6,034 research outputs found

    Interactions of a hairy vetch-corn rotation and P fertilizer on the NPK balance in an upland red soil of the Yunnan plateau

    Get PDF
    A field experiment was conducted on an infertile red soil under a hairy vetch (Vicia villosa Roth) and corn (Zea mays L.) rotation system in a highland area of Yunnan Province, China. Effects of phosphate (P) fertilization, combined with hairy vetch returned to the soil, on crop yield and soil fertility were studied, and the balances of nitrogen (N), phosphorus (P) and potassium (K) in the rotation system were estimated. As P application increased from 135 to 315 kg ha-1, the dry matter yield of hairy vetch increased by 900.6 to 1283.86 kg DM ha-1, and also promoted P absorption by hairy vetch. When compared with CK, the corn and corn straw yield increased by 16.64 and 33.48%, respectively, from the crop rotation system, while it increased by 18.36 and 34.96% and 32.58 and 66.5%, from the integrated use of green manure and P fertilizer, respectively. Simple crop rotation proceeding could improve soil N content in the 0 to 20 cm soil layer, while the combined P application improved soil P content. After corn harvest, soil Olsen-P content under the different treatments increased by 35.31 and 122.15% and 19.70 and 63.63% in the 0 to 10 and 10 to 20 cm soil layers, respectively. The optimum P fertilizer rate for the hairy vetch-corn rotation system in Yunnan Province was 135 kg P2O5 ha,sup>-1. At this P rate, the nutrient balance surpluses for N, P and K were 84.9, 18.9 and 26.4%, respectively.Keywords: Rotation system, crop yield, green manure, NPK balance, P fertilizer, soil physical and chemical properties

    Design of wideband in-phase and out-of-phase power dividers using microstrip-to-slotline transitions and slotline resonators

    Full text link
    © 2019 IEEE. A new class of in-phase and out-of-phase power dividers with constant equal-ripple frequency response and wide operating bandwidth is presented in this paper. The proposed design is based on microstrip-to-slotline transitions and slotline resonators. A slotted T-junction is adopted to split the power into two parts and obtain wideband isolation between the two output signals at the same time. The characteristic impedance of the transitions and resonators determines the operating bandwidth and in-band magnitude response. By reversing the placement direction of the slotline-to-microstrip transition, the electrical field is reversed, thus resulting in out-of-phase responses between output ports. A thorough analysis of the relations between the structure and the characteristic functions is provided to guide the selection of parameters of the structure in order to meet the design objectives. In the structure, simulation and measurement are conducted to verify the design method. For both in-phase and out-of-phase cases, more than 110% bandwidth has been achieved with excellent matching at all ports and isolation of output signals. Constant in-band ripple is obtained within the operating band of the power dividers, indicating that the proposed design can realise minimal power deviations, which is extremely desired in wireless systems

    Resonance states of open quantum dots

    Get PDF
    We have computed the spectra of resonance states for several open quantum dot systems. These states are identified using the electron dwell time. The statistics of the spectra are exactly the same as that of the corresponding closed system, even when the level widths are comparable with the average spacing. In particular, for a regular structure, e.g., an open rectangular quantum dot, the resonance state level spacing satisfies the Poisson distribution. For an irregular structure, e.g., an open Sinai billiard, we found that the spacings satisfy the GOE or GUE statistics depending on whether an external magnetic field is applied. Thus in this regime of ballistic transport, the statistics of resonance transmission contains characteristics of the corresponding intrinsic quantum level distribution. © 1996 The American Physical Society.published_or_final_versio

    Wideband Planarized Dual-Linearly-Polarized Dipole Antenna and Its Integration for Dual-Circularly-Polarized Radiation

    Full text link
    © 2002-2011 IEEE. A planarized dual-linearly-polarized (dual-LP) antenna and an integrated dual-circularly-polarized (dual-CP) antenna are proposed in this letter. For the dual-LP antenna, two groups of dipoles are fed by two balun-included feed networks to achieve ±45° polarizations. The feed networks and the radiators are printed on two sides of a substrate, forming a fully planar structure. Taking advantage of its planar configuration, the dual-LP antenna is further integrated with a wideband coupler to realize dual-CP radiation. The coupler is bent and squeezed into the space between the radiators and the reflector, leading to a compact structure. Both the dual-LP antenna and the dual-CP antenna have very stable radiation performances across a wide operating band >66%

    A novel base station antenna based on rectangular waveguide

    Full text link
    © 2016 IEICE. A novel base station antenna element is proposed. It consists of a surface of parallel strips to rotate the polarization direction and a segment of a rectangular waveguide. The surface is designed on a single-sided substrate, which has the same area as the aperture of the waveguide. In assembling, the non-copper side of the substrate is placed in direct contact with the aperture of the waveguide antenna. To achieve the polarization rotation, the parallel strips on the surface are rotated by 45° with respect to the walls of the waveguide antenna. By adding the surface, the linear polarization direction of the rectangular waveguide antenna is rotated by 45° to comply with the requirements of cellular industry. SMA connector with a conical probe is used as the coaxial-to-waveguide adaptor. Results have shown that the proposed antenna has a fractional impedance bandwidth of 35%, and a stable radiation pattern is also achieved

    Numerical modeling of the propagation environment in the atmospheric boundary layer over the Persian Gulf

    Get PDF
    Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land–sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct depth and strength, although leaving scope for improvement, were most encouraging

    Influence of human body on massive MIMO indoor channels

    Full text link
    © 2019 IEEE. Massive MIMO can dramatically improve capacity and spectral efficiency. However, it is not very clear whether it can significantly improve the signal blockage problem that exists in single antenna systems. In this paper, we investigate the impact of the human body on indoor massive MIMO channels, using practically measured channel data for a 32x8 massive MIMO system in a complex office environment. We introduce a parameter of Power Imbalance (PI) indices to estimate the wide-sense none-stationarity in multiple domains and another parameter of Channel Popularity Indices (CPI) to predict the popularity of MIMO channel. We find that in most cases, the presence of the human body still has a non- negligible negative impact. It decreases the ergodic capacity by about 8% and increases the path loss exponent by 1. In average, the ergodic capacity for NLOS channels are 15% higher than that for LOS

    Suppression of Cross-Band Scattering in Multiband Antenna Arrays

    Full text link
    © 1963-2012 IEEE. This paper presents a novel method of suppressing cross-band scattering in dual-band dual-polarized antenna arrays. The method involves introducing chokes into low-band (LB) elements to suppress high-band (HB) scattering currents. The experimental results show that by inserting LB-pass HB-stop chokes into LB radiators, suppression of induced HB currents on the LB elements is achieved. This greatly reduces the pattern distortion of the HB array caused by the presence of LB elements. The array considered is configured as two columns of HB antennas operating from 1.71 to 2.28 GHz interleaved with a single column of LB antennas operating from 0.82 to 1.0 GHz. The realized array with choked LB element has stable and symmetrical radiation in both HB and LB

    Wideband Dual-Polarized Multiple Beam-Forming Antenna Arrays

    Full text link
    © 1963-2012 IEEE. Wideband multibeam antenna arrays based on three-beam Butler matrices are presented in this paper. The proposed beam-forming arrays are particularly suited to increasing the capacity of 4G long-term evolution (LTE) base stations. Although dual-polarized arrays are widely used in LTE base stations, analog beam-forming arrays have not been realized before, due to the huge challenge of achieving wide operating bandwidth and stable array patterns. To tackle these problems, for the first time, we present a novel wideband multiple beam-forming antenna array based on Butler matrices. The described beam-forming networks produce three beams but the methods are applicable to larger networks. The essential part of the beam-forming array is a wideband three-beam Butler matrix, which comprises quadrature couplers and fixed wideband phase shifters. Wideband quadrature and phase shifters are developed using striplines, which provide the required power levels and phase differences at the outputs. To achieve the correct beamwidth and to obtain the required level of crossover between adjacent beams, beam-forming networks consisting of augmented three-beam Butler matrices using power dividers are presented to expand the number of output ports from three to five or six. Dual-polarized, three-beam antenna arrays with five and six elements covering LTE band are developed. Prototypes comprising beam-forming networks and arrays are tested according to LTE base station specification. The test results show close agreement with the simulation ones and compliance with LTE requirements. The designs presented are applicable to a wide range of wideband multibeam arrays
    corecore