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We have computed the spectra of resonance states for several open quantum dot systems. These states are
identified using the electron dwell time. The statistics of the spectra are exactly the same as that of the
corresponding closed system, even when the level widths are comparable with the average spacing. In par-
ticular, for a regular structure, e.g., an open rectangular quantum dot, the resonance state level spacing satisfies
the Poisson distribution. For an irregular structure, e.g., an open Sinai billiard, we found that the spacings
satisfy the GOE or GUE statistics depending on whether an external magnetic field is applied. Thus in this
regime of ballistic transport, the statistics of resonance transmission contains characteristics of the correspond-
ing intrinsic quantum level distribution.@S0163-1829~96!04124-0#

I. INTRODUCTION

Electrons traversing through ultrasmall semiconductor
microstructures give rise to a fascinating regime of quantum
transport.1 When the system size is reduced to near or below
the mean free path of charge carriers, a variety of phenomena
associated with quantum interference can be easily observed.
These include the study of the universal conductance fluc-
tuations in the mesoscopic regime,2 the Aharonov-Bohm
effects,3 the quenching of the quantum Hall effects,4 and the
junction resonances.5 Recently, in an interesting experiment,
Marcus et al.6 measured the conductance of a two-
dimensional stadium-shaped quantum dot, connected to the
outside by two point contacts. Large aperiodic conductance
fluctuations were observed. It is well known that the motion
of aclassicalparticle is chaotic when it bounces off the walls
inside a closed stadium-shaped box.7 Thus by measuring
conductance of an irregular quantum dot, one has the possi-
bility of investigating quantumchaotic scattering. From a
theoretical point of view, the semiconductor structures thus
provide a testing ground for theories and ideas in the intrigu-
ing field of quantum chaos.7,8

Although there is no rigorous and unique definition of
quantum chaos, it generally refers to quantum systems whose
classical analog is chaotic, such as a stadium-shaped quan-
tum dot,9 or quantum systems whose eigenvalue spectrum
satisfies Dyson ensembles,10 such as the Anderson model.
For closed systems, quantum chaos is studied by solving the
one-particle Schro¨dinger equation, and characterizing the
statistics of the energy levels.10 For open systems one is
dealing with a scattering problem of charge carriers by some
peculiar boundary, and an important characteristic is the ob-
served system dependent conductance fluctuations.1,12 So far

quantum chaotic scattering has been studied from several
directions such as the investigation of statistical properties of
the scattering matrix,11,12 the study of the distribution func-
tion of the values of transmission coefficients,13 and the sta-
tistics of level widths in quantum dots.14

In this paper we present a direct calculation of the statis-
tical properties of quantum scattering states or the resonance
states which are responsible for the junction resonances often
observed in multiprobe quantum-dot-based systems.5 In par-
ticular we will study the manifestation of quantum level
spacing statistics. There are several motivations of this work.
First, while resonance states play an important role in reso-
nant transmission in quantum devices, direct calculations of
these states for two-dimensional structures have been quite
limited due to technical difficulties,15 and the statistics of
these states have not been directly computed. Second, a ma-
jor part of our understanding of ‘‘quantum chaos’’ is based
on the eigenenergy level statistics ofclosedsystems. Thus
we believe it is desirable to directly relate the statistics to the
observed conductance fluctuations of the open system. When
a billiard structure becomes open by connecting it to external
leads, the eigenenergy levels become resonance state levels.
The resonant transmission often observed experimentally can
be viewed as mediated by these states. Obviously the statis-
tics of these state levels is directly related to the correlation
of the conductance fluctuation.16 While the resonance state
levels are shifted in energy from those of the corresponding
bound states17 of the closed system, recently we have shown
that the one-to-one correspondence between the resonance
and the bound states holds at low energies.18 However, at
higher energies, or in situations where the width of the reso-
nance state levels is comparable to the average level spacing,
such one-to-one correspondence is less clear. Thus an inter-
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esting question arises: does the level spacing of resonance
states satisfy the same statistics as those of the corresponding
bound states? While weexpect, especially in the case of
weak coupling between the leads and the quantum dot,12 that
the resonance states satisfy the same statistics, it is neverthe-
less extremely difficult to directly compute enough levels for
open quantum dot systems for a meaningful statistical analy-
sis; and it is not at all clear for the strong coupling case since
there the level smearing is quite large.

Our direct numerical calculation shows~see below! that
the resonance state spectra for several open quantum dot sys-
tems satisfy exactly the same statistics as that of the corre-
sponding closed systems, even when the level widths are
comparable with the average spacing. In particular, for a
regular structure, e.g., an open rectangular quantum dot, the
resonance state level spacing satisfies the Poisson distribu-
tion. For an irregular structure, e.g., an open Sinai billiard,
we found that the spacings satisfy the GOE or GUE statistics
depending on whether an external magnetic field is applied.
It turned out that the energy levels of the resonance states are
very close to those energies where transmission maximaor
minima occur. Thus in this regime of ballistic transport, one
can achieve the understanding that the statistics of resonance
transmission contains the characteristics of the correspond-
ing intrinsic quantum level distribution.

The paper is organized in the following way. In the next
section the method and results are presented, and a short
summary is in the last section.

II. METHOD AND RESULTS

We study transmission of electrons through two kinds of
quantum dot structures. Each dot is connected by two probes
where electrons come from one probe, scatter inside the dot,
and transmit to the other probe or reflect back. We investi-
gated both a strong and weak coupling situation between the
probes and the dots. In the weak coupling case tunneling
barriers are added at the connections between the probes and
the dots, while no tunnel barriers are present in the strong
coupling case. The first structure is a rectangle quantum dot
which is ‘‘regular’’ in the sense that the motion of a classical
particle inside the dot is not chaotic. The second structure is
a Sinai billiard which is ‘‘irregular’’ since the motion of
classical particles inside is chaotic. For the irregular structure
we also study the consequence of an external magnetic field.
The structures are shown in the insets of Figs. 3 and 4.

Typically in the study of quantum level statistics, one
needs to compute thousands of levels in order to have good
statistical averages. However, for the scattering problem con-
sidered here, this is practically impossible to do. We also
note that experimentally ballistic transport in semiconductor
nanostructures involves relatively low energy. Thus we shall
focus on the statistical properties of the resonance states at
low energies. For the Sinai billiard, we have put three hard
disks inside the quantum dot. By randomly changing the po-
sitions of these disks we were able to generate an ensemble
with uncorrelated resonance patterns. This allowed us to de-
termine the resonance states~see below! at relatively low
energy and ensemble average to obtain reasonable statistics.8

For the regular structure we simply varied the width of the
quantum wires connecting the dot to generate an ensemble
for averaging.

The resonance states can be identified by calculating the
dwell time of the incident electron.18 Dwell time19 measures
the duration an electron spends in the scattering region of a
structure. Thus if transport is mediated by resonances, we
expect much longer dwell times when the incident electron is
at the energy of a resonance state than the times for other
incident energies. At junction resonances wheretd is peaked,
the transmission coefficients take extremal values due to
resonance transmission~see below!. As we have shown in a
recent paper,18 this ‘‘operational’’ method is able to unam-
biguously identify resonance states regardless of whether the
quantum dot is strongly or weakly coupled to the quantum
wires.

The dwell timetd is defined
19 as the ratio of the number

of particles within the region of interest (V) to the incident
flux J,

td5E
V

uC~rW !u2drW/J.

In our case,V is the quantum dot region. The quantum scat-
tering problem is solved using a finite-element numerical
scheme20,21 for the case of Sinai billiards, and using a mode-
matching method22 for the regular dot. With the solution of

FIG. 1. Typical transmission coefficient and dwell time of a
Sinai billiard quantum dot versus incident energy without magnetic
field, in the tunneling regime where the leads couple weakly with
the quantum dot.~a! The transmission coefficientT(E); ~b! the
dwell time td . In this case the peaks intd coincide with the peaks
of T(E) very well.
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the wave functions, we can compute the dwell timetd . The
solution also gives the transmission coefficients.

For the Sinai billiard, we have fixed the quantum dot di-
mension to be 3000 Å33790 Å ~see insert of Fig. 3!. The
width of the probes is 1500 Å with the two probes at right
angle. The radius of the disks is fixed at 375 Å , 405 Å , and
500 Å with their centers randomly chosen but without the
disks overlapping each other. We have used about 3300 grid
points to discretize the quantum dot region for the solution of
the scattering problem.21 For the tunneling case, the heights
of the barriers are kept three times higher than the incident
electron energy. We have varied the incident electron energy
in steps of 0.01E1 to 0.04E1 whereE1 is the first subband
energy of the quantum wires~the probes!. The resonance
state levels are computed up to 26E1 in the tunneling case,
and up to 41E1 in the transmissive case.

We first present results for the case of zero magnetic field.
Figures 1~a! and 2~a! show typical transmission coefficients
T(E) as a function of the incident electron energy for a Sinai
billiard with and without the tunneling barriers. In both cases
the resonant pattern is clearly seen. We have found that in
the tunneling regime the maxima of the dwell time coincide
quite well with the transmission peaks. However, in the
transmissive case the maxima of the dwell time may coincide
with the minima of the transmission coefficient, as seen

previously.18 The corresponding curves oftd(E) are shown
in Figs. 1~b! and 2~b! for the tunneling and transmissive
cases, and in the latter case the leads strongly couple with the
scattering region. It is clear that the sharpness oftd makes
the ‘‘operational’’ definition of the resonance states
reasonable.18 For the transmissive case the peak values of
td are smaller than those of the tunneling case, an indication
of larger level widths. For a detailed discussion of the nature
and origin of the resonance states in open quantum dot sys-

FIG. 2. Typical transmission coefficient and dwell time of a
Sinai billiard quantum dot versus incident energy without magnetic
field, in the transmissive regime without tunneling barriers where
the leads couple strongly with the quantum dot.~a! The transmis-
sion coefficientT(E); ~b! the dwell timetd . Notice that in this case
a peak intd may coincide with either a peak or a valley inT(E).

FIG. 3. Distribution function of the resonance state level spac-
ings for the ensemble of Sinai billiard quantum dots.~a! for the
tunneling case without magnetic field where a total of 902 reso-
nance levels were collected from 16 dots below 26E1 . ~b! for the
transmissive case without magnetic field where a total of 579 reso-
nance levels were found from 15 dots below 41E1 . Solid lines are
the Wigner distribution function, Eq.~1!. Insets: plot of the open
Sinai billiard quantum dot with hardwall potential boundaries.~c!
for the transmissive case with a uniform magnetic field of 830 G.
235 resonance levels were found from eight dots. The solid curve is
from the distribution Eq.~2!.
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tems we refer interested readers to Ref. 18. In what follows
the resonance state levels,$e i%, are taken as the peak posi-
tions of the dwell time.18

With the energy steps mentioned above we typically
found around 50 to 60 resonance state levels with energies
less than 26E1 in the tunneling case, while only about 35
levels in the transmissive case below 41E1 . In either case the
number of levels is less than an estimate using the Weyl
formula for the corresponding closed system.7 This indicates
that due to the finite level width, especially in the transmis-
sive case, many levels overlap and merge, leading to fewer
resonance states in the open structure than the corresponding
closed structure. For the tunneling case, we have studied an
ensemble of 16 Sinai billiards where a total of 902 resonance
states were identified. For the transmissive case, we were
able to collect 579 resonance states using 15 billiards. Stan-
dard statistical analyses25 on these resonance state levels
were then performed.10,24,9

An interesting quantity is the distribution function of the
level spacings. For each member of the billiard ensemble, we
first computed the average level spacings̄. The level spac-
ings were then measured in units ofs̄: si[(e i112e i)/ s̄.
This was done for each member of the billiard ensemble and
all the spacings were then sorted into a list to compute the
distribution function. It is well known that for aclosedSinai
billiard in zero magnetic field, the statistics of the bound

state level spacings belong to the Gaussian orthogonal en-
semble ~GOE!, which is taken as the signal of quantum
chaos:7

P~s!5
p

2
sexpS p

4
s2D . ~1!

Figures 3~a! and 3~b! shows the distribution function for the
resonance statelevels together with the Wigner distribution
~1!. In both tunneling and transmissive cases, the overall
agreement is very good. We note that due to the finite reso-
lution of the energy scan in our calculation, some resonance
states with energies extremely close to others may have been
missed for the tunneling case. This leads to the shortage of
states in the lowest bin in Fig. 3~a!. For the transmissive
case, on the other hand, levels extremely close to each other
do not occur due to the much larger level widths of each
level. In this case our finite resolution in the energy scan
does not miss states, hence the agreement with Wigner dis-
tribution is better at the lowest energy bin. We thus conclude
that the ensemble of open Sinai billiards has resonance states
satisfying the same statistics as those of the closed system,
whether or not in the tunneling regime. The important mes-
sage is that although the resonance state levels are shifted in
energy from those of the corresponding bound states, and the
finite widths of the resonance state levels lead to the merger
and overlap of many states, the universal behavior of the
level spacing statistics does not change. Hence the fluctua-
tions of the transmission coefficient and conductance@e.g.,
Figs. 1~a! and 2~a!# in this kind of irregular quantum dot will
carry the characteristics of the GOE statistics.

Since in a transport measurement one often uses magnetic
field as a control parameter, it is of interest to investigate the
resonance states spectra whenB is present. When an external
uniform magnetic fieldB is applied, the universality of the
level statistics will change. For a closed system the random
matrix theory predicts the following distribution when spin-
orbit scattering is neglected~Gaussian unitary ensemble or
GUE!,

P2~s!5
32

p2 s
2expS 2

4

p
s2D . ~2!

For the same ensemble of open Sinai billiards as discussed
above~no tunneling barriers!, we have computed a collection
of resonance states for a field strengthB5830 G, which
corresponds to less than two flux quanta in the scattering
region. Similar to the previous situation, due to strong cou-
pling to the leads there are about 30 resonance states identi-
fied below energy 41E1 whereE1 is the first subband energy
without magnetic field. In Fig. 3~c! the distribution of the
resonance state levels is plotted and compared with Eq.~2!
above, where a total of 235 levels from eight billiards were
included in the analysis. Although the sample is quite small,
the agreement with~2! is still reasonable.23

To compare with the Sinai billiards, we have computed
resonance states of an ensemble of regular quantum dots, as
shown in the inset of Fig. 4 and described above. The corre-
sponding bound state levels of theclosed dotssatisfy a Pois-
son distribution, as shown by Berry and Tabor:26

P~s!5e2s.

FIG. 4. Distribution function of the resonance state level spac-
ings for the ensemble of regular quantum dots.~a! for the tunneling
case where 2562 resonance levels were collected from 42 systems.
~b! for the transmissive case where 2535 levels were used. Solid
lines are the Poisson distribution function. Insets: plot of the open
regular quantum dot with hardwall potential boundaries.
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For the tunneling case we have collected a total of 2562
resonance state levels from an ensemble of 42 regular sys-
tems, and for the transmissive case 2535 levels were col-
lected using 39 structures. Statistical analysis similar to
above was carried out. Figure 4 shows the distribution of the
resonance state level spacings. The agreement with the Pois-
son distribution is quite reasonable for both the tunneling and
the transmissive cases. Once again the opening of the quan-
tum dot does not change the universal statistics of level spac-
ings.

Another often used measure in studying level statistics is
the spectral rigidityD3 , defined as27,10 the mean square de-
viation of the best local fit straight line to the staircase cu-
mulative spectral density over a normalized energy scale.
This quantity measures the long-range rigidity of the level
spectrum and is expected to be less sensitive to the possibil-
ity of missing a few levels which are very close to other
levels due to our finite resolution of the energy scan. Specifi-
cally, for a given numberL of resonance state levels we
computed an average ofD3(L) following Ref. 28 and the
data are compared with the analytical formula in Ref. 29
from the random matrix theory. The results are shown in Fig.
5, where the solid lines are from analytical formula.29 In-
deed, data of the resonance state levels for Sinai billiards
without magnetic field~solid and open squares! agree rea-

sonably well with the GOE result, and is far from both the
GUE line and the Poisson line. With a finite magnetic field,
our numerical data deviates from the GOE line toward the
GUE line, as clearly shown in Fig. 5~open circles!. Unfor-
tunately the numerical calculation with a finiteB was ex-
ceedingly extensive, which prevented us from obtaining
enough levels and longer spectra that would improve the
statistical fluctuations ofD3 . This is quite similar to the
problems encountered in analyzing the bound state spectrum.
However, the trend of the data shown indicates the transition
from GOE to GUE when a finite magnetic field is present.
Finally, we have checked that data for the regular structure,
i.e., the rectangle quantum dots~solid circles!, agree with the
Poisson statistics,30 as shown in Fig. 5. These results are
completely consistent with the behavior of spacing distribu-
tions discussed above.

III. SUMMARY

In summary, we have demonstrated, by direct numerical
computation, that the spectra of resonance states as deter-
mined by the electron dwell time in quantum dots have the
same universal statistical properties as those of the corre-
sponding bound states when the quantum dots are closed. In
particular, we obtained Wigner distribution of the resonance
state spacings for systems withclassicalchaotic dynamics,
and Poisson distribution forclassicallyregular structures. It
is rather interesting that even in the very transmissive case,
where the resonance states have large level widths, the sta-
tistics does not change. We thus conclude that in this regime
of the quantum transport, the correlations of the fluctuation
in transmission coefficient and conductance will indeed re-
flect the different level statistics for regular or irregular struc-
tures. Theoretically this already has been seen.16 In typical
experimental situations on submicrometer structures the
single particle level spacing is around 0.05 meV, thus it can
be measured if the temperature is kept less than 500 mK.
Since experimentally both the tunneling and transmissive
cases can be achieved, a measurement on resonant transmis-
sion should be able to directly test the resonance state level
statistics studied here.
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