8,395 research outputs found
Online Discrimination of Nonlinear Dynamics with Switching Differential Equations
How to recognise whether an observed person walks or runs? We consider a
dynamic environment where observations (e.g. the posture of a person) are
caused by different dynamic processes (walking or running) which are active one
at a time and which may transition from one to another at any time. For this
setup, switching dynamic models have been suggested previously, mostly, for
linear and nonlinear dynamics in discrete time. Motivated by basic principles
of computations in the brain (dynamic, internal models) we suggest a model for
switching nonlinear differential equations. The switching process in the model
is implemented by a Hopfield network and we use parametric dynamic movement
primitives to represent arbitrary rhythmic motions. The model generates
observed dynamics by linearly interpolating the primitives weighted by the
switching variables and it is constructed such that standard filtering
algorithms can be applied. In two experiments with synthetic planar motion and
a human motion capture data set we show that inference with the unscented
Kalman filter can successfully discriminate several dynamic processes online
Robust moving horizon H∞ control of discrete time-delayed systems with interval time-varying delays
In this study, design of a delay-dependent type moving horizon state-feedback control (MHHC) is considered for a class of linear discrete-time system subject to time-varying state delays, norm-bounded uncertainties, and disturbances with bounded energies. The closed-loop robust stability and robust performance problems are considered to overcome the instability and poor disturbance rejection performance due to the existence of parametric uncertainties and time-delay appeared in the system dynamics. Utilizing a discrete-time Lyapunov-Krasovskii functional, some delay-dependent linear matrix inequality (LMI) based conditions are provided. It is shown that if one can find a feasible solution set for these LMI conditions iteratively at each step of run-time, then we can construct a control law which guarantees the closed-loop asymptotic stability, maximum disturbance rejection performance, and closed-loop dissipativity in view of the actuator limitations. Two numerical examples with simulations on a nominal and uncertain discrete-time, time-delayed systems, are presented at the end, in order to demonstrate the efficiency of the proposed method
Foraging swarms as Nash equilibria of dynamic games
Cataloged from PDF version of article.The question of whether foraging swarms can form as a result of a noncooperative game played by individuals is shown here to have an affirmative answer. A dynamic game played by N agents in 1-D motion is introduced and models, for instance, a foraging ant colony. Each agent controls its velocity to minimize its total work done in a finite time interval. The game is shown to have a unique Nash equilibrium under two different foraging location specifications, and both equilibria display many features of a foraging swarm behavior observed in biological swarms. Explicit expressions are derived for pairwise distances between individuals of the swarm, swarm size, and swarm center location during foraging. © 2013 IEEE
An extremely rare but considerably important device-related complication of percutaneous atrial septal defect closure
Abstract Not Availabl
Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips
Cataloged from PDF version of article.In a road network with refueling and fast charging stations, the minimum-cost driving path of a plug-in hybrid electric vehicle (PHEV) depends on factors such as location and availability of refueling/fast charging stations, capacity and cost of PHEV batteries, and driver tolerance towards extra mileage or additional stopping. In this paper, our focus is long-distance trips of PHEVs. We analyze the impacts of battery characteristics, often-overlooked driver preferences and road network features on PHEV travel costs for long-distance trips and compare the results with hybrid electric and conventional vehicles. We investigate the significance of these factors and derive critical managerial insights for shaping the future investment decisions about PHEVs and their infrastructure. In particular, our findings suggest that with a certain level of deployment of fast charging stations, well established cost and emission benefits of PHEVs for the short range trips can be extended to long distance. Drivers׳ stopping intolerance may hamper these benefits; however, increasing battery capacity may help overcome the adverse effects of this intolerance
State-of-the-Art System Solutions for Unmanned Underwater Vehicles
Unmanned Underwater Vehicles (UUVs) have gained popularity for the last decades, especially for the purpose of not risking human life in dangerous operations. On the other hand, underwater environment introduces numerous challenges in navigation, control and communication of such vehicles. Certainly, this fact makes the development of these vehicles more interesting and engineering-wise more attractive. In this paper, we first revisit the existing technology and methodology for the solution of aforementioned problems, then we try to come up with a system solution of a generic unmanned underwater vehicles
Understanding Mechanochemical Coupling in Kinesins Using First-Passage Time Processes
Kinesins are processive motor proteins that move along microtubules in a
stepwise manner, and their motion is powered by the hydrolysis of ATP. Recent
experiments have investigated the coupling between the individual steps of
single kinesin molecules and ATP hydrolysis, taking explicitly into account
forward steps, backward steps and detachments. A theoretical study of
mechanochemical coupling in kinesins, which extends the approach used
successfully to describe the dynamics of conventional motor proteins, is
presented. The possibility of irreversible detachments of kinesins from the
microtubules is also explicitly taken into account. Using the method of first-
passage times, experimental data on the mechanochemical coupling in kinesins
are fully described using the simplest two-state model. It is shown that the
dwell times for the kinesin to move one step forward or backward, or to
dissociate irreversibly are the same, although the probabilities of these
events are different. It is concluded that the current theoretical view, that
only the forward motion of the motor protein molecule is coupled to ATP
hydrolysis, is consistent with all available experimental observations for
kinesins.Comment: Submitted to Biophysical Journa
- …
