863 research outputs found

    LIONS: An AWGR-Based Low-Latency Optical Switch for High-Performance Computing and Data Centers

    Get PDF
    This paper discusses the architecture of an arrayed waveguide grating router (AWGR)-based low-latency interconnect optical network switch called LIONS, and its different loopback buffering schemes. A proof of concept is demonstrated with a 4 x 4 experimental testbed. A simulator was developed to model the LIONS architecture and was validated by comparing experimentally obtained statistics such as average end-to-end latency with the results produced by the simulator. Considering the complexity and cost in implementing loopback buffers in LIONS, we propose an all-optical negative acknowledgement (AO-NACK) architecture in order to remove the need for loopback buffers. Simulation results for LIONS with AO-NACK architecture and distributed loopback buffer architecture are compared with the performance of the flattened butterfly electrical switching network

    Rapid and complete hitless defragmentation method using a coherent RX LO with fast wavelength tracking in elastic optical networks

    Get PDF
    This paper demonstrates a rapid and full hitless defragmentation method in elastic optical networks exploiting a new technique for fast wavelength tracking in coherent receivers. This technique can be applied to a single-carrier connection or each of the subcarriers forming a superchannel. A proof-of-concept demonstration shows hitless defragmentation of a 10 Gb/s QPSK single-carrier connection from 1547.75 nm to 1550.1 nm in less than 1 mu s. This was obtained using a small (0.625 kB) link-layer transmitter buffer without the need for any additional transponder. We also demonstrated that the proposed defragmentation technique is capable of hopping over an existing connection, i.e. 10 Gb/s OOK at 1548.5 nm, without causing any degradation of its real-time Bit Error Rate (BER) value. The proposed scheme gives advantages in terms of overall network blocking probability reduction up to a factor of 40. (C) 2012 Optical Society of Americ

    A scalable silicon photonic chip-scale optical switch for high performance computing systems

    Get PDF
    This paper discusses the architecture and provides performance studies of a silicon photonic chip-scale optical switch for scalable interconnect network in high performance computing systems. The proposed switch exploits optical wavelength parallelism and wavelength routing characteristics of an Arrayed Waveguide Grating Router (AWGR) to allow contention resolution in the wavelength domain. Simulation results from a cycle-accurate network simulator indicate that, even with only two transmitter/receiver pairs per node, the switch exhibits lower end-to-end latency and higher throughput at high (> 90%) input loads compared with electronic switches. On the device integration level, we propose to integrate all the components (ring modulators, photodetectors and AWGR) on a CMOS-compatible silicon photonic platform to ensure a compact, energy efficient and cost-effective device. We successfully demonstrate proof-of-concept routing functions on an 8 x 8 prototype fabricated using foundry services provided by OpSIS-IME. (C) 2013 Optical Society of Americ

    Experimental demonstration of flexible bandwidth networking with real-time impairment awareness

    Get PDF
    We demonstrate a flexible-bandwidth network testbed with a real-time, adaptive control plane that adjusts modulation format and spectrum-positioning to maintain quality of service (QoS) and high spectral efficiency. Here, low-speed supervisory channels and field-programmable gate arrays (FPGAs) enabled real-time impairment detection of high-speed flexible bandwidth channels (flexpaths). Using premeasured correlation data between the supervisory channel quality of transmission (QoT) and flexpath QoT, the control plane adapted flexpath spectral efficiency and spectral location based on link quality. Experimental demonstrations show a back-to-back link with a 360-Gb/s flexpath in which the control plane adapts to varying link optical signal to noise ratio (OSNR) by adjusting the flexpath's spectral efficiency (i.e., changing the flexpath modulation format) between binary phase-shift keying (BPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK). This enables maintaining the data rate while using only the minimum necessary bandwidth and extending the OSNR range over which the bit error rate in the flexpath meets the quality of service (QoS) requirement (e. g. the forward error correction (FEC) limit). Further experimental demonstrations with two flexpaths show a control plane adapting to changes in OSNR on one link by changing the modulation format of the affected flexpath (220 Gb/s), and adjusting the spectral location of the other flexpath (120 Gb/s) to maintain a defragmented spectrum. (C) 2011 Optical Society of Americ

    Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions

    Get PDF
    Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. Š 2014 The Author(s)

    Frequency and predictors of miliary tuberculosis in patients with miliary pulmonary nodules in South Korea: A retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Miliary pulmonary nodules are commonly caused by various infections and cancers. We sought to identify the relative frequencies of various aetiologies and the clinical and radiographic predictors of miliary tuberculosis (TB) in patients with miliary pulmonary nodules.</p> <p>Methods</p> <p>We performed a retrospective cohort study of patients who presented with micronodules occupying more than two-thirds of the lung volume, based on computed tomography (CT) of the chest, between November 2001 and April 2007, in a tertiary referral hospital in South Korea.</p> <p>Results</p> <p>We analyzed 76 patients with miliary pulmonary nodules. Their median age was 52 years and 38 (50%) were males; 18 patients (24%) had a previous or current malignancy and five (7%) had a history of TB. The most common diagnoses of miliary nodules were miliary TB (41 patients, 54%) and miliary metastasis of malignancies (20 patients, 26%). Multivariate analysis revealed that age ≤30 years, HIV infection, corticosteroid use, bronchogenic spread of lesions, and ground-glass opacities occupying >25% of total lung volume increased the probability of miliary TB. However, a history of malignancy decreased the probability of miliary TB.</p> <p>Conclusion</p> <p>Miliary TB accounted for approximately half of all causes of miliary pulmonary nodules. Young age, an immune-compromised state, and several clinical and radiographic characteristics increased the probability of miliary TB.</p

    Salvage chemotherapy of biweekly irinotecan plus S-1 (biweekly IRIS) in previously treated patients with advanced gastric cancer

    Get PDF
    PURPOSE: This phase II trial first describes the combination chemotherapy of biweekly irinotecan plus S-1 (biweekly IRIS) for pretreated advanced gastric cancer (AGC) patients. METHODS: Patients who had previously been treated with greater than or equal to one regimen were enrolled. They received S-1 35 mg/m(2) twice daily on days 1-14 and irinotecan 150 mg/m(2) on days 1 and 15, every 4 weeks. The primary endpoint was overall survival (OS). RESULTS: Among the 38 patients enrolled, 18 patients were treated as second line, and the remaining 20 patients were enrolled as third- or fourth line. A total of 208 cycles were administered with the median being four cycles (range 1-16). The median OS was 8.7 months [95% confidence interval (CI) 7.5-10.3], and the median progression-free survival was 6.3 months (95% CI 5.3-7.3). Low serum albumin (<3.5 mg/dL) was an independent adverse prognosticator for survival. Overall response rate was 17% (95% CI 4-30%). The major grade 3/4 toxicities were neutropenia (26%) and diarrhea (18%). CONCLUSIONS: Biweekly IRIS showed the moderate activity as salvage treatment in AGC. Considering high neutropenia and gastrointestinal toxicity, patient selection should be warranted; serum albumin may be a predictive factor for treatment decisionope

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore