828 research outputs found

    Multistage remediation of heavy metal contaminated river sediments in a mining region based on particle size

    Get PDF
    Sediment pollution is an important environmental problem, and the remediation of heavy metal contaminated sediments is crucial to river ecosystem protection, especially in mining regions. In this work, characteristics of heavy metals (Cu, Zn, Cd, As and Hg) were investigated, including contents and fractions based on particle size (PS) in river sediments. Chemical leaching and stabilization for sediment remediation were performed, and the technology feasibility was assessed. The results indicated that the heavy metals were primarily reserved within fine sediments (PS 150 mu m), while the oxidizable fraction, reducible fraction and weak acid extractable fraction dominated the total content in fine sediments, except for that of Hg. Chemical leaching can transform most metals in sediments from large-sized particles to fine particles because the metals are absorbed by fine particles in solution rather than complexation. The stabilization suggested that cement could be an effective agent for ecological risk control for heavy metals. In field engineering, a total of 145,000 m(3) sediment was divided into various sections by PS and synchronously washed by eluting agents. Finally, clean sediments (PS > 150 mu m) were used as building material and clean backfilling; meanwhile, heavily polluted sediments (PS < 150 mu m) were buried as general industrial solid waste after stabilization treatment. Over 90% of the contaminated sediments were reused throughout multistep remediation. Furthermore, a reduction in waste and harm, along with resources, was obtained. This study provided a feasible technology for heavy metal contaminated sediment remediation. (C) 2019 Elsevier Ltd. All rights reserved

    Current–Voltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope

    Get PDF
    In this paper, we focus on current–voltage (I–V) characteristics in several kinds of quasi-one-dimensional (quasi-1D) nanofibers to investigate their electronic transport properties covering a wide temperature range from 300 down to 2 K. Since the complex structures composed of ordered conductive regions in series with disordered barriers in conducting polymer nanotubes/wires and CdS nanowires, all measured nonlinearI–Vcharacteristics show temperature and field-dependent features and are well fitted to the extended fluctuation-induced tunneling and thermal excitation model (Kaiser expression). However, we find that there are surprisingly similar deviations emerged between theI–Vdata and fitting curves at the low bias voltages and low temperatures, which can be possibly ascribed to the electron–electron interaction in such quasi-1D systems with inhomogeneous nanostructures

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Current–Voltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope

    Get PDF
    In this paper, we focus on current–voltage (I–V) characteristics in several kinds of quasi-one-dimensional (quasi-1D) nanofibers to investigate their electronic transport properties covering a wide temperature range from 300 down to 2 K. Since the complex structures composed of ordered conductive regions in series with disordered barriers in conducting polymer nanotubes/wires and CdS nanowires, all measured nonlinearI–Vcharacteristics show temperature and field-dependent features and are well fitted to the extended fluctuation-induced tunneling and thermal excitation model (Kaiser expression). However, we find that there are surprisingly similar deviations emerged between theI–Vdata and fitting curves at the low bias voltages and low temperatures, which can be possibly ascribed to the electron–electron interaction in such quasi-1D systems with inhomogeneous nanostructures

    Structure Analysis of a New Psychrophilic Marine Protease

    Get PDF
    A new psychrophilic marine protease was found from a marine bacterium Flavobacterium YS-80 in the Chinese Yellow Sea. The protease is about 49 kD with an isoelectric point about 4.5. It consists of 480 amino acids and is homologous to a psychrophilic alkaline protease (PAP) from an Antarctic Pseudomonas species. The protein was purified from the natural bacterium fermented and crystallized. Its crystal structure (PDB ID 3U1R) was solved at 2.0 Å by Molecular Replacement using a model based on PAP, and was refined to a crystallographic Rwork of 0.16 and an Rfree of 0.21. The marine protease consists of a two domain structure with an N-terminal domain including residues 37–264 and a C-terminal domain including residues 265–480. Similar to PAP, the N-terminal domain is responsible for proteolysis and the C-terminal is for stability. His186, His190, His196 and Tyr226 are ligands for the Zn2+ ion in the catalytic center. The enzyme's Tyr226 is closer to the Zn2+ ion than in PAP and it shows a stronger Zn2+―Tyr-OH bond. There are eight calcium ions in the marine protease molecule and they have significantly shorter bond distances to their ligands compared to their counterparts in all three crystal forms of PAP. On the other hand, the loops in the marine protease are more compact than in PAP. This makes the total structure stable and less flexible, resulting in higher thermo stability. These properties are consistent with the respective environments of the proteases. The structural analysis of this new marine protease provides new information for the study of psychrophilic proteases and is helpful for elucidating the structure-environment adaptation of these enzymes

    The associated expression of Maspin and Bax proteins as a potential prognostic factor in intrahepatic cholangiocarcinoma

    Get PDF
    BACKGROUND: Maspin, a member of the serpin family, is a suppressor of tumor growth, an inhibitor of angiogenesis and an inducer of apoptosis. Maspin induces apoptosis by increasing Bax, a member of the Bcl-2 family of apoptosis-regulating proteins. In this exploratory study, we investigated the associated expression of Maspin and Bax proteins as a potential prognostic factor in intrahepatic cholangiocarcinoma (IHCCA). METHODS: Twenty-two paraffin-embedded samples were analyzed by immunohistochemical methods using Maspin, Bax and CD34 antibodies. Maspin was scored semiquantitatively (HSCORE). Apoptosis was assessed using an antibody against cleaved caspase-3. RESULTS: The strong relationship observed between the expression of Maspin and Bax, indicates that Bax is likely to be the key effector of Maspin-mediated induction of apoptosis as indicated by the activation of cleaved caspase-3. We categorized Maspin HSCORE by calculating the optimal cutpoint. A Maspin HSCORE above the cutpoint was inversely related with tumor dimension, depth of tumor and vascular invasion. Uni/multivariate analysis suggests that a Maspin HSCORE below the cutpoint significantly worsens the patients' prognosis. Tumors with Maspin HSCORE below the cutpoint had a shorter survival (11+/-5 months) than did patients with Maspin HSCORE above the cutpoint (27+/-4 months), whereas Kaplan-Meier analysis and logrank test showed no significant difference in overall survival between the patients. CONCLUSION: The associated expression of Maspin and Bax might delay tumor progression in IHCCA. Maspin above the cutpoint might counteract tumor development by increasing cell apoptosis, and by decreasing tumor mass and cell invasion. The combined expression of Maspin and Bax appears to influence the susceptibility of tumor cholangiocytes to apoptosis and thus may be involved in delaying IHCCA progression
    corecore