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We have computed the spectra of resonance states for several open quantum dot systems. These states are
identified using the electron dwell time. The statistics of the spectra are exactly the same as that of the
corresponding closed system, even when the level widths are comparable with the average spacing. In par-
ticular, for a regular structure, e.g., an open rectangular quantum dot, the resonance state level spacing satisfies
the Poisson distribution. For an irregular structure, e.g., an open Sinai billiard, we found that the spacings
satisfy the GOE or GUE statistics depending on whether an external magnetic field is applied. Thus in this
regime of ballistic transport, the statistics of resonance transmission contains characteristics of the correspond-
ing intrinsic quantum level distributionS0163-182806)04124-Q

[. INTRODUCTION quantum chaotic scattering has been studied from several
directions such as the investigation of statistical properties of
Electrons traversing through ultrasmall semiconductoithe scattering matrix:'*? the study of the distribution func-
microstructures give rise to a fascinating regime of quantuntion of the values of transmission coefficiehtgnd the sta-
transportt When the system size is reduced to near or belowistics of level widths in quantum doté.
the mean free path of charge carriers, a variety of phenomena In this paper we present a direct calculation of the statis-
associated with quantum interference can be easily observetical properties of quantum scattering states or the resonance
These include the study of the universal conductance flucstates which are responsible for the junction resonances often
tuations in the mesoscopic regirhehe Aharonov-Bohm observed in multiprobe quantum-dot-based systemspar-
effects® the quenching of the quantum Hall effeétand the ticular we will study the manifestation of quantum level
junction resonancesRecently, in an interesting experiment, spacing statistics. There are several motivations of this work.
Marcus et al® measured the conductance of a two- First, while resonance states play an important role in reso-
dimensional stadium-shaped quantum dot, connected to theant transmission in quantum devices, direct calculations of
outside by two point contacts. Large aperiodic conductancéhese states for two-dimensional structures have been quite
fluctuations were observed. It is well known that the motionlimited due to technical difficulties} and the statistics of
of aclassicalparticle is chaotic when it bounces off the walls these states have not been directly computed. Second, a ma-
inside a closed stadium-shaped HoXhus by measuring jor part of our understanding of “quantum chaos” is based
conductance of an irregular quantum dot, one has the possin the eigenenergy level statistics dbsedsystems. Thus
bility of investigating quantumchaotic scattering. From a we believe it is desirable to directly relate the statistics to the
theoretical point of view, the semiconductor structures thusbserved conductance fluctuations of the open system. When
provide a testing ground for theories and ideas in the intrigua billiard structure becomes open by connecting it to external
ing field of quantum chao%® leads, the eigenenergy levels become resonance state levels.
Although there is no rigorous and unique definition of The resonant transmission often observed experimentally can
guantum chaos, it generally refers to quantum systems whode viewed as mediated by these states. Obviously the statis-
classical analog is chaotic, such as a stadium-shaped quatics of these state levels is directly related to the correlation
tum dot? or quantum systems whose eigenvalue spectrunof the conductance fluctuatidfi.While the resonance state
satisfies Dyson ensembl&ssuch as the Anderson model. levels are shifted in energy from those of the corresponding
For closed systems, quantum chaos is studied by solving tHeound state'$ of the closed system, recently we have shown
one-particle Schidinger equation, and characterizing the that the one-to-one correspondence between the resonance
statistics of the energy level8.For open systems one is and the bound states holds at low enerdfeslowever, at
dealing with a scattering problem of charge carriers by soméigher energies, or in situations where the width of the reso-
peculiar boundary, and an important characteristic is the obaance state levels is comparable to the average level spacing,
served system dependent conductance fluctuatitiSo far  such one-to-one correspondence is less clear. Thus an inter-
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esting question arises: does the level spacing of resonance
states satisfy the same statistics as those of the corresponding
bound states? While wexpect especially in the case of
weak coupling between the leads and the quantunixtbgt

the resonance states satisfy the same statistics, it is neverthe-
less extremely difficult to directly compute enough levels for
open quantum dot systems for a meaningful statistical analy-
sis; and it is not at all clear for the strong coupling case since
there the level smearing is quite large.

(a)

Our direct numerical calculation showsee below that 02
the resonance state spectra for several open quantum dot sys- u L L l m
tems satisfy exactly the same statistics as that of the corre- 0 25 5 75 10 125 iS5 175 20
sponding closed systems, even when the level widths are E (unit: E)

comparable with the average spacing. In particular, for a
regular structure, e.g., an open rectangular quantum dot, the
resonance state level spacing satisfies the Poisson distribu-
tion. For an irregular structure, e.g., an open Sinai billiard,
we found that the spacings satisfy the GOE or GUE statistics 250 (b)
depending on whether an external magnetic field is applied.

It turned out that the energy levels of the resonance states are 200
very close to those energies where transmission maxima
minima occur. Thus in this regime of ballistic transport, one
can achieve the understanding that the statistics of resonance
transmission contains the characteristics of the correspond- A)U

300

Dwell time
~
o
S

3
S

ing intrinsic quantum level distribution.

The paper is organized in the following way. In the next U MM M I
section the method and results are presented, and a short 0 I R A R 17'.5 20

summary is in the last section.
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Il. METHOD AND RESULTS FIG. 1. Typical transmission coefficient and dwell time of a

We study transmission of electrons through two kinds 0fS_inai _biIIiard quant_um dotnversus incident energy without magne_tic
quantum dot structures. Each dot is connected by two probd!d. in the tunneling regime where the leads couple weakly with
where electrons come from one probe, scatter inside the ddf/¢ guantum dot(a) The transmission coefficienf(E); (b) the
and transmit to the other probe or reflect back. We investidWell ime 74. In this case the peaks iy coincide with the peaks
gated both a strong and weak coupling situation between th¥ T(E) very well.
probes and the dots. In the weak coupling case tunneling
barriers are added at the connections between the probes andThe resonance states can be identified by calculating the
the dots, while no tunnel barriers are present in the Strongwen time of the incident 8|eCt|'O+?. Dwell timelg measures
coupling case. The first structure is a rectangle quantum ddhe duration an electron spends in the scattering region of a
which is “regular” in the sense that the motion of a classicalstructure. Thus if transport is mediated by resonances, we
particle inside the dot is not chaotic. The second structure i§Xpect much longer dwell times when the incident electron is
a Sinai billiard which is “irregular” since the motion of at the energy of a resonance state than the times for other
classical particles inside is chaotic. For the irregular structuréncident energies. At junction resonances wheyes peaked,
we also study the consequence of an external magnetic fielthe transmission coefficients take extremal values due to
The structures are shown in the insets of Figs. 3 and 4.  resonance transmissigsee below. As we have shown in a

Typically in the study of quantum level statistics, one recent papet? this “operational” method is able to unam-
needs to compute thousands of levels in order to have godaiguously identify resonance states regardless of whether the
statistical averages. However, for the scattering problem corfluantum dot is strongly or weakly coupled to the quantum
sidered here, this is practically impossible to do. We alsdVIres.
note that experimentally ballistic transport in semiconductor The dwell timey is defined® as the ratio of the number
nanostructures involves relatively low energy. Thus we shalpf particles within the region of interesf)) to the incident
focus on the statistical properties of the resonance states #tix J,
low energies. For the Sinai billiard, we have put three hard
disks inside the quantum dot. By randomly changing the po-
sitions of these disks we were able to generate an ensemble rd=f |W(r)|2dr/J.
with uncorrelated resonance patterns. This allowed us to de- Q
termine the resonance statésee below at relatively low
energy and ensemble average to obtain reasonable stdtistick our case() is the quantum dot region. The quantum scat-
For the regular structure we simply varied the width of thetering problem is solved using a finite-element numerical
guantum wires connecting the dot to generate an ensembiehemé®?Xfor the case of Sinai billiards, and using a mode-
for averaging. matching metho®f for the regular dot. With the solution of



16 410 YONGJIANG WANG, NINGJIA ZHU, JIAN WANG, AND HONG GUO 53

(a)

1

0.6

04 m

0.2

T(E)

(a)

BN

2.5 5 7.5 10 12.5 15 17.5 20
E (unit: E;) N

140
(b)
120

P(s)

100

80

Dwell time

60

40

20
] s

25 5 7.5 10 12.5 15 17.5 20

E (unit: E})

FIG. 2. Typical transmission coefficient and dwell time of a
Sinai billiard quantum dot versus incident energy without magnetic
field, in the transmissive regime without tunneling barriers where
the leads couple strongly with the quantum daj. The transmis-
sion coefficienfT(E); (b) the dwell timery. Notice that in this case
a peak inTy may coincide with either a peak or a valley T{E).

(c)

the wave functions, we can compute the dwell time The
solution also gives the transmission coefficients. ] 5 3

For the Sinai billiard, we have fixed the quantum dot di-
mension to be 3000 A<3790 A (see insert of Fig. 8 The
width of the probes is 1500 A with the two probes at right  Fg. 3. Distribution function of the resonance state level spac-
angle. The radius of the disks is fixed a3k , 405 A , and ings for the ensemble of Sinai billiard quantum dai®. for the
500 A with their centers randomly chosen but without thetunneling case without magnetic field where a total of 902 reso-
disks overlapping each other. We have used about 3300 grighnce levels were collected from 16 dots belovE6(b) for the
points to discretize the quantum dot region for the solution ofransmissive case without magnetic field where a total of 579 reso-
the scattering problerft. For the tunneling case, the heights nance levels were found from 15 dots belowE41 Solid lines are
of the barriers are kept three times higher than the incidenthe Wigner distribution function, E1). Insets: plot of the open
electron energy. We have varied the incident electron energ$inai billiard quantum dot with hardwall potential boundariés.
in steps of 0.0F, to 0.04&£, whereE, is the first subband for the transmissive case with a uniform magnetic field of 830 G.
energy of the quantum wire@he probes The resonance 235 resonance levels were found from eight dots. The solid curve is
state levels are computed up toE26in the tunneling case, from the distribution Eq(2).
and up to 4E, in the transmissive case.

We first present results for the case of zero magnetic fieldpreviously® The corresponding curves af(E) are shown
Figures 1a) and Za) show typical transmission coefficients in Figs. 1b) and Zb) for the tunneling and transmissive
T(E) as a function of the incident electron energy for a Sinaicases, and in the latter case the leads strongly couple with the
billiard with and without the tunneling barriers. In both casesscattering region. It is clear that the sharpnesspfmakes
the resonant pattern is clearly seen. We have found that ithe ‘“operational” definition of the resonance states
the tunneling regime the maxima of the dwell time coincidereasonablé® For the transmissive case the peak values of
quite well with the transmission peaks. However, in thery are smaller than those of the tunneling case, an indication
transmissive case the maxima of the dwell time may coincid®f larger level widths. For a detailed discussion of the nature
with the minima of the transmission coefficient, as seerand origin of the resonance states in open quantum dot sys-

RN
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i state level spacings belong to the Gaussian orthogonal en-
semble (GOE), which is taken as the signal of quantum
chaos’

P(s)= gsexr<gsz). (1)

P(s)

Figures 3a) and 3b) shows the distribution function for the
resonance stat&evels together with the Wigner distribution
(a) (2). In both tunneling and transmissive cases, the overall
agreement is very good. We note that due to the finite reso-
4 S lution of the energy scan in our calculation, some resonance
states with energies extremely close to others may have been
missed for the tunneling case. This leads to the shortage of
states in the lowest bin in Fig.(&. For the transmissive
case, on the other hand, levels extremely close to each other
do not occur due to the much larger level widths of each
level. In this case our finite resolution in the energy scan
does not miss states, hence the agreement with Wigner dis-
tribution is better at the lowest energy bin. We thus conclude
that the ensemble of open Sinai billiards has resonance states
satisfying the same statistics as those of the closed system,
whether or not in the tunneling regime. The important mes-
(D) sage is that although the resonance state levels are shifted in
energy from those of the corresponding bound states, and the
finite widths of the resonance state levels lead to the merger
and overlap of many states, the universal behavior of the

FIG. 4. Distribution function of the resonance state level spac/€Vel spacing statistics does not change. Hence the fluctua-

ings for the ensemble of regular quantum deéas for the tunneling ~ 1ONS of the transmission coefficient and conductales.,
case where 2562 resonance levels were collected from 42 systenféids- 1@ and 2a)] in this kind of irregular quantum dot will

(b) for the transmissive case where 2535 levels were used. SoligarTy the characteristics of the GOE statistics. .
lines are the Poisson distribution function. Insets: plot of the open Since in a transport measurement one often uses magnetic

regular quantum dot with hardwall potential boundaries. field as a control parameter, it is of interest to investigate the
resonance states spectra wiieis present. When an external

: uniform magnetic fieldB is applied, the universality of the
tems we refer interested readers to Ref. 18. In what fOHO.W‘T'eveI statistics will change. For a closed system the random

the resonance state levelg;}, are taken as the peak posi- matrix theory predicts the following distribution when spin-

i i nel8
thhS.Of the dwell time' ) . orbit scattering is neglectezaussian unitary ensemble or
With the energy steps mentioned above we typlcaIIyGUE)

found around 50 to 60 resonance state levels with energies

less than 2B, in the tunneling case, while only about 35 32

levels in the transmissive case belowE41 In either case the Pa(s)= ?SzeXF‘( _;32> - @)
number of levels is less than an estimate using the Weyl

formula for the corresponding closed systéffhis indicates ~ For the same ensemble of open Sinai billiards as discussed
that due to the finite level width, especially in the transmis-@bove(no tunneling barriejs we have computed a collection
sive case, many levels overlap and merge, leading to fewe¥ resonance states for a field strenddr830 G, which
resonance states in the open structure than the correspondif@fresponds to less than two flux quanta in the scattering
closed structure. For the tunneling case, we have studied 4R9i0n- Similar to the previous situation, due to strong cou-
ensemble of 16 Sinai billiards where a total of 902 resonancB!ing t0 the leads there are about 30 resonance states identi-
states were identified. For the transmissive case, we wefid below energy 48, whereE, is the first subband energy

able to collect 579 resonance states using 15 billiards. Staﬁrfyelgg?]lgn?eagtnaetgclefl/ﬂ% ilsn [I:cl)%fe(g)atr?(je Cdclfrt]”glrjggr:/vﬁ}t(ge
dard statistical analys&€son these resonance state levels P P q:

were then performet?24® above, where a total of 235 levels from eight billiards were

An interesting quantity is the distribution function of the It?]gi%erg érrl]ghnet \E/ivri]tslélzy)silz. S?}:Thr(;:%g;gag? mple is quite small,
level spacings. For each member of the billiard ensemble, we To compare with the Sinai billiards, we have computed
first computed the average level spaciigThe level spac-  o5onance states of an ensemble of regular quantum dots, as
ings were then measured in units f =(€i,1—€)/S.  shown in the inset of Fig. 4 and described above. The corre-
This was done for each member of the billiard ensemble andponding bound state levels of thiwsed dotsatisfy a Pois-

all the spacings were then sorted into a list to compute thgon distribution, as shown by Berry and TaBbr:

distribution function. It is well known that for elosedSinai

billiard in zero magnetic field, the statistics of the bound P(s)=e >

P(s)

N
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sonably well with the GOE result, and is far from both the
GUE line and the Poisson line. With a finite magnetic field,
our numerical data deviates from the GOE line toward the
03 |- . GUE line, as clearly shown in Fig. &pen circles Unfor-
GOE tunately the numerical calculation with a fini was ex-
ceedingly extensive, which prevented us from obtaining
02 |- enough levels and longer spectra that would improve the
0 ° GUE ] statistical fluctuations ofA;. This is quite similar to the
problems encountered in analyzing the bound state spectrum.
01 = N However, the trend of the data shown indicates the transition
] from GOE to GUE when a finite magnetic field is present.
0o ‘ | . | . | . Finally, we have checked that data for the regular structure,
o 4 8 12 16 i.e., the rectangle quantum ddsolid circleg, agree with the

L Poisson statistic¥, as shown in Fig. 5. These results are
completely consistent with the behavior of spacing distribu-

FIG. 5. The spectral rigiditA4(L) as a function of the number 1ONS discussed above.
of levelsL. Solid square: from resonance states of the open Sinai
billiards in the tunneling regimeB=0). Open square: from the ll. SUMMARY
Sinai billiard data in the transmissive casB=0). Open circle:

0.4 : I
Poisson

A(L)

from the Sinai billiard data witiB=830 G. Solid circle: from reso- " SUmmary, we have demonstrated, by direct numerical

nance states of the open regular dots. The solid lines are an analyﬁ-qmpma“on’ that the Spec”"’.‘ of resonance states as deter-

cal formula for different ensembles, from Ref. 28. mined by_ the electrqn _dwell time in quantum dots have the

same universal statistical properties as those of the corre-
ponding bound states when the quantum dots are closed. In
articular, we obtained Wigner distribution of the resonance
fate spacings for systems withassical chaotic dynamics,

and Poisson distribution farlassicallyregular structures. It

For the tunneling case we have collected a total of 256
resonance state levels from an ensemble of 42 regular sy
tems, and for the transmissive case 2535 levels were co

lected using 39 structures. Statistical analysis similar g \aiher interesting that even in the very transmissive case,

above was carried out. Figl.”e 4 shows the distribu_tion of th?vhere the resonance states have large level widths, the sta-
resonance state level spacings. The agreement with the Po stics does not change. We thus conclude that in this regime

son distribution is quite reasonable for both the tunneling an f the quantum transport, the correlations of the fluctuation

the t(rjanzmlsswe Cﬁses. Orr:ce again tlhe opemngfolf th? QU3 transmission coefficient and conductance will indeed re-
tum dot does not change the universal statistics of level Spagpaq; the different level statistics for regular or irregular struc-

lngz. h ft d . dvina level .. .tures. Theoretically this already has been s&dn. typical
nother often used measure In studying level statistics i, horimental situations on submicrometer structures the

the spectral rigidityA;, defined &% the mean square de- single particle level spacing is around 0.05 meV, thus it can
viation of the best local fit straight line to the staircase Cu-,o easured if the temperature is kept less than 500 mK.
mulative spectral density over a normalized energy scaleg;p,co experimentally both the tunneling and transmissive

This quantit;:j measures (tjhe Ignglg-range rigidity ththe Iev_ebl_ ases can be achieved, a measurement on resonant transmis-
;pec]:[rum andis ?xpelcte lto ﬁ, ﬁss sensmvelto the pOShSI jon should be able to directly test the resonance state level
ity of missing a few levels which are very close to other ¢ v ti-c i died here.

levels due to our finite resolution of the energy scan. Specifi-
cally, for a given numbelL of resonance state levels we
computed an average df;(L) following Ref. 28 and the
data are compared with the analytical formula in Ref. 29 We thank Zhida Yan and Professor R. Harris for many
from the random matrix theory. The results are shown in Figuseful discussions. This work was supported by the Natural
5, where the solid lines are from analytical forméfan-  Sciences and Engineering Research Council of Canada and
deed, data of the resonance state levels for Sinai billiardee Fonds pour la Formation de Chercheurs et I'Aiddaa
without magnetic field(solid and open squaresgree rea- Recherche de la Province du Quee.
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