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A novel linearizing alternating direction augmented Lagrangian approach is proposed for effectively solving semidefinite programs
(SDP). For every iteration, by fixing the other variables, the proposed approach alternatively optimizes the dual variables and the
dual slack variables; then the primal variables, that is, Lagrangemultipliers, are updated. In addition, the proposed approach renews
all the variables in closed forms without solving any system of linear equations. Global convergence of the proposed approach is
proved under mild conditions, and two numerical problems are given to demonstrate the effectiveness of the presented approach.

1. Introduction

Minimizing a linear function of a symmetric positive
semidefinite matrix subject to linear equality constraints is
called semidefinite programs (SDP), whose form can be given
as follows:

min ⟨𝐶,𝑋⟩

s.t. A (𝑋) = 𝑏,

𝑋 ⪰ 0,

(1)

where A : S𝑛 → R𝑚 is a linear operator, which can be
expressed as

A (𝑋) := (⟨𝐴
1
, 𝑋⟩ , . . . , ⟨𝐴

𝑚
, 𝑋⟩)
𝑇

. (2)

𝐶,𝐴
𝑖
∈ S𝑛, 𝑖 = 1, . . . , 𝑚, are all matrices, and 𝑏 ∈ R𝑚 is a

vector, and 𝑋 ⪰ 0 stands for the fact that 𝑋 is a symmetric
positive semidefinite matrix. Here,S𝑛 stands for the space of
𝑛 × 𝑛 symmetric matrices and ⟨𝑋, 𝑌⟩ = trace(𝑋𝑌) stands for
the standard inner product inS𝑛.A∗(𝑦) := ∑

𝑚

𝑖=1
𝑦
𝑖
𝐴
𝑖
stands

for the adjoint operator A∗ : R𝑚 → S𝑛 of A. The dual
problem of (1) is

min −𝑏
𝑇

𝑦

s.t. A∗ (𝑦) + 𝑆 = 𝐶,

𝑆 ⪰ 0,

(3)

where 𝑦 ∈ R𝑚 and 𝑆 ∈ S𝑛.

SDP problem has been always a very active area in opti-
mization research for many years. It has broad applications in
many areas, for example, system and control theory [1], com-
binatorial optimization [2], nonconvex quadratic programs
[3], and matrix completion problems [4]. We refer to the
reference book [5] for theory and applications of SDP. Interior
point approaches (IPMs) have been very successful for
solving SDP in polynomial time [6–9]. For small andmedium
sized SDP problems such as 𝑛 ≤ 1, 000 and𝑚 ≤ 10, 000, IPMs
are generally efficient and robust. However, for large-scale
SDP problems with large 𝑚 and moderate 𝑛, IPMs become
very slow due to the need of computing and factorizing the
𝑚 × 𝑚 Schur complement matrix. In order to improve this
shortcoming, by using an iterative solver to compute a search
direction at each iteration, [10, 11] proposed inexact IPMs
which manage to solve certain types of SDP problems with𝑚

up to 125,000. Based on the augmented Lagrangian approach,
many variants for SDP were proposed. For example, [12]
introduced the so-called boundary point approach; using
an eigenvalue decomposition to maintain complementarity,
[13] presented a dual augmented Lagrangian approach. More
recently, Huang and Xu [14] proposed a trust region algo-
rithm for SDPproblems by performing a number of conjugate
gradient iterations to solve the subproblems. Zhao et al. [15]
designed a Newton-CG augmented Lagrangian approach for
solving SDP problems from the perspective of approximate
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semismooth Newton methods. Wen et al. [16] presented an
alternating direction dual augmented Lagrangian approach
for SDP. In [17], Wen et al. proposed a row-by-row approach
for solving SDP problems based on solving a sequence of
problems obtained by restricting the 𝑛-dimensional positive
semidefinite constraint on the matrix 𝑋. In addition to the
former reviewed methods, some related research works on
the subject are given as follows. Xu et al. [18] presented a
new algorithm for the box-constrained SDP based on the
feasible direction method. Zhadan and Orlov [19] presented
a dual interior point method for linear SDP problem. Lin
[20] proposed an inexact spectral bundle method for convex
quadratic SDP. Sun and Zhang [21] proposed a modified
alternating direction method for solving convex quadrati-
cally constrained quadratic SDP, which requires much less
computational effort per iteration than the second-order
approaches. In [22], the authors presented penalty and barrier
methods for convex SDP. In [23], an alternating direction
method is proposed for solving convex SDP problems by
Zhang et al., which only computes several metric projections
at each iteration. In [24], Huang et al. presented a lower-
order penalization approach to solve nonlinear SDP. In [25],
Aroztegui et al. presented a feasible direction interior point
algorithm for solving nonlinear SDP. Yang and Yu [26]
proposed a homotopy method for nonlinear SDP. Kanzow et
al. [27] presented successive linearizationmethods for solving
nonlinear SDP. Yamashita et al. [28] presented a primal-
dual interior point method for nonlinear SDP. Lu et al. [29]
presented a saddle point mirror-prox algorithm for solving
a large-scale SDP. In [30], Monteiro et al. presented a first-
order block-decomposition method for solving two-easy-
block structured SDP. In [31], an efficient low-rank stochastic
gradient descent method is proposed for solving a class of
SDP problems, which has clear computational advantages
over the standard stochastic gradient descent method. Based
on a new technique for finding the search direction and the
strategy of the central path, Wang and Bai [32] presented a
new primal-dual path-following interior-point algorithm for
solving SDP problem. By reformulating the complementary
conditions in the primal-dual optimality conditions as a pro-
jection equation, Yu [33] presented an alternating direction
algorithm for the solution of SDP problems. However, most
of these existing methods need to solve a system of linear
equations for updating the variables which is time consuming
especially for the large-scale case.

In this paper, we present a novel linearizing alternating
direction dual augmented Lagrangian approach for com-
puting SDP problems. For every iteration, the proposed
algorithm works on the augmented Lagrangian function for
the dual SDP problem. Specially, for every iteration, by fixing
the other variables the proposed algorithm alternatively
optimizes the dual variables and the dual slack variables;
then the primal variables, that is, Lagrange multipliers, are
updated. The proposed algorithm is closely related to the
alternating direction augmented Lagrangian approach in
[16] but for updating the dual variables. In particular, the
proposed algorithm renews the dual variableswithout solving
any system of linear equations. Moreover, the proposed
algorithm renews all the variables in closed forms. Numerical

experimental results demonstrate that the performance of
the proposed approach can be significantly better than that
reported in [16].

The remaining section of this paper is described as
follows. In Section 2 a novel linearizing alternating direction
augmented Lagrangian approach is proposed for solving
SDP problems. The convergence of the proposed approach
is proved in Section 3. In Section 4, some implementation
issues of the proposed approach are discussed. Twonumerical
examples for frequency assignment problem and binary
integer quadratic programs problems are used to demonstrate
the performance of the proposed approach in Section 5.

Some notations:S𝑛
+
represents the set of 𝑛 × 𝑛 symmetric

positive semidefinite matrices. 𝑋 ≻ 0 represents the fact
that 𝑋 is positive definite. The notation ‖ ⋅ ‖ stands for the
Euclidean norm and ‖ ⋅ ‖

𝐹
stands for the Frobenius norm.

vec(𝑋)denotes a vector obtained by stacking𝑋’s columns one
by one. 𝐼 denotes the identity matrix in proper order.

2. Linearizing Alternating Direction
Augmented Lagrangian Approach

In this section, a linearizing alternating direction augmented
Lagrangian approach is proposed for solving (1) and (3).

Let 𝐴 := (vec(𝐴
1
), . . . , vec(𝐴

𝑚
))
𝑇

∈ R𝑚×𝑛
2

. The
expression A(𝑋) = 𝑏 is equal to 𝐴 vec(𝑋) = 𝑏. A(A∗(𝑦)) =

𝐴𝐴
𝑇

𝑦 is called an operatorAA∗ : R𝑚 → R𝑚.
Without loss of generality, we assume that matrix 𝐴 is

a full row rank and there exists a matrix 𝑋 ≻ 0 such that
A(𝑋) = 𝑏. It is well known that, with the above assumption,
a point (𝑋, 𝑦, 𝑆) is optimal for SDP problems (1) and (3) if and
only if

A (𝑋) = 𝑏, A
∗

(𝑦) + 𝑆 = 𝐶, 𝑋𝑆 = 0, 𝑋 ⪰ 0, 𝑆 ⪰ 0.

(4)

Given a penalty parameter 𝜇 > 0, the augmented
Lagrangian function for the dual SDP (3) is defined as

𝐿
𝜇
(𝑋, 𝑦, 𝑆) := − 𝑏

𝑇

𝑦 + ⟨𝑋,A
∗

(𝑦) + 𝑆 − 𝐶⟩

+
1

2𝜇

󵄩󵄩󵄩󵄩A
∗

(𝑦) + 𝑆 − 𝐶
󵄩󵄩󵄩󵄩
2

𝐹
,

(5)

where 𝑋 ∈ S𝑛. For given 𝑋
0

, 𝑆
0

∈ S𝑛, the alternating direc-
tion augmented Lagrangian approach for solving problems
(1) and (3) generates sequences {𝑦𝑘} ⊂ R𝑚, {𝑆𝑘} ⊂ S𝑛, and
{𝑋
𝑘

} ⊂ S𝑛 as follows:

𝑦
𝑘+1

= arg min
𝑦∈R𝑚

𝐿
𝜇
(𝑋
𝑘

, 𝑦, 𝑆
𝑘

) , (6)

𝑆
𝑘+1

= arg min
𝑆∈S𝑛

𝐿
𝜇
(𝑋
𝑘

, 𝑦
𝑘+1

, 𝑆) , 𝑆 ⪰ 0, (7)

𝑋
𝑘+1

= 𝑋
𝑘

+
A∗ (𝑦𝑘+1) + 𝑆

𝑘+1

− 𝐶

𝜇
. (8)

Apparently, we can obtain 𝑦
𝑘+1 by solving the first-order

optimality conditions for (6), which is a system of linear
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equations associated with𝐴𝐴
𝑇. Since𝐴𝐴

𝑇 is a𝑚×𝑚matrix,
it is difficult to get 𝑦𝑘+1 exactly when 𝑚 is large. In order to
alleviate this difficulty, we use the quadratic approximation of
𝐿
𝜇
(𝑋
𝑘

, 𝑦, 𝑆
𝑘

) in (6) around 𝑦
𝑘as follows:

𝐿
𝜇
(𝑋
𝑘

, 𝑦, 𝑆
𝑘

) ≈ 𝐿
𝜇
(𝑋
𝑘

, 𝑦
𝑘

, 𝑆
𝑘

) + ⟨𝑔
𝑘

, 𝑦 − 𝑦
𝑘

⟩

+
𝜆
𝑘

2𝜇

󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑦
𝑘
󵄩󵄩󵄩󵄩󵄩

2

,

(9)

where 𝜆
𝑘
> 0 and

𝑔
𝑘

= ∇
𝑦
𝐿
𝜇
(𝑋
𝑘

, 𝑦
𝑘

, 𝑆
𝑘

)

= A (𝑋
𝑘

) − 𝑏 +
1

𝜇
A (A

∗

(𝑦
𝑘

) + 𝑆
𝑘

− 𝐶) .
(10)

We replace step (6) by

𝑦
𝑘+1

= arg min
𝑦∈R𝑚

⟨𝑔
𝑘

, 𝑦 − 𝑦
𝑘

⟩ +
𝜆
𝑘

2𝜇

󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑦
𝑘
󵄩󵄩󵄩󵄩󵄩

2

. (11)

Then, we have

𝑦
𝑘+1

= 𝑦
𝑘

−
𝜇

𝜆
𝑘

𝑔
𝑘

. (12)

As pointed out in [16], problem (7) is equivalent to

min
𝑆∈S𝑛

󵄩󵄩󵄩󵄩󵄩
𝑆 − 𝑉
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐹

, 𝑆 ⪰ 0, (13)

where 𝑉
𝑘+1

= 𝐶 − A∗(𝑦𝑘+1) − 𝜇𝑋
𝑘. Denote the spectral

decomposition of the matrix 𝑉
𝑘+1 by

𝑄Σ𝑄
𝑇

= (𝑄
1

𝑄
2
) (

Σ
+

0

0 Σ
−

)(

𝑄
𝑇

1

𝑄
𝑇

2

) , (14)

where Σ
+
and Σ

−
are the nonnegative and negative eigen-

values of 𝑉𝑘+1. We then obtain the fact that 𝑆𝑘+1 = 𝑉
𝑘+1

+
=

𝑄
1
Σ
+
𝑄
1
. It follows from (8) that

𝑋
𝑘+1

= 𝑋
𝑘

+
A∗ (𝑦𝑘+1) + 𝑆

𝑘+1

− 𝐶

𝜇

=
1

𝜇
(𝑆
𝑘+1

− 𝑉
𝑘+1

) =
1

𝜇
𝑉
𝑘+1

−
,

(15)

where 𝑉
𝑘+1

−
= −𝑄

2
Σ
−
𝑄
2
. Now we present the linearizing

alternating direction augmented Lagrangian approach in
Algorithm 1.

Remark 1. We can choose 𝜆
𝑘+1

= ‖𝐴𝐴
𝑇

‖
𝐹
to satisfy the

condition of Algorithm 1. If AA∗ = 𝐼 and 𝜆
𝑘

= 1 for all
𝑘 ≥ 0, then Algorithm 1 is same as the approach proposed in
[16].

3. The Convergence of the Proposed Approach

In this section, we prove the convergence of Algorithm 1
using the argument similar to the one in [34]. Let 𝑅

𝑘

𝑑
=

A∗(𝑦𝑘) + 𝑆
𝑘

− 𝐶; then we have the following proposition.

Lemma 2. Let 𝑤𝑘 = (𝑋
𝑘

, 𝑦
𝑘

, 𝑆
𝑘

) be generated by Algorithm 1
and let 𝑤∗ = (𝑋

∗

, 𝑦
∗

, 𝑆
∗

) be an optimal solution of (1) and
(3); then one has

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

≥
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

, (16)

where

𝐻
𝜇
= (

𝜇𝐼 0 0

0
1

𝜇
(𝜆
𝑘
𝐼 − 𝐴𝐴

𝑇

) 0

0 0
1

𝜇
𝐼

) , ‖𝑤‖
2

𝐻
= ⟨𝑤,𝐻𝑤⟩ .

(17)

Proof. From (8), there holds

⟨𝑋
𝑘+1

− 𝑋
∗

, 𝜇 (𝑋
𝑘

− 𝑋
𝑘+1

)⟩ = ⟨𝑋
∗

− 𝑋
𝑘+1

, 𝑅
𝑘+1

𝑑
⟩ . (18)

By (12), we know that

⟨𝑦
∗

− 𝑦
𝑘+1

, 𝑔
𝑘

+
𝜆
𝑘

𝜇
(𝑦
𝑘+1

− 𝑦
𝑘

)⟩ = 0. (19)

That is,

⟨𝑦
∗

− 𝑦
𝑘+1

,A (𝑋
𝑘

) − 𝑏 +
1

𝜇
A (𝑅
𝑘

𝑑
) +

𝜆
𝑘

𝜇
(𝑦
𝑘+1

− 𝑦
𝑘

)⟩

= 0.

(20)

By substituting (8) into the above equality, using the fact
A(𝑋
∗

) = 𝑏, and rearranging the terms, one has

⟨𝑦
𝑘+1

− 𝑦
∗

,
1

𝜇
(𝜆
𝑘
𝐼 −AA

∗

) (𝑦
𝑘

− 𝑦
𝑘+1

)⟩

= ⟨A
∗

(𝑦
𝑘+1

− 𝑦
∗

) , 𝑋
𝑘+1

− 𝑋
∗

⟩

+ ⟨A
∗

(𝑦
𝑘+1

− 𝑦
∗

) ,
1

𝜇
(𝑆
𝑘

− 𝑆
𝑘+1

)⟩ .

(21)

Since𝑋𝑘+1𝑆𝑘+1 = 0, we have

⟨𝑆 − 𝑆
𝑘+1

, 𝑋
𝑘+1

⟩ ≥ 0, ∀𝑆 ∈ S
𝑛

+
. (22)

By substituting 𝑆 = 𝑆
∗ into (22), we get

⟨𝑆
𝑘+1

− 𝑆
∗

,
1

𝜇
(𝑆
𝑘

− 𝑆
𝑘+1

)⟩

≥ ⟨𝑆
𝑘+1

− 𝑆
∗

, 𝑋
𝑘+1

+
1

𝜇
(𝑆
𝑘

− 𝑆
𝑘+1

)⟩ .

(23)
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Initialize 𝑦0 ∈ R𝑚,𝑋0 ⪰ 0, and 𝑆
0

⪰ 0. Choose initial step size 𝜆
0
greater than the

maximum eigenvalue of the matrix 𝐴𝐴
𝑇.

For 𝑘 = 0, 1, . . . do
Compute 𝑔𝑘 and 𝑦

𝑘+1

= 𝑦
𝑘

− 𝜇/𝜆 𝑘 𝑔
𝑘.

Compute 𝑉𝑘+1 and its eigenvalue decomposition, and set 𝑆𝑘+1 = 𝑉
𝑘+1

+
.

Compute𝑋𝑘+1 = 1/𝜇 (𝑆
𝑘+1

− 𝑉
𝑘+1

).
Choose 𝜆

𝑘+1
greater than the maximum eigenvalue of the matrix 𝐴𝐴

𝑇.
end

Algorithm 1: Linearizing alternating direction augmented Lagrangian algorithm for SDP.

By adding (18), (21), and (23) together, we obtain

⟨𝑤
𝑘+1

− 𝑤
∗

, 𝐻
𝜇
(𝑤
𝑘

− 𝑤
𝑘+1

)⟩

≥ ⟨𝑋
∗

− 𝑋
𝑘+1

, 𝑅
𝑘+1

𝑑
⟩ + ⟨A

∗

(𝑦
𝑘+1

− 𝑦
∗

) , 𝑋
𝑘+1

− 𝑋
∗

⟩

+ ⟨A
∗

(𝑦
𝑘+1

− 𝑦
∗

) ,
1

𝜇
(𝑆
𝑘

− 𝑆
𝑘+1

)⟩

+ ⟨𝑆
𝑘+1

− 𝑆
∗

, 𝑋
𝑘+1

⟩ + ⟨𝑆
𝑘+1

− 𝑆
∗

,
1

𝜇
(𝑆
𝑘

− 𝑆
𝑘+1

)⟩

= ⟨𝑋
∗

− 𝑋
𝑘+1

, 𝑆
𝑘+1

− 𝑆
∗

⟩ + ⟨𝑆
𝑘

− 𝑆
𝑘+1

,
1

𝜇
𝑅
𝑘+1

𝑑
⟩

+ ⟨𝑆
𝑘+1

− 𝑆
∗

, 𝑋
𝑘+1

⟩

= ⟨𝑋
∗

, 𝑆
𝑘+1

− 𝑆
∗

⟩ + ⟨𝑆
𝑘

− 𝑆
𝑘+1

,
1

𝜇
𝑅
𝑘+1

𝑑
⟩

≥ ⟨𝑋
∗

, 𝑆
𝑘+1

⟩ − ⟨𝑆
𝑘

− 𝑆
𝑘+1

, 𝑋
𝑘

⟩

= ⟨𝑋
∗

, 𝑆
𝑘+1

⟩ + ⟨𝑆
𝑘+1

, 𝑋
𝑘

⟩ ,

(24)

where the last inequality comes from (8) and (22). Note that
𝑋
𝑘, 𝑆𝑘+1, and𝑋

∗ are semidefinite positive matrices; then

⟨𝑤
𝑘+1

− 𝑤
∗

, 𝐻
𝜇
(𝑤
𝑘

− 𝑤
𝑘+1

)⟩ ≥ 0. (25)

It follows (25) that

⟨𝑤
𝑘

− 𝑤
∗

, 𝐻
𝜇
(𝑤
𝑘

− 𝑤
𝑘+1

)⟩

= ⟨𝑤
𝑘+1

− 𝑤
∗

, 𝐻
𝜇
(𝑤
𝑘

− 𝑤
𝑘+1

)⟩ +
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

≥
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

.

(26)

By (26) and the fact that

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

= 2 ⟨𝑤
𝑘

− 𝑤
∗

, 𝑤
𝑘

− 𝑤
𝑘+1

⟩ −
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

,

(27)

we have

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

−
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘+1

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

≥
󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

, (28)

which completes the proof.

Theorem 3. Let {(𝑋
𝑘

, 𝑦
𝑘

, 𝑆
𝑘

)} be generated by Algorithm 1;
then it converges to a solution of problems (1) and (3).

Proof. By (16), we know that the sequence {𝑤
𝑘

} is bounded
and the sequence {‖𝑤

𝑘

− 𝑤
∗

‖
2

𝐻
𝜇

} is monotonically nonin-
creasing. Therefore,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

=
󵄩󵄩󵄩󵄩𝑤 − 𝑤

∗󵄩󵄩󵄩󵄩
2

𝐻
𝜇

, (29)

where 𝑤 = (𝑋, 𝑦, 𝑆) can be any limit point of {𝑤𝑘}. It follows
that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑘

− 𝑤
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐻
𝜇

= 0. (30)

Since 𝜆
𝑘
are greater than the maximum eigenvalue of matrix

𝐴𝐴
𝑇, then thematrix𝐻

𝜇
is positive definite. By the definition

of 𝑤𝑘, we obtain

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘

− 𝑋
𝑘+1

󵄩󵄩󵄩󵄩󵄩𝐹
= 0, lim

𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘

− 𝑦
𝑘+1

󵄩󵄩󵄩󵄩󵄩
= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑘

− 𝑆
𝑘+1

󵄩󵄩󵄩󵄩󵄩𝐹
= 0.

(31)

From the update formula (8), we have

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
A
∗

(𝑦
𝑘

) + 𝑆
𝑘

− 𝐶
󵄩󵄩󵄩󵄩󵄩𝐹

= 0. (32)

By (12) and the definition of 𝑔𝑘, one has

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑔
𝑘
󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
A (𝑋
𝑘

) − 𝑏 +
1

𝜇
A (A

∗

(𝑦
𝑘

) + 𝑆
𝑘

− 𝐶)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= 0,

(33)

which together with (32) imply that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
A (𝑋
𝑘

) − 𝑏
󵄩󵄩󵄩󵄩󵄩
= 0. (34)
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By combining (32), (34), 𝑋𝑘𝑆𝑘 = 0, and 𝑋
𝑘

, 𝑆
𝑘

⪰ 0 for all
𝑘 ≥ 1, we know that any limit point of {𝑤𝑘}, say𝑤 = (𝑋, 𝑦, 𝑆),
satisfies

A (𝑋) = 𝑏, A
∗

(𝑦) + 𝑆 − 𝐶 = 0, 𝑋 𝑆 = 0,

𝑋 ⪰ 0, 𝑆 ⪰ 0,

(35)

which means 𝑤 is a solution of problems (1) and (3). By
Lemma 2, {(𝑋𝑘, 𝑦𝑘, 𝑆𝑘)} converges to a solution of problems
(1) and (3).

4. Implementation Issues

The proposed algorithm is carried out by modifying the code
of the alternating direction approach in [16] which is referred
to as SDPAD. Before presenting the numerical results, we
discuss some implementation issues of Algorithm 1 in this
section.

In order to improve the computational performance of
Algorithm 1, using the similar method as many alternating
direction approaches [35–37], we replace step (8) by

𝑋
𝑘+1

:= 𝑋
𝑘

+ 𝜌
A∗ (𝑦𝑘+1) + 𝑆

𝑘+1

− 𝐶

𝜇

:= (1 − 𝜌)𝑋
𝑘

+
𝜌

𝜇
(𝑆
𝑘+1

− 𝑉
𝑘+1

) .

(36)

We can use an argument similar method to the one in [34] to
prove the following theorem.

Theorem 4. Let𝐴
𝜆
𝑘

= 𝜆
𝑘
𝐼−𝐴𝐴

𝑇

(𝑋
∗

, 𝑦
∗

, 𝑆
∗

) be an optimal
solution of (1) and (3). For 𝜌 ∈ (0, 1], it holds that

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘

− 𝑋
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
𝜌

𝜇

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘

− 𝑦
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐴
𝜆
𝑘

+
𝜌

𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑘

− 𝑆
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
𝜌 (1 − 𝜌)

𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑅
𝑘

𝑑

󵄩󵄩󵄩󵄩󵄩

2

𝐹

≥ (
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘+1

− 𝑋
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
𝜌

𝜇

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘+1

− 𝑦
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐴
𝜆
𝑘

+
𝜌

𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑘+1

− 𝑆
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
𝜌 (1 − 𝜌)

𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑅
𝑘+1

𝑑

󵄩󵄩󵄩󵄩󵄩

2

𝐹

)

+
𝜌

𝜇

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘

− 𝑦
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐴
𝜆
𝑘

+
𝜌

𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑅
𝑘+1

𝑑

󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
𝜌
2

𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑘

− 𝑆
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐹

.

(37)

For 𝜌 ∈ (1, (1 + √5)/2), it holds that

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘

− 𝑋
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
𝜌

𝜇

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘

− 𝑦
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐴
𝜆
𝑘

+
𝜌

𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑘

− 𝑆
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
𝜌 − 1

𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑅
𝑘

𝑑

󵄩󵄩󵄩󵄩󵄩

2

𝐹

≥ (
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘+1

− 𝑋
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
𝜌

𝜇

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘+1

− 𝑦
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐴
𝜆
𝑘

+
𝜌

𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑘+1

− 𝑆
∗
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
𝜌 − 1

𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑅
𝑘+1

𝑑

󵄩󵄩󵄩󵄩󵄩

2

𝐹

) +
𝜌

𝜇

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘

− 𝑦
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐴
𝜆
𝑘

+
1 + 𝜌 − 𝜌

2

𝜌
(

𝜌

𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑅
𝑘+1

𝑑

󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
𝜌
2

𝜇2
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑘

− 𝑆
𝑘+1

󵄩󵄩󵄩󵄩󵄩

2

𝐹

) .

(38)

Based onTheorem 4, it is not difficult to show that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
A
∗

(𝑦
𝑘

) + 𝑆
𝑘

− 𝐶
󵄩󵄩󵄩󵄩󵄩𝐹

= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
A (𝑋
𝑘

) − 𝑏
󵄩󵄩󵄩󵄩󵄩
= 0, lim

𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑘

𝑆
𝑘
󵄩󵄩󵄩󵄩󵄩𝐹

= 0.

(39)

In our numerical experiments, we stop the algorithm
when

max {pinf, dinf, gap} ≤ 10
−6

, (40)

where

pinf = A (𝑋) − 𝑏

1 + ‖𝑏‖
, dinf =

𝐶 + 𝑆 −A∗ (𝑦)

1 + ‖𝐶‖
𝐹

,

gap =

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑇

𝑦 − ⟨𝐶,𝑋⟩
󵄨󵄨󵄨󵄨󵄨

1 + |⟨𝐶,𝑋⟩| +
󵄨󵄨󵄨󵄨𝑏
𝑇𝑦

󵄨󵄨󵄨󵄨
.

(41)

We set the maximum number of iterations allowed in
Algorithm 1 and SDPAD to 20,000.

We use the same strategy for updating the parameter 𝜇 >

0 SDPAD (beta 2). In particular, given some integer ℎ > 0, let

pvd (𝑘) = 𝑒
∑
𝑘

𝑗=𝑘−ℎ+1
ln(pinf(𝑗)/dinf(𝑗))/ℎ

,

dvp (𝑘) = 𝑒
∑
𝑘

𝑗=𝑘−ℎ+1
ln(dinf(𝑗)/pinf(𝑗))/ℎ

.

(42)

For 𝑘 = ℎ, 2ℎ, . . ., if pvd(𝑘) > 𝜂, then set 𝜇 =

max{min{𝜇/𝛾, 𝜇max}, 𝜇min}. Otherwise, if dvp(𝑘) > 𝜂, then set
𝜇 = max{min{𝛾𝜇, 𝜇max}, 𝜇min}. Here 0 < 𝜇min < 𝜇max < ∞.

We set 𝜇min = 10
−2, 𝜇max = 10

2, 𝛾 = 0.75, and 𝜂 = 1.5

for our test problems. The parameter 𝜌 for updating 𝑋 is set
to 1.618. We choose the initial iterate 𝑦

0

= 0, 𝑋0 = 𝐼, and
𝑆
0

= 0.
Let 𝑓(𝑦, 𝑆) = (1/2)‖A∗(𝑦) + 𝑆 − 𝐶‖

2

𝐹
. Since the other

parts of 𝐿
𝜇
are linear, the choice of 𝜆

𝑘
is mainly depending on

𝑓(𝑦, 𝑆). We set 𝜆
0
= ‖𝐴𝐴

𝑇

‖
𝐹
and choose 𝜆

𝑘+1
as the Barzilai-

Borwein step size [38] of𝑓(𝑦, 𝑆)with the following safeguard:

𝜆
𝑘+1

=

{{{{

{{{{

{

󵄩󵄩󵄩󵄩󵄩
𝐴𝐴
𝑇
󵄩󵄩󵄩󵄩󵄩𝐹

, if 𝑝𝑇
𝑘
𝑧
𝑘
≤ 0,

max{
󵄩󵄩󵄩󵄩𝑧𝑘

󵄩󵄩󵄩󵄩
2

𝑝𝑇
𝑘
𝑧
𝑘

,
󵄩󵄩󵄩󵄩󵄩
𝐴𝐴
𝑇
󵄩󵄩󵄩󵄩󵄩𝐹

} , otherwise,
(43)
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Figure 1: Performance profiles for SDPAD and the present method for number of iterations (a) and CPU time (b).

Table 1: Numerical results compared with [16] for computing frequency assignment problems.

Name 𝑛 𝑚
Algorithm 1 in this paper SDPAD

pinf dinf gap itr cpu pinf dinf gap itr cpu
fap01 52 1378 9.34𝑒 − 7 2.47𝑒 − 7 4.71𝑒 − 5 622 1.13 9.77𝑒 − 7 1.22𝑒 − 7 5.61𝑒 − 5 653 0.67
fap02 61 1866 9.39𝑒 − 7 9.01𝑒 − 7 5.84𝑒 − 5 1399 1.67 9.98𝑒 − 7 8.92𝑒 − 7 7.27𝑒 − 5 1720 1.83
fap03 65 2145 7.54𝑒 − 7 4.75𝑒 − 7 5.82𝑒 − 6 914 1.06 9.84𝑒 − 7 4.88𝑒 − 7 3.97𝑒 − 5 870 0.98
fap04 81 3321 9.55𝑒 − 7 9.97𝑒 − 7 4.44𝑒 − 5 852 1.70 9.54𝑒 − 7 9.96𝑒 − 7 4.45𝑒 − 5 874 1.71
fap05 84 3570 9.83𝑒 − 7 8.53𝑒 − 7 3.68𝑒 − 6 1155 2.38 9.98𝑒 − 7 8.29𝑒 − 7 4.27𝑒 − 6 1198 2.37
fap06 93 4371 9.93𝑒 − 7 6.44𝑒 − 7 3.19𝑒 − 6 653 1.48 9.89𝑒 − 7 6.45𝑒 − 7 3.40𝑒 − 6 653 1.46
fap07 98 4851 9.97𝑒 − 7 8.44𝑒 − 7 1.00𝑒 − 5 648 1.50 9.99𝑒 − 7 8.20𝑒 − 7 9.76𝑒 − 6 667 1.52
fap08 120 7260 6.65𝑒 − 7 9.98𝑒 − 7 2.58𝑒 − 6 725 2.51 6.63𝑒 − 7 9.96𝑒 − 7 2.57𝑒 − 6 725 2.46
fap09 174 15225 9.98𝑒 − 7 4.34𝑒 − 7 8.42𝑒 − 7 438 3.05 9.90𝑒 − 7 3.04𝑒 − 7 1.02𝑒 − 6 464 3.17
fap10 183 14479 8.33𝑒 − 7 1.00𝑒 − 6 1.14𝑒 − 4 2278 21.55 9.17𝑒 − 7 1.00𝑒 − 6 1.29𝑒 − 4 2313 21.87
fap11 252 24292 9.60𝑒 − 7 9.99𝑒 − 7 2.53𝑒 − 4 2462 52.68 9.65𝑒 − 7 1.00𝑒 − 6 2.16𝑒 − 4 2585 54.54
fap12 369 26462 9.06𝑒 − 7 9.99𝑒 − 7 2.40𝑒 − 4 3197 2 : 28 7.61𝑒 − 7 1.00𝑒 − 6 2.20𝑒 − 4 3394 2 : 35
fap25 2118 322924 8.85𝑒 − 7 1.00𝑒 − 6 1.13𝑒 − 4 5152 7 : 54 : 54 1.00𝑒 − 6 9.67𝑒 − 7 1.13𝑒 − 4 5495 8 : 20 : 12
fap36 4110 1154467 9.93𝑒 − 7 9.78𝑒 − 7 3.08𝑒 − 5 4256 47 : 54 : 26 1.38𝑒 − 6 1.26𝑒 − 7 1.68𝑒 − 5 5000 116 : 28 : 06

where 𝑝
𝑘
= 𝑦
𝑘+1

−𝑦
𝑘, and 𝑧

𝑘
= ∇
𝑦
𝑓(𝑦
𝑘+1

, 𝑆
𝑘+1

)−∇
𝑦
𝑓(𝑦
𝑘

, 𝑆
𝑘

).
Clearly, this choice of 𝜆

𝑘
ensures that the matrix 𝜆

𝑘
𝐼 − 𝐴𝐴

𝑇

is positive definite for any 𝑘 ≥ 1.

5. Numerical Results

In this section, we report our numerical results. We compare
solutions obtained fromAlgorithm 1 and SDPAD on the SDP
relaxations of frequency assignment problems and binary
integer quadratic programs problems. All the procedures
were carried out by MATLAB 2011b on a 3.10GHz Core i5
PC with 4GB of RAM under Windows 7.

InTables 1 and 2, the first column gives the problemname;
some notations have been also used in column headers, 𝑛:
the size of the matrix 𝑋; 𝑚: the total number of equality and
inequality constraints; “itr”: the number of iterations; “cpu”:
the CPU time in the format of “hours, minutes, and seconds.”

5.1. Frequency Assignment Relaxation. In this subsection,
we consider SDPs arising from semidefinite relaxation of
frequency assignment problems (fap) [39]. The explicit
description of the SDP form is given in [40]. For a given
undirected graph 𝐺 = (𝑉, 𝐸) with vertex set 𝑉 = {1, . . . , 𝑟}

and edge set 𝐸 ⊂ 𝑉 × 𝑉, assume 𝑊 = (𝑤
𝑖𝑗
) ∈ S𝑟 is a weight

matrix for 𝐺. If the edge (𝑖, 𝑗) ∉ 𝐸, we suppose 𝑤
𝑖𝑗
= 𝑤
𝑗𝑖
= 0.
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Table 2: Numerical results compared with [16] for computing binary integer quadratic programs problem.

Name 𝑛
Algorithm 1 in this paper SDPAD

pinf dinf gap itr cpu pinf dinf gap itr cpu
be100.1 101 9.37𝑒 − 7 9.96𝑒 − 7 5.52𝑒 − 7 1464 3.76 9.70𝑒 − 7 8.82𝑒 − 7 4.96𝑒 − 7 2012 4.79
be100.2 101 5.19𝑒 − 7 9.95𝑒 − 7 2.89𝑒 − 7 1322 3.24 1.00𝑒 − 6 9.05𝑒 − 7 2.81𝑒 − 7 1744 4.24
be120.3.1 121 9.96𝑒 − 7 8.66𝑒 − 7 5.77𝑒 − 7 2214 6.82 9.82𝑒 − 7 9.99𝑒 − 7 7.08𝑒 − 7 2447 7.45
be120.3.2 121 7.33𝑒 − 7 9.72𝑒 − 7 8.85𝑒 − 7 1968 6.20 8.60𝑒 − 7 9.99𝑒 − 7 1.08𝑒 − 6 2405 7.53
be120.8.1 121 9.95𝑒 − 7 9.99𝑒 − 7 7.24𝑒 − 7 1618 4.78 9.99𝑒 − 7 7.73𝑒 − 7 8.24𝑒 − 7 2006 5.87
be120.8.2 121 9.31𝑒 − 7 9.10𝑒 − 7 4.26𝑒 − 7 3033 9.56 5.63𝑒 − 7 1.00𝑒 − 6 9.99𝑒 − 7 3415 10.64
be150.3.1 151 4.33𝑒 − 7 9.96𝑒 − 7 8.89𝑒 − 7 2030 9.08 8.36𝑒 − 7 9.96𝑒 − 7 3.23𝑒 − 7 2557 11.36
be150.3.2 151 9.94𝑒 − 7 8.58𝑒 − 7 3.97𝑒 − 7 2244 10.16 9.45𝑒 − 7 9.98𝑒 − 7 5.42𝑒 − 7 3143 14.01
be150.8.1 151 9.85𝑒 − 7 8.08𝑒 − 7 3.84𝑒 − 7 1694 7.33 9.97𝑒 − 7 9.38𝑒 − 7 1.40𝑒 − 7 2255 9.63
be150.8.2 151 9.40𝑒 − 7 9.72𝑒 − 7 8.63𝑒 − 7 1829 8.10 9.98𝑒 − 7 7.46𝑒 − 7 6.61𝑒 − 7 2386 10.28
be200.3.1 201 5.48𝑒 − 7 9.97𝑒 − 7 9.56𝑒 − 7 2031 13.90 9.05𝑒 − 7 9.99𝑒 − 7 1.22𝑒 − 6 2840 19.19
be200.3.2 201 9.79𝑒 − 7 9.77𝑒 − 7 5.43𝑒 − 7 2254 16.03 8.03𝑒 − 7 9.99𝑒 − 7 5.73𝑒 − 7 3276 23.20
be200.8.1 201 5.64𝑒 − 7 9.98𝑒 − 7 6.72𝑒 − 7 3068 21.90 9.98𝑒 − 7 6.61𝑒 − 7 4.54𝑒 − 7 4154 29.47
be200.8.2 201 9.07𝑒 − 7 9.59𝑒 − 7 5.35𝑒 − 7 1817 11.98 7.72𝑒 − 7 9.98𝑒 − 7 4.65𝑒 − 7 2918 19.11
be250.1 251 8.78𝑒 − 7 9.90𝑒 − 7 4.90𝑒 − 7 3638 36.27 1.00𝑒 − 6 9.76𝑒 − 7 5.54𝑒 − 7 5336 52.52
be250.2 251 8.06𝑒 − 7 9.94𝑒 − 7 8.81𝑒 − 7 3280 32.22 9.99𝑒 − 7 7.95𝑒 − 7 5.36𝑒 − 7 5111 49.91
bqp50-1 51 9.65𝑒 − 7 9.57𝑒 − 7 1.21𝑒 − 7 3334 3.73 1.00𝑒 − 6 5.76𝑒 − 7 5.36𝑒 − 7 2800 3.08
bqp50-2 51 6.80𝑒 − 7 9.92𝑒 − 7 7.91𝑒 − 7 4278 4.15 1.00𝑒 − 6 6.85𝑒 − 7 4.32𝑒 − 7 6975 6.60
bqp100-1 101 5.06𝑒 − 7 9.96𝑒 − 7 3.33𝑒 − 7 1558 3.58 9.18𝑒 − 7 9.98𝑒 − 7 5.16𝑒 − 7 1917 4.32
bqp100-2 101 6.78𝑒 − 7 1.00𝑒 − 6 7.25𝑒 − 7 2887 6.43 9.99𝑒 − 7 9.57𝑒 − 7 6.68𝑒 − 7 3438 7.56
bqp250-1 251 8.36𝑒 − 7 9.48𝑒 − 7 8.33𝑒 − 7 3135 30.35 9.24𝑒 − 7 9.99𝑒 − 7 1.00𝑒 − 6 4943 48.14
bqp250-2 251 6.57𝑒 − 7 9.99𝑒 − 7 7.89𝑒 − 7 3467 32.96 9.86𝑒 − 7 1.00𝑒 − 6 7.41𝑒 − 7 5091 48.01
bqp500-1 501 6.09𝑒 − 7 9.98𝑒 − 7 1.33𝑒 − 6 4676 3 : 20 9.99𝑒 − 7 9.31𝑒 − 7 3.38𝑒 − 7 6931 4 : 54
bqp500-2 501 9.99𝑒 − 7 7.53𝑒 − 7 4.51𝑒 − 7 5307 3 : 49 6.01𝑒 − 7 9.99𝑒 − 7 1.01𝑒 − 7 10580 7 : 31
gka1a 51 9.98𝑒 − 7 2.77𝑒 − 7 3.16𝑒 − 8 2240 2.05 8.43𝑒 − 7 9.81𝑒 − 7 2.15𝑒 − 6 2635 2.33
gka2a 61 8.95𝑒 − 7 9.84𝑒 − 7 2.50𝑒 − 6 1326 1.36 5.88𝑒 − 7 9.98𝑒 − 7 2.39𝑒 − 6 2594 2.51
gka3a 71 9.04𝑒 − 7 8.92𝑒 − 7 5.39𝑒 − 7 1098 1.58 9.84𝑒 − 7 9.98𝑒 − 7 5.21𝑒 − 7 1328 1.88
gka4a 81 9.99𝑒 − 7 9.93𝑒 − 7 8.21𝑒 − 7 1371 2.14 9.98𝑒 − 7 8.02𝑒 − 7 5.02𝑒 − 7 2273 3.39
gka5a 51 8.14𝑒 − 7 9.83𝑒 − 7 1.29𝑒 − 7 1268 1.24 9.97𝑒 − 7 6.58𝑒 − 7 9.02𝑒 − 9 1392 1.33
gka6a 31 8.84𝑒 − 7 7.95𝑒 − 7 3.49𝑒 − 7 927 0.60 1.98𝑒 − 7 9.96𝑒 − 7 1.15𝑒 − 6 979 0.62
gka7a 31 9.12𝑒 − 7 9.96𝑒 − 7 9.07𝑒 − 7 948 0.65 1.00𝑒 − 6 7.50𝑒 − 7 7.33𝑒 − 7 1906 1.24
gka8a 101 8.56𝑒 − 7 9.94𝑒 − 7 2.51𝑒 − 6 2521 5.02 9.91𝑒 − 7 8.54𝑒 − 7 8.65𝑒 − 7 5804 10.91
gka9b 101 5.46𝑒 − 7 1.41𝑒 − 7 1.83𝑒 − 5 1263 3.02 6.45𝑒 − 7 1.73𝑒 − 7 1.88𝑒 − 5 1313 3.07
gka10b 126 9.93𝑒 − 7 8.92𝑒 − 7 2.83𝑒 − 5 1775 8.11 9.97𝑒 − 7 7.65𝑒 − 7 2.45𝑒 − 5 1810 8.32
gka6c 91 9.88𝑒 − 7 7.13𝑒 − 7 1.76𝑒 − 7 4002 7.92 5.56𝑒 − 7 9.99𝑒 − 7 4.07𝑒 − 7 5122 9.95
gka7c 101 8.70𝑒 − 7 9.96𝑒 − 7 1.06𝑒 − 7 4478 9.69 6.83𝑒 − 7 9.99𝑒 − 7 6.47𝑒 − 7 5314 11.45
gka9d 101 7.71𝑒 − 7 9.99𝑒 − 7 3.52𝑒 − 9 1091 2.69 9.92𝑒 − 7 8.58𝑒 − 7 1.04𝑒 − 7 1500 3.64
gka10d 101 5.17𝑒 − 7 9.95𝑒 − 7 3.44𝑒 − 8 1423 3.38 8.61𝑒 − 7 9.96𝑒 − 7 1.01𝑒 − 6 1798 4.23
gka4e 201 9.08𝑒 − 7 7.60𝑒 − 7 4.28𝑒 − 7 3534 24.79 1.00𝑒 − 6 7.22𝑒 − 7 5.43𝑒 − 7 4754 33.12
gka5e 201 8.25𝑒 − 7 9.91𝑒 − 7 3.67𝑒 − 7 3153 22.09 9.97𝑒 − 7 8.91𝑒 − 7 2.95𝑒 − 7 4157 28.95
gka4f 501 9.64𝑒 − 7 9.93𝑒 − 7 1.08𝑒 − 6 5153 4 : 14 9.98𝑒 − 7 7.23𝑒 − 7 4.24𝑒 − 7 7529 6 : 08
gka5f 501 7.66𝑒 − 7 9.97𝑒 − 7 8.13𝑒 − 7 4660 3 : 48 9.99𝑒 − 7 9.66𝑒 − 7 9.37𝑒 − 7 7023 5 : 41
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For a given edge subset 𝑇 ⊆ 𝐸, we can formulate the problem
as

min ⟨
1

2𝑘
Diag (𝑊𝑒) +

𝑘 − 1

2𝑘
𝑊,𝑋⟩

s.t. 𝑋
𝑖𝑗
≥

−1

𝑘 − 1
, ∀ (𝑖, 𝑗) ∈ 𝐸 \ 𝑇,

𝑋
𝑖𝑗
=

−1

𝑘 − 1
, ∀ (𝑖, 𝑗) ∈ 𝑇,

diag (𝑋) = 𝑒, 𝑋 ⪰ 0,

(44)

where 𝑒 ∈ R𝑟 is the vector of all ones, Diag(𝑥) is a diagonal
matrix with 𝑥 as the diagonal entries, and diag(𝑋) is a vector
of the diagonal entries of matrix 𝑋. The constraints 𝑋

𝑖𝑗
=

−1/(𝑘 − 1) were replaced by 𝑋
𝑖𝑗
/√2 = −1/(√2(𝑘 − 1)) and

𝑋
𝑖𝑗

≥ −1/(𝑘 − 1) by 𝑋
𝑖𝑗
/√2 ≥ −1/(√2(𝑘 − 1)). So we have

AA∗ = 𝐼. We set ℎ to 50 for updating the penalty parameter
𝜇.

We did not run SDPAD on our own computer on the
problem “fap36” and the results presented here were taken
from Table 1 in [16]. From Table 1, it can be observed that
Algorithm 1 is often faster than SDPAD for achieving a
duality gap of the same order. The infeasibility achieved by
Algorithm 1 is satisfactory as well.

5.2. Binary Integer Quadratic Programs Problem. In this
subsection, we present numerical results of Algorithm 1 and
SDPAD on binary integer quadratic (BIQ) problems [41]
through SDP relaxations which have the following form:

min ⟨(
𝑄 0

0 0
) ,𝑋⟩

s.t. 𝑋
𝑖𝑖
− 𝑋
𝑛,𝑖

= 0, 𝑖 = 1, . . . , 𝑛 − 1,

𝑋
𝑛𝑛

= 1, 𝑋 ⪰ 0,

(45)

where 𝑄 ∈ R(𝑛−1)×(𝑛−1). The constraints 𝑋
𝑖𝑖
− 𝑋
𝑛,𝑖

= 0 were
replaced by √2/3(𝑋

𝑖𝑖
− 𝑋
𝑛,𝑖
) = 0 and the matrix 𝑄 was

scaled by its Frobenious norm. We set ℎ to 50 for updating
the penalty parameter 𝜇.

Table 2 lists the results of Algorithm 1 and SDPAD on
the BIQ problems. By comparing the results in Table 2, we
can conclude that Algorithm 1 applied to BIQ problems is
superior to SDPAD in terms of CPU time and number
of iterations. In addition, the accuracy of the approximate
optimal solutions computed by Algorithm 1 is as good as that
obtained by SDPAD.

Figure 1 shows the performance profiles [42] of
Algorithm 1 and SDPAD for the number of iterations,
Figure 1(a), and CPU time, Figure 1(b). We observe that
Algorithm 1 is better than SDPAD in terms of number of
iterations and CPU time.

6. Conclusion

In this paper, a novel linearizing alternating direction
augmented Lagrangian approach is proposed for solving
semidefinite programs (SDP).The algorithmupdates the dual

variables without solving any system of linear equations.
Moreover, all the variables are updated in closed forms.
Preliminary numerical results show the efficiency of the
proposed algorithm. However, there are still some unsettled
issues for implementation. For example, efficient strategies to
update penalty parameter 𝜇 and choose step size 𝜆

𝑘
deserve

more work for applications of the algorithm.
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