thermoelectric material, from which two branches of the thermoelectric research emerge. One focuses on controlling electronic transport in the low dimension, while the other on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here, we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystal as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculation and classical molecular dynamics simulation, we show that the π\pi-π\pi stacking Bis-Dithienothiophene molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameter, we obtain a maximum room-temperature figure of merit, ZTZT, of 1.481.48 at optimal doping, thus validating our idea.Comment: Nano Lett.201

    HII region G46.5-0.2: the interplay between ionizing radiation, molecular gas and star formation

    Get PDF
    HII regions are particularly interesting because they can generate dense layers of gas and dust, elongated columns or pillars of gas pointing towards the ionizing sources, and cometary globules of dense gas, where triggered star formation can occur. Understanding the interplay between the ionizing radiation and the dense surrounding gas is very important to explain the origin of these peculiar structures, and hence to characterize triggered star formation. G46.5-0.2 (G46), a poorly studied galactic HII region located at about 4 kpc, is an excellent target to perform this kind of studies. Using public molecular data extracted from the Galactic Ring Survey (13CO J=1-0) and from the James Clerk Maxwell Telescope data archive (12CO, 13CO, C18O J=3-2, HCO+ and HCN J=4-3), and infrared data from the GLIMPSE and MIPSGAL surveys, we perform a complete study of G46, its molecular environment and the young stellar objects placed around it. We found that G46, probably excited by an O7V star, is located close to the edge of the GRSMC G046.34-00.21 molecular cloud. It presents a horse-shoe morphology opening in direction of the cloud. We observed a filamentary structure in the molecular gas likely related to G46 and not considerable molecular emission towards its open border. We found that about 10' towards the southwest of G46 there are some pillar-like features, shining at 8 um and pointing towards the HII region open border. We propose that the pillar-like features were carved and sculpted by the ionizing flux from G46. We found several young stellar objects likely embedded in the molecular cloud grouped in two main concentrations: one, closer to the G46 open border consisting of Class II type sources, and other one mostly composed by Class I type YSOs located just ahead the pillars-like features, strongly suggesting an age gradient in the YSOs distribution.Comment: Accepted for publication in The Astronomical Journal (April 14, 2015). Some figures were degraded to reduce file siz

    Interactions of the Infrared bubble N4 with the surroundings

    Full text link
    The physical mechanisms that induce the transformation of a certain mass of gas in new stars are far from being well understood. Infrared bubbles associated with HII regions have been considered to be good samples of investigating triggered star formation. In this paper we report on the investigation of the dust properties of the infrared bubble N4 around the HII region G11.898+0.747, analyzing its interaction with its surroundings and star formation histories therein, with the aim of determining the possibility of star formation triggered by the expansion of the bubble. Using Herschel PACS and SPIRE images with a wide wavelength coverage, we reveal the dust properties over the entire bubble. Meanwhile, we are able to identify six dust clumps surrounding the bubble, with a mean size of 0.50 pc, temperature of about 22 K, mean column density of 1.7 ×1022\times10^{22} cm2^{-2}, mean volume density of about 4.4 ×104\times10^{4} cm3^{-3}, and a mean mass of 320 MM_{\odot}. In addition, from PAH emission seen at 8 μ\mum, free-free emission detected at 20 cm and a probability density function in special regions, we could identify clear signatures of the influence of the HII region on the surroundings. There are hints of star formation, though further investigation is required to demonstrate that N4 is the triggering source.Comment: Accepted by ApJ (16 pages, 11 figures, 9 tables

    Modulation of nucleosome-binding activity of FACT by poly(ADP-ribosyl)ation

    Get PDF
    Chromatin-modifying factors play key roles in transcription, DNA replication and DNA repair. Post-translational modification of these proteins is largely responsible for regulating their activity. The FACT (facilitates chromatin transcription) complex, a heterodimer of hSpt16 and SSRP1, is a chromatin structure modulator whose involvement in transcription and DNA replication has been reported. Here we show that nucleosome binding activity of FACT complex is regulated by poly(ADP-ribosyl)ation. hSpt16, the large subunit of FACT, is poly(ADP-ribosyl)ated by poly(ADP-ribose) polymerase-1 (PARP-1) resulting from physical interaction between these two proteins. The level of hSpt16 poly(ADP-ribosyl)ation is elevated after genotoxic treatment and coincides with the activation of PARP-1. The enhanced hSpt16 poly(ADP-ribosyl)ation level correlates with the dissociation of FACT from chromatin in response to DNA damage. Our findings suggest that poly(ADP-ribosyl)ation of hSpt16 by PARP-1 play regulatory roles for FACT-mediated chromatin remodeling
    corecore