2,501 research outputs found

    Functional Classification of Skeletal Muscle Networks. I. Normal Physiology

    Get PDF
    Extensive measurements of the parts list of human skeletal muscle through transcriptomics and other phenotypic assays offer the opportunity to reconstruct detailed functional models. Through integration of vast amounts of data present in databases and extant knowledge of muscle function combined with robust analyses that include a clustering approach, we present both a protein parts list and network models for skeletal muscle function. The model comprises the four key functional family networks that coexist within a functional space; namely, excitation-activation family (forward pathways that transmit a motoneuronal command signal into the spatial volume of the cell and then use Ca2+ fluxes to bind Ca2+ to troponin C sites on F-actin filaments, plus transmembrane pumps that maintain transmission capacity); mechanical transmission family (a sophisticated three-dimensional mechanical apparatus that bidirectionally couples the millions of actin-myosin nanomotors with external axial tensile forces at insertion sites); metabolic and bioenergetics family (pathways that supply energy for the skeletal muscle function under widely varying demands and provide for other cellular processes); and signaling-production family (which represents various sensing, signal transduction, and nuclear infrastructure that controls the turn over and structural integrity and regulates the maintenance, regeneration, and remodeling of the muscle). Within each family, we identify subfamilies that function as a unit through analysis of large-scale transcription profiles of muscle and other tissues. This comprehensive network model provides a framework for exploring functional mechanisms of the skeletal muscle in normal and pathophysiology, as well as for quantitative modeling

    Regularity for the Monge-Amp\`ere equation by doubling

    Full text link
    We give a new proof for the interior regularity of strictly convex solutions of the Monge-Amp\`ere equation. Our approach uses a doubling inequality for the Hessian in terms of the extrinsic distance function on the maximal Lagrangian submanifold determined by the potential equation.Comment: 7 page

    Exact results for spin dynamics and fractionization in the Kitaev Model

    Get PDF
    We present certain exact analytical results for dynamical spin correlation functions in the Kitaev Model. It is the first result of its kind in non-trivial quantum spin models. The result is also novel: in spite of presence of gapless propagating Majorana fermion excitations, dynamical two spin correlation functions are identically zero beyond nearest neighbor separation, showing existence of a gapless but short range spin liquid. An unusual, \emph{all energy scale fractionization}of a spin -flip quanta, into two infinitely massive π\pi-fluxes and a dynamical Majorana fermion, is shown to occur. As the Kitaev Model exemplifies topological quantum computation, our result presents new insights into qubit dynamics and generation of topological excitations.Comment: 4 pages, 2 figures. Typose corrected, figure made better, clarifying statements and references adde

    Large spin-orbit effects in small quantum dots

    Full text link
    We consider small ballistic quantum dots weakly coupled to the leads in the chaotic regime and look for significant spin-orbit effects. We find that these effects can become quite prominent in the vicinity of degeneracies of many-body energies. We illustrate the idea by considering a case where the intrinsic exchange term -JS^2 brings singlet and triplet many-body states near each other, while an externally tunable Zeeman term then closes the gap between the singlet and the one of the triplet states (with spin projection parallel the external field). Near this degeneracy, the spin-orbit coupling leads to a striking temperature dependence of the conductance, with observable effects of order unity at temperatures lower than the strength of the spin-orbit coupling. Under favorable circumstances, spelled out in the paper, these order unity effects in the conductance persist to temperatures much higher than the spin-orbit coupling strength. Our conclusions are unaffected by the presence of non-universal perturbations. We suggest a class of experiments to explore this regime.Comment: 13 pages, 8 figure

    Characterization of One-Dimensional Luttinger Liquids in Terms of Fractional Exclusion Statistics

    Full text link
    We develop a bosonization approach to study the low temperature properties of one-dimensional gas of particles obeying fractional exclusion statistics (FES). It is shown that such ideal gas reproduces the low-energy excitations and asymptotic exponents of a one-component Luttinger liquid (with no internal degrees of freedom). The bosonized effective theory at low energy (or temperature) is identified to a c=1c=1 conformal field theory (CFT) with compactified radius determined by the statistics parameter λ\lambda. Moreover, this CFT can be put into a form of the harmonic fluid description for Luttinger liquids, with the Haldane controlling parameter identified with the statistics parameter (of quasi-particle excitations). Thus we propose to use the latter to characterize the fixed points of 1-d Luttinger liquids. Such a characterization is further shown to be valid for generalized ideal gas of particles with mutual statistics in momentum space and for non-ideal gas with Luttinger-type interactions: In either case, the low temperature behavior is controlled by an effective statistics varying in a fixed-point line.Comment: 16 pages, a reference adde

    On the radiative efficiencies, Eddington ratios, and duty cycles of luminous high-redshift quasars

    Get PDF
    We investigate the characteristic radiative efficiency \epsilon, Eddington ratio \lambda, and duty cycle P_0 of high-redshift active galactic nuclei (AGN), drawing on measurements of the AGN luminosity function at z=3-6 and, especially, on recent measurements of quasar clustering at z=3-4.5 from the Sloan Digital Sky Survey. The free parameters of our models are \epsilon, \lambda, and the normalization, scatter, and redshift evolution of the relation between black hole mass \mbh and halo virial velocity V_vir. We compute the luminosity function from the implied growth of the black hole mass function and the quasar correlation length from the bias of the host halos. We test our adopted formulae for the halo mass function and halo bias against measurements from the large N-body simulation developed by the MICE collaboration. The strong clustering of AGNs observed at z=3 and, especially, at z=4 implies that massive black holes reside in rare, massive dark matter halos. Reproducing the observed luminosity function then requires high efficiency \epsilon and/or low Eddington ratio \lambda, with a lower limit (based on 2\sigma agreement with the measured z=4 correlation length) \epsilon> 0.7\lambda/(1+0.7\lambda), implying \epsilon > 0.17 for \lambda > 0.25. Successful models predict high duty cycles, P_0~0.2, 0.5, and 0.9 at z=3.1, 4.5 and 6, respectively, and they require that the fraction of halo baryons locked in the central black hole is much larger than the locally observed value. The rapid drop in the abundance of the massive and rare host halos at z>7 implies a proportionally rapid decline in the number density of luminous quasars, much stronger than simple extrapolations of the z=3-6 luminosity function would predict. (abridged)Comment: Replaced with version accepted by ApJ. More detailed analysis including black hole mergers. Results unchange
    • …
    corecore