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� We investigate the travel costs of CVs, HEVs and PHEVs for long-distance trips.
� We analyze the impacts of battery, driver and road network characteristics on the costs.
� We provide critical managerial insights to shape the investment decisions about PHEVs.
� Drivers' stopping intolerance may hamper the cost and emission benefits of PHEVs.
� Negative effect of intolerance on cost may be overcome by battery capacity expansion.
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a b s t r a c t

In a road network with refueling and fast charging stations, the minimum-cost driving path of a plug-in
hybrid electric vehicle (PHEV) depends on factors such as location and availability of refueling/fast
charging stations, capacity and cost of PHEV batteries, and driver tolerance towards extra mileage or
additional stopping. In this paper, our focus is long-distance trips of PHEVs. We analyze the impacts of
battery characteristics, often-overlooked driver preferences and road network features on PHEV travel
costs for long-distance trips and compare the results with hybrid electric and conventional vehicles. We
investigate the significance of these factors and derive critical managerial insights for shaping the future
investment decisions about PHEVs and their infrastructure. In particular, our findings suggest that with a
certain level of deployment of fast charging stations, well established cost and emission benefits of
PHEVs for the short range trips can be extended to long distance. Drivers' stopping intolerance may
hamper these benefits; however, increasing battery capacity may help overcome the adverse effects of
this intolerance.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Volatile gasoline prices, security concerns associated with oil and
increasing environmental consciousness have fostered cheaper and
greener transportation through the emergence of several new trans-
portation technologies. One such technology is the hybrid electric
vehicle (HEV) that benefits from an electric motor to increase the
efficiency and reduce the gasoline usage. Another technology that
combines the advantages of electric vehicles (EVs) and conventional
vehicles (CVs) is the plug-in hybrid electric vehicle (PHEV). Different

from HEVs, PHEVs can be plugged-in to be recharged. A PHEV can
travel using two different energy sources: electricity and gasoline. It
has a battery and an electric motor as well as an internal combustion
engine. Similar to an EV, it can plug-in to recharge its battery and
travel in a charge-depleting (CD) mode. When the state of charge
(SoC) reaches a certain minimum level, the vehicle can travel in a
charge-sustaining (CS) mode, similar to a CV, using gasoline as the
main source of energy. Therefore, a PHEV has the cost and emission
benefits of an EV and the range benefit of a CV. This new technology
results in several new opportunities, including reduced transportation
cost; with increasing gasoline prices, drivers are more drawn to
electric-drive transportation. A reduction in gasoline usage is also a
benefit for oil-importing governments because it implies less foreign
dependency. Using electricity as an energy source also significantly
reduces greenhouse gas (GHG) emissions (Ma et al., 2012; Kyle and
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Kim, 2011). In addition, investment opportunities emerge with the
introduction of PHEVs into the transportation system; car manufac-
turers and infrastructure investors alike may benefit from this new
technology. New fast charging station facilities are being established
to provide more recharging opportunities. The whole transportation
sector is undergoing a profound transformation and impacts of PHEV
penetration into the transportation system have been the subject of
recent research.

1.1. Literature review

Several papers deal with PHEV-related subjects, including, but
not limited to, range requirement analysis (Pearre et al., 2011;
Franke and Krems, 2013), PHEV impacts on the electricity network
(Sioshansi and Miller, 2011; Nurre et al., 2014; Arslan and Karaşan,
2013; Galus et al., 2010; Weiller, 2011; Axsen et al., 2011), battery
capacity analysis (Albertus et al., 2008; Catenacci et al., 2013;
Scrosati and Garche, 2010), environmental impacts (Stephan and
Sullivan, 2008; Smith, 2010; Marshall et al., 2013), market analysis
(Gardner et al., 2013; Khan and Kockelman, 2012; Axsen and
Kurani, 2013; Eppstein et al., 2011) and location optimization of
recharging infrastructure (He et al., 2013; Wang and Lin, 2009;
MirHassani and Ebrazi, 2012). A summary of recent studies in the
literature related to the economics of PHEVs is presented in
Table 1. Several researchers identify driving patterns as a signifi-
cant factor in PHEV economics and analyze their impacts. In this
respect, Neubauer et al. (2013) show that the key parameters
affecting PHEV economics are driving patterns. Karabasoglu and
Michalek (2013) report that driving conditions have a significant
impact on PHEV economics and environmental benefits. Along
these lines, another interesting paper is presented by Shiau et al.
(2009), who investigate the impacts of charging patterns on PHEV
economics. The authors consider PHEV charging frequencies and
investigate the results with respect to how often the vehicles must
stop in order to charge their batteries. They argue that the best
battery capacity choice for PHEVs depends on this charging
frequency and PHEV economics depend largely on charging
patterns of the driver. In a different paper, Peterson and
Michalek (2013) study the cost-effectiveness of PHEV battery
capacity and charging infrastructure investment for reducing US
gasoline consumption. The authors conclude that increased PHEV
battery capacity results in higher gasoline savings than charging
infrastructure. For the above models and data, we refer the reader
to the respective paper.

Most of the aforementioned papers assume exogenous data
corresponding to trips originally traveled by CVs. Some also
consider driving data that were actually traveled by a limited
number of PHEVs in experimental surveys. They carry out analyses
by generalizing these results. Davies and Kurani (2013) report that
these assumptions may not reflect the real world and must be

cautiously made. This finding has a significant bearing on the point
of origin of the current study.

1.2. Problem definition

With its electric motor and recharging capability, a PHEV offers
unique opportunities to decrease the travel costs and GHG emis-
sions. However, various parameters, such as battery characteris-
tics, availability of recharging stations and driver preferences affect
the magnitude of these improvements. Analyzing the effects of
these parameters for long-distance trips is the focal point of this
study. In this regard, we do not consider the cost of setting up new
fast charging stations, but concentrate on the long-distance travel
costs of PHEVs that require refueling and/or recharging. Note that
inclusion of infrastructure costs might affect the results for the
battery switching station case as shown by Neubauer and Pesaran
(2013).

Because of the basic differences between PHEVs, HEVs and CVs,
trip characteristics of these vehicles can be quite different. For a
simple example, consider a PHEV and a CV traveling between the
same departure and destination points. Assume that the shortest
path between these points has several refueling stations but no
fast charging station and there is an alternative path, only a few
miles longer than the shortest path with several fast charging
stations. Obviously, the CV prefers to travel on the shortest path to
minimize travel costs. On the other hand, assuming price advan-
tage of electricity over the gasoline as a source of energy, the PHEV
travels on the longer path for much less travel cost than that of CV.
Even if PHEV and CV follow the same path, it is possible that PHEV
adheres to a different refueling/recharging policy to minimize
travel costs. As a result, depending solely on the CV travel data
might not be sufficient to derive policy conclusions. In this study,
we address this issue by simulating long-distance trips in a
transportation network with refueling and fast charging stations
for drivers with different stopping and distance tolerances.

Widespread deployment of fast charging stations is being
offered as a possible remedy for driver's range anxiety. Some
research, including Romm (2006) and Wang and Lin (2009), argue
that a limited number of refueling/fast charging stations is a
barrier to the proliferation of alternative fuel vehicles. However,
a prevalence of fast charging stations might not solely overcome
this concern. Because a PHEV may only travel a limited mileage in
CD mode, it requires frequent stops when traveling long distances
to remain in CD mode. The driver, however, might be reluctant to
stop so often. Therefore, the tolerance of the driver for stopping,
which we refer to as stopping tolerance, is also a key parameter in
PHEV travel costs. Similarly, driver's tolerance for longer distances,
which we refer to as distance tolerance, is another factor that
affects PHEV travel costs. If the driver is intolerant for longer trips,
then he/she might not accept to deviate from the shortest path
to visit a fast charging station and take advantage of the price

Table 1
Recent literature related to PHEV economics.

Authors Subject Driving data source

Özdemir and Hartmann
(2012)

Impacts of electricity range and gasoline price levels on the PHEV economics Mobilität in Deutschland

Lunz et al. (2012) The influence of PHEV charging strategies on charging and battery degradation cost European Energy Exchange (EEX)
Neubauer et al. (2013) The impacts of driving pattern, electricity range, energy management and charge

strategies on PHEV economics
The Puget Sound Regional Council's 2007 Traffic
Choices Study

Karabasoglu and
Michalek (2013)

PHEV life-cycle cost and emission benefits for varying ranges and driving conditions 2009 National Household Travel Survey (NHTS)

Peterson and Michalek
(2013)

The cost-effectiveness of PHEV battery capacity and charging infrastructure investment 2009 NHTS

Shiau et al. (2009) The impacts of charging patterns on PHEV economics Simulations
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difference. As a result, PHEV travel costs would be adversely
affected by the distance intolerance. Therefore, analyzing PHEV
travel costs should be viewed wholistically, taking into account
battery characteristics as well as driver preferences, and the
location and availability of refueling/fast charging stations. Differ-
ent than the existing literature, we consider the driver and
network aspects of the problem when conducting economics
analyses and analyze the path that a PHEV may prefer to take,
which may be different than that of a CV. We also consider battery
degradation in the analyses, which proves to be a significant
component of the overall cost of a PHEV trip due to rather limited
lifespan of a typical battery. In this context, we analyze long-
distance travel costs of PHEVs in terms of real-world dynamics on
three groups of independent factors: battery characteristics, driver
preferences and road network features. We investigate the inter-
actions of these factors, and rank the contribution of each level of
these factors to the total cost. This analysis provides critical
managerial insights which are extremely relevant in shaping
future investment decisions about PHEVs and their infrastructure.
Ultimately, the findings of this paper hold imperative information
for policy makers, governments and investors who would like to
fully exploit the opportunities offered by the game changing PHEV
technology.

2. Material and methods

We consider a long-range trip between a departure and a
destination point in a road network with refueling and fast charging
stations. We use the road network of California as the network
instance and model long-distance trips between urban population
clusters on this real world example. We utilize the dynamic
programming heuristic solution methodology for solving the Mini-
mum Cost Path Problem for PHEV (MCPP-PHEV) as presented by
Arslan et al. (2014) to simulate trips for various types of drivers with
different stopping and distance tolerances. In the following, we
present the basic information related to this methodology and
discuss the data and parameter settings pertinent to the analysis.

2.1. Model

The details to solve the MCPP-PHEV instances are presented in
the Appendix. The objective of the presented model is to deter-
mine the minimum-cost path of a PHEV for a given departure and
destination pair in a network with refueling and fast charging
stations. The inputs are related to the vehicle, road network and
driver preferences. The required PHEV data are the minimum
limits and capacities of the battery and the gasoline tank, the
initial states of the battery charge and gasoline levels, the gasoline
consumption per mile in CS mode, the electricity consumption per
mile in CD mode and the battery cost. The road network data
includes connectivity of nodes, arc distances, availability of refuel-
ing and fast charging stations and the prices of electricity and
gasoline at nodes. The discomforts due to each stop and extra
mileage are quantified in monetary cost value.

The objective function of the model is the sum of five cost
components: gasoline, electricity, battery degradation, stopping
and distance costs. Gasoline and electricity costs are due to
purchases at stations. A PHEV battery has a limited lifespan, and
it deteriorates through usage. Thus, a battery degradation cost is
incurred with respect to how much the battery is depleted.
Stopping and distance costs represent the tolerance of the driver,
and high stopping and distance costs imply low tolerance for
additional stopping and extra mileage.

Given the inputs and a specific travel path from departure to
destination, the model outputs the minimum-cost policy for the

specified PHEV to travel this path, the nodes at which a refueling
and/or fast charging stop occurs and how much gasoline is to be
refueled and whether a charging is to be made at these stops. Note
that the path from departure to destination is not only dependent
on PHEV specifications but also on driver preferences and the
location and availability of fast charging stations. Such a path is
found through a dynamic programming heuristic approximating
the state space as detailed in the Appendix.

2.2. Data

We compare six different vehicle types: a CV, an HEV and four
different PHEVs with all-electric range (AER) of 7, 20, 40 and 60
miles. The data pertaining to the vehicles is depicted in Table 2.
The battery capacities, electricity and gasoline usage data are as
obtained by Shiau et al. (2009) using the US Department of Energy
PSAT Vehicle Physics Simulator. The data accounts for the decreas-
ing efficiency for additional weight due to battery and its struc-
tural support. The AER ranges of 7–60 miles span the current PHEV
types that are available in the market at the time of this research,
such as Toyota Prius and Chevrolet Volt.

2.3. Road network features

For the network instance, we use the California road network
shown in Fig. 1 that is obtained from a study by Li et al. (2005) and
modified to represent the transportation network of California
with 1046 nodes and 3312 arcs.

A refueling station is located at every node in the network, and
the gasoline price at any station is assumed to be a random value
between a minimum and maximum level. As an experimental
factor, we investigate two scenarios:

� In the base case, the minimum and maximum prices for the
gasoline are $3.21 and $4.07, respectively. This is the national
average gasoline pricing range for a given day in 2014 (US
Energy Information Administration, 2014b).

� For the low gasoline pricing range, the minimum and maximum
prices are $1.61 and $2.04, respectively. These are the figures for
November 2008 (US Energy Information Administration, 2014b).

Fast charging stations are located randomly at 0%, 25%, 50%,
75% and 100% of the network nodes. We refer to these percentages
as ‘deployment levels’. Similar to the gasoline prices, we model
electricity pricing with two scenarios:

� In the base case, the minimum and maximum prices for the
electricity are 11.47¢ and 12.61¢, respectively (US Energy
Information Administration, 2014a).

� For the high electricity pricing range, the base case prices are
doubled with minimum and maximum prices of 22.94¢ and
25.22¢, respectively.

Table 2
Vehicle types and specifications.

Vehicle
type

Tank
capacity
(gal)

Battery
capacity (kWh)

Gasoline usage
(gal/mile)

Electricity usage
(kWh/mile)

CV 11.9 N/A 0.0353 N/A
HEV 11.9 N/A 0.0193 N/A
PHEV7 10.6 3.0 0.0194 0.179
PHEV20 10.6 8.2 0.02 0.183
PHEV40 10.6 16.8 0.0204 0.188
PHEV60 10.6 26.4 0.0209 0.197
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There are 57 urban clusters in California with 50,000 or more
population count (US Census Bureau, 2010) as shown in Fig. 1.
1345 of the 1596 possible origin–destination pairs between these
57 urban clusters are 60 or more miles apart from each other. For
our analyses, we randomly choose 30 trips and simulate each trip
with all 6 vehicle types considered in this study. The total travel
distance distribution is depicted in Fig. 2.

2.4. Driver preferences

A PHEV driver is characterized with two parameters: stopping
tolerance and distance tolerance. Stopping tolerance represents
the monetary value for the inconvenience of refueling/recharging
stops. Thus, a lower stopping tolerance value implies a higher
tolerance for stopping and vice versa. In our simulations, we study
stopping tolerance values between 0¢ and 500¢. The rationale
behind these levels is as follows: consider a PHEV60 that requires
the least number of stops among PHEVs considered in this study.
PHEV60 can travel 507 miles on CS mode with only one refueling
stop. On the other hand, the same vehicle needs to stop 9 times in
order to travel the same mileage on CD mode. The travel cost of CS

mode trip is at most 4314¢ when the gasoline price is assumed to
be $4.07 (highest possible value) in all refueling stations. Similarly,
the travel cost of CD mode trip is at least 1146¢. Thus, when the
stopping cost is above 396¢, it is never profitable to drive on CD
mode because the sum of the 9 stopping tolerance values and the
cost of electricity exceeds the sum of the gasoline cost and one

Fig. 2. Travel distance distribution.

Fig. 1. California road data with 1046 nodes and 3312 arcs.
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stopping tolerance value. This limiting value for stopping tolerance
changes between 40¢ and 396¢ for the PHEVs considered in this
study. Note that stopping tolerance is a measure of the inconve-
nience to the driver. Thus it can even be zero for some drivers. But
when it is above 396¢, gasoline is always preferable, and CS mode
drive is always cheaper than CD mode drive. In order to take into
account drivers’ varying tolerances towards stopping, we consider
a wide range of 0¢ (high tolerance) to 500¢ (low tolerance) values
with increments of 100¢ in our experimental design. Note that the
tolerance levels in parentheses and the tolerance values have an
inverse relation. Assuming a refueling or recharging time of 10–
40 min (Tesla Motors, 2014), 0–500¢ stopping cost value translates
to an inconvenience cost of $0–$30 per hour.

The second parameter is the distance tolerance which is the
monetary value of the inconvenience due to each mile traveled.
Lower distance tolerance value implies a higher tolerance for longer
trips. We consider a wide range from 0¢ to 50¢ distance tolerance
values in our experimental design. For an average speed of 60 miles
per hour, this translates to an inconvenience cost of $0–$30 for an
hour of driving. Note that when the distance tolerance is above a
certain level, the cost of deviating from the shortest path gets so
high that vehicles never detour from the shortest path.

2.5. Battery characteristics

Battery capacity is an implicit experimental factor in our study.
For the PHEV types considered in this study, battery capacities are
3.0, 8.2, 16.8 and 26.4 kWh as shown in Table 2. The battery cost is
also an experimental factor. The battery costs in 2012 are around
$500 per kWh and the Department of Energy set battery cost
targets of $300 per kWh in 2015 and $125 per kWh by 2022 for its
sponsored research program (Khan and Kushler, 2013). For this
reason, we consider $125/kWh, $300/kWh and $500/kWh in the
experiments.

A PHEV battery has a limited lifespan, and its life shortens at each
cycle. It deteriorates through usage and incurs a battery degradation
cost for each battery charge/discharge cycle. Even though it is an
implicit cost, the vehicle owner still needs to bear this cost when
replacing his/her battery or when buying/selling the vehicle. We
assume that the costs are calculated by smart navigation devices that
are widely available for drivers. Hence, the algorithms embedded in
the devices take into account these implicit costs and save the battery
life. This, in turn, minimizes the cost that a driver has to bear. In our
study, we assume that a PHEV owner incurs a battery degradation
cost depending on the DoD level upon arrival at a fast charging
station. According to theoretical studies, the number of cycles is a
nonlinear function of depth of discharge (DoD) (Electric Power
Research Institute, 2005; Millner, 2010; Sioshansi and Denholm,
2010). We can determine this cost by evaluating a quadratic function
of DoD which depends on the battery cost. A sample cost function for
a PHEV40 vehicle with $300/kWh battery pricing is depicted in Fig. 3.
The DoD is relative to the usable capacity. Thus, a DoD value of
1 implies that the battery is completely depleted, and a value of
0 implies that the battery is at the highest level of its usable capacity.
The quadratic cost function is cbatδ ¼ 151:23� δ2þ71:995� δ where
δ is DoD and cbatδ is the battery degradation cost. On the other hand,
Peterson et al., 2010 report that the real world data shows a linear
change of battery life for different DoDs as depicted in the same
figure. Linear cost function is cbatδ ¼ 219:13� δ. In this study, we
investigated the results for both linear and quadratic modeling
techniques.

2.6. Experimental design

We define a travel simulation as a trip between an origin–
destination pair for a specific vehicle type, battery cost, battery

modeling technique, stopping and distance tolerance levels, gaso-
line and electricity pricing levels and fast charging station deploy-
ment level in the road network. 30 origin–destination pairs,
6 vehicle types, 5 deployment levels, 3 battery costs, 2 battery
modeling techniques, 6 stopping tolerance levels, 5 distance toler-
ance levels, 2 gasoline pricing levels and 2 electricity pricing levels
are considered in this study. In total, there are eight factors with
different levels in the experiments (as depicted in Table 3), and the
total number of trips that are simulated in our experiments is
648,000.

Base case for battery cost is assumed to be $300/kWh. For the
tolerance values, we assume that the base case values are zero in
order to observe the effects more clearly. With a similar reasoning,
the base case for the deployment level is assumed to be 100%. We
conducted all the simulation runs on a 4�16C AMD opteron with
96 GB RAM. IBM ILOG CPLEX Optimization Studio 12.4 was used to
solve the models. We present the data and the results in the
following section.

2.7. Cost metrics

The objective function of the MCPP-PHEV model includes
electricity cost, gasoline cost, battery degradation cost, distance
tolerance cost and stopping tolerance cost. Observe that the
tolerances are parameters to model driver preferences and they
do not correspond to an actual cost. For this reason, when
comparing a PHEV with an HEV or a CV, we need to compare
the actual cost of travel, which excludes the tolerance costs. Hence,
we use the cost of electricity, gasoline and battery degradation as
cost components for comparison. Furthermore, we use distance-
normalized cost values to compare trips with different lengths.
Consequently, we refer to the sum of electricity, gasoline and
battery degradation cost components per mile as the ‘levelized
cost per mile’ (LCPM) (Neubauer and Pesaran, 2011). We define
LCPM as

LCPM¼ ce � eþ þcg � gþ þcbat

Fig. 3. Quadratic and linear battery degradation cost functions for different DoD
values.

Table 3
Experimental factors and their levels to measure the impacts on PHEV travel costs.

Experimental factor Factor levels

Vehicle types {CV, HEV, PHEV7, PHEV20, PHEV40, PHEV60}
Battery cost ($/kWh) {125, 300, 500}
Stopping tolerance (¢) {0, 100, 200, 300, 400, 500}
Distance tolerance (¢) {0, 5, 10, 20, 50}
Deployment level (%) {0, 25, 50, 75, 100}
Gasoline prices ($) {(1.61–2.04) (low), (3.21–4.07) (high)}
Electricity prices (¢) {(11.47–12.61) (low), (22.94–25.22) (high)}
Battery degradation modeling {linear, quadratic}
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where ce is the electricity pricing (¢/kWh), eþ is the electricity
purchase (kWh), cg is the gasoline pricing (¢/gal), gþ is the
gasoline purchase (gal) and cbat is the degradation cost of the
PHEV battery corresponding to the electricity load of eþ .

3. Results and discussion

In this section, we present the results with respect to two
metrics: distance and LCPM. Initially, we study the driver's path
preferences, that is, the driving patterns, and analyze differences
with respect to the shortest path. Secondly, we investigate the
impacts of factors affecting the LCPM individually and carry out an
in-depth analysis on the factors that are identified as significant.
Lastly, we put forward the relative impacts of each level of the
experimental factors and provide strategic managerial insights.

3.1. Driving pattern analysis

If refueling and/or charging is not considered in a trip, then the
shortest path between two points is the minimum-cost path for a
vehicle. However, the driver has the opportunity to reduce travel
costs by refueling and/or charging at stations off the shortest path.
Out of the 648,000 travel simulations carried out in our experi-
ments, 2.49% of drivers prefer traveling on paths that were not the
shortest. The average deviation from the shortest paths is 2.4%.
The extra distance traveled depends on driver preferences and
network features.

As shown in Table 4, the deviation from the shortest path for a
CV and an HEV is not affected by the deployment level of the fast
charging stations. Similarly, the deviation is fixed for all vehicle
types when the deployment level is zero, as expected. For PHEVs,
however, the deviation is highest when the deployment level
reaches 25–50% since fast charging stations are sparse in the
network. Therefore, PHEVs detour from the shortest paths more
often to reach those stations in order to travel on cost effective CD
mode. Observe that the average deviation from the shortest path
decreases by increasing deployment level beyond 50% because fast
charging stations are encountered on the shortest paths
more often.

In the experimental results, all the vehicle types follow the
shortest path regardless of the deployment level when the stop-
ping tolerance is above 200¢. A recent study by Perk et al. (2011)
reports that the value of travel time might get well above the
range of the tolerance values considered in this study. But,
increasing the stopping tolerance above 200¢ only implies that
the vehicles will follow the shortest path and the LCPM values will
stay the same.

Even though the deviation changes with respect to different
deployment levels, the average deviation from the shortest paths
is not significant. This is due to the fact that longer trips require
more fuel and/or electricity consumption. Since the travel cost is
minimized, the detour from the shortest paths is not a high
percentage of the total travel distance.

3.2. Levelized cost per mile (LCPM) component breakdown

Fig. 4 plots LCPM for different fast charging station deployment
levels. The LCPM of CV is 11.93¢ (not shown in the graph), and it
does not change by deployment level since a CV travels solely on
gasoline. When there are no fast charging stations in the network
(i.e. zero deployment level), the LCPM values of PHEVs are higher
than those of an HEV. The reason is the decreased fuel efficiency of
PHEVs due to heavier weights. After the initial deployment of fast
charging stations, PHEVs start to benefit from CD mode travel and
there is a gradual decrease of LCPM with increasing deployment
level. The most significant decrease is for PHEV40 among the
PHEVs considered in this study. This interesting result shows that
after a certain minimum AER is reached, PHEVs with lower battery
capacities start to perform better in terms of total travel costs.

Fig. 5 depicts the breakdown of LCPM components for all
vehicle types. The LCPM of a CV is 11.93¢. The LCPM of a HEV
almost halves the cost with 6.52¢. For the PHEVs, the LCPM
gradually decreases with increasing AER, but observe that the
decrease in cost is not significant among PHEV types. Again,
PHEV40 gives the least cost. Note also that the percentage of the
degradation cost is notable among the other cost components.

Fig. 6 plots CD mode travel percentage for PHEVs. Observe that
the higher the capacity of the PHEV is, the more the CD mode drive
is. This is the result of increased battery capacity.

3.3. Effects of experimental factors on LCPM

The correlation between each experimental factor and the
LCPM is used as a way to understand the significance of the
impacts on the LCPM. Spearman's Rank Correlation Coefficients
(Kutner et al., 2005) between the experimental factors and the
LCPM are presented in Fig. 7.

A negative value indicates an inverse relationship. Observe that
LCPM decreases by increasing stopping tolerance or deployment
level, and by decreasing gasoline prices, battery costs and elec-
tricity prices. The distance tolerance has insignificant effect on

Table 4
Average deviation from the shortest paths versus deployment level for different
stopping tolerances.

Vehicle type 0% 25% 50% 75% 100%

CV 2.02 2.02 2.02 2.02 2.02
HEV 2.02 2.02 2.02 2.02 2.02
PHEV7 2.02 3.32 2.37 1.98 1.45
PHEV20 2.02 2.48 1.49 1.23 1.12
PHEV40 2.02 2.81 2.15 1.63 1.15
PHEV60 2.02 2.48 4.04 0.51 0.32

Fig. 4. Levelized cost per mile change with increasing deployment levels.

Fig. 5. Breakdown of LCPM components for different vehicle types.
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LCPM which is due to the fact that the extra mileage requires more
gasoline or electricity to be consumed, ultimately increasing the
total cost. Increasing the distance tolerance only results in forcing
the drivers to follow the shortest paths. As we have observed
previously, the total trip distances of a PHEV and CV are very close
to each other, and distance tolerance turns out to have an
insignificant effect on LCPM.

Another result is that the battery modeling method, whether
linear or quadratic, does not affect the results. In other words, the
results for each battery model are not statistically different. This is
mainly due to limited AER. The PHEV usually depletes the battery
fully before recharging again. Thus, the function, whether linear or
quadratic, gives a close cost value when evaluated at δ¼ 1 (i.e.
when the battery is depleted to minimum SoC).

In the following, we further investigate the factors that have
significant correlation with LCPM.

3.4. Stopping tolerance and deployment level sensitivity

The impacts of stopping tolerance for the two extreme cases,
0% and 100% deployment levels, are depicted in Fig. 8. Each curve
in the subfigures corresponds to a different vehicle type. On the
horizontal axis, higher stopping tolerance values imply less toler-
ance for stopping.

Consider 0% deployment level. Increasing the stopping toler-
ance value results in increased LCPM, because the drivers make
less number of stops to refuel. Note that the vehicles do not benefit
from CD mode trip at 0% deployment level. The LCPM for PHEV60
is the highest when the deployment level is 0%. The decreased
efficiency due to additional battery weight is the reason for higher
costs. When the deployment level increases to 100%, the LCPM for
PHEV60 is the lowest for all stopping tolerance values except zero
value. Observe that the LCPM is not changing above a certain
tolerance value for all vehicle types for 100% deployment level.

This is due to the preference change of the drivers with increasing
stopping tolerance value. Thus, there is a critical stopping toler-
ance at which the driver starts preferring to drive on gasoline
rather than electricity; identifying this tolerance correctly is
crucial for infrastructure investors. Observe that increasing the
deployment level has a positive effect on LCPM, but high stopping
tolerance values may hamper this positive impact.

Recall that previously, we had identified PHEV40 as the alter-
native with the least travel cost for the base case (i.e. when the
stopping tolerance value is zero). However, we observe now that
PHEV40 is the best alternative for long-distance travels for highly
tolerant vehicle drivers. If the driver's intolerance is above zero
level, then PHEV60 turns out to be the best alternative from the
cost minimization perspective. This is an important result showing
that stopping tolerance is a key factor in long-distance travel costs.

Also note that the critical stopping tolerance value is higher for
high capacity PHEVs. PHEV7 has a fixed LCPM above 200¢stopping
tolerance values, however the critical value is 300¢ for PHEV60.
This implies that the higher the mileage that a PHEV can travel
nonstop with its fully charged battery, the less the adverse affect of
driver stopping intolerance.

3.5. Electricity and gasoline price sensitivity

LCPM values for different electricity and gasoline price settings
are given in Table 5. The low and high price settings for electricity
are (11.47¢–12.61¢) and (22.94¢–25.22¢). Similarly, the high and
low settings for gasoline are ($3.21–$4.07) and ($1.61–$2.04),
respectively.

Observe that for the low gasoline price setting, i.e. the (low and
low) and (high and low) columns in Table 5, the LCPMs are the
same for both low and high electricity price settings. This clearly
indicates that when the gasoline prices are low enough, it is
always preferable for the drivers to travel using gasoline rather
than electricity in order to minimize the costs. Similar results are
also obtained in the literature (Shiau et al., 2009). When the
gasoline price setting is high, PHEV7 performs the best when the

Fig. 7. Spearman's rank correlation coefficients between each experimental factor
and LCPM.

Fig. 8. Stopping tolerance versus LCPM for 0% and 100% deployment levels.

Fig. 6. CD and CS mode drive percentages versus deployment level.
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electricity price is also high. When electricity price is low, larger
capacity PHEVs incur less cost and PHEV40 performs the best.

3.6. Battery cost impacts on LCPM

Each curve in Fig. 9 represents a different battery cost. Note
that zero AER vehicle is HEV, and the other data points in the
figure represent PHEVs with the respective AER.

Observe that all curves follow a similar trend. When the AER
increases from 0 to 20 miles, the LCPM reduces more steeply than
when AER increases from 20 to 60 miles. Increasing the AER from
20 to 60 miles has little effect on levelized cost regardless of battery
cost. Again, PHEV40 performs the best for different battery costs.

3.7. Environmental impacts

One of the major benefits of PHEVs is their lower GHG
emissions compared to CVs. In this section, we analyze the impacts
of deployment level of fast charging stations on GHG emissions. In
this study, we assume 11.34 kg of carbon dioxide equivalent (CO2e)
emission per gallon of gasoline and 0.730 kg of CO2e emission per
kWh of electricity charge (Shiau et al., 2009). For the gasoline
emission data, combustion and supply chain emissions are taken
into account. For the electricity emission data, generation at the
power plant, transmission and distribution losses are considered.
The included GHG emissions are for vehicle operation. We do not
consider the emissions due to producing the batteries in this
study. Fig. 10 plots the total CO2e emission of vehicle types per
mile in grams for different deployment levels. A CV produces 40 g
of CO2e per mile of travel. On the other hand, the other vehicle
types produce at most 23.7 g of CO2e per mile, mainly due to
increased efficiency. Deployment level also causes a decrease in
emission per mile due to CD mode travel increase.

Note that in Table 5, the electricity pricing does not have a
significant impact on the LCPM values. Similarly, the emissions
are not affected significantly by the electricity prices. However,
gasoline pricing has a significant effect on the emissions. Fig. 11

plots the CO2e emissions for low and high gasoline price settings.
When the gasoline prices are high, the drivers prefer to drive more
on CD mode and the emission decreases in the range of 17–36% for
the PHEVs.

3.8. Discussion

The results of our extensive simulations provide critical insights
into travel costs of PHEVs in long-distance trips. First of all, results
show that driving patterns are affected by the driver preferences
and the network features. The path difference between a CV, an
HEV and a PHEV is the largest when the deployment level is
between 25 and 50%.

Results also show a gradual decrease of LCPM with increasing
deployment level. This is an intuitive result since cost benefit of a
PHEV is mainly due to the CD mode travel and high figures for the
deployment level enable more CD mode travel for all PHEVs with
different AERs. We also observe that the deployment level of fast
charging stations needed for a PHEV to be a better alternative than
an HEV in terms of long-distance travel costs is between 0% and 25%.

The battery degradation cost proves to be a significant contributer
of the LCPM, especially for the PHEVs with longer AER. Numerical
experiments also show that there is not a significant difference
between the quadratic and linear battery models investigated in
this study.

One of the major findings of this study is the strong connection
between the stopping tolerance of the driver and the LCPM of a
PHEV trip. Stopping intolerance hampers the benefits of PHEVs even
for high deployment levels of fast charging stations. However, higher
AER is effective to alleviate the adverse effects of low stopping
tolerance. Results also show that there is a critical stopping tolerance
at which drivers start driving on gasoline rather than electricity, and
identifying this tolerance is crucial to make better infrastructure
investment decisions. On the other hand, distance tolerance does
not play such an important role in long-distance travel costs. Finally,
note that the impact of both stopping tolerance and distance
tolerance might be related to each other by value of time.

Fig. 9. Battery cost impacts on LCPM.

Fig. 10. CO2e emissions per mile for vehicle types and different deployment levels.

Fig. 11. CO2e emissions per mile for vehicle types and gasoline price settings.

Table 5
Levelized cost per mile for different price settings.

Vehicle
type

(Electricity and gasoline) prices

(Low and low) (High and low) (Low and high) (High and high)

CV 5.98 5.98 11.93 11.93
HEV 3.27 3.27 6.52 6.52
PHEV7 3.29 3.29 5.65 6.45
PHEV20 3.39 3.39 4.96 6.49
PHEV40 3.46 3.46 4.66 6.57
PHEV60 3.54 3.54 4.89 6.85
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In this research, the results are obtained under some mild
assumptions about the road networks. We assume that fast charging
stations are randomly dispersed in the road network. This is a future
research direction and location models can be combined together
with models used in this study to arrive at more accurate results.

4. Conclusion and policy implications

The benefits of PHEVs for short trips are often touted, but their
potential benefits for long distance trips have not attracted much
attention. The United States Department of Transportation (2010)
reports that in 2009, more than 575 billion vehicle miles were
traveled in trips of 50 miles and over, by personally owned
vehicles. If only 10% of these vehicles were PHEVs and only an
average cost reduction of 2.5¢ per mile were achieved, 1.44 billion
dollars could be saved annually.

This paper highlights the importance of charging infrastructure
on the travel costs of a PHEV for long-distance trips and reveals
several important factors, especially driver stopping tolerance and
AER. In this regard, the deployment level of charging stations
should further be pinpointed for better input to policy decisions.
Furthermore, the importance of consumers’ stopping tolerance is
another policy takeaway; identifying the drivers’ actual willing-
ness to stop is an important factor to determine the real world
impacts of PHEVs for long distance driving.

In this context, we analyze the impacts of battery characteristics,
driver preferences and road network features on PHEV long-
distance-travel costs. The existing literature usually assumes exo-
genous driving profiles and builds models on this strong assump-
tion. However, a PHEV is different from a CV and it might follow
different paths between the same departure and destination points
in order to reduce its travel costs. The travel cost of a PHEV is
affected by factors such as location and availability of refueling/fast
charging stations, capacity and cost of PHEV batteries and driver
tolerance for extra mileage and additional stopping. If infrastructure
is not set up to offer a widespread network of battery charging
opportunities, or managerial decisions are made without taking
into consideration driver preferences, then drivers’ cost reduction
expectations might not be satisfied. In this research, we analyze the
relative importance of the above factors on PHEV travel costs for
long-distance trips by investigating the actual path and refueling/
fast charging locations that a PHEV may prefer, which may be
different from those of a CV or an HEV. Furthermore, we study the
environmental impacts of these factors.

Analyses show that the price of gasoline is the most important
factor affecting the long-distance costs of PHEVs. The availability of
fast charging stations is another important factor. Average trans-
portation cost per mile gradually decreases with increasing fast
charging station deployment level in the road network. However,
drivers' stopping intolerance might hamper this positive impact.
There is a critical stopping tolerance beyond which the drivers
prefer not to make frequent stops to reduce transportation costs,
but instead prefer to travel using gasoline. Having a larger battery
capacity decreases the adverse effects of the stopping intolerance.

The results indicate that after an essential initial setup of fast
charging stations in the road network is reached, research must be
directed towards battery capacity expansion. This key result is
important for managers and infrastructure investors alike.
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Appendix A. Dynamic programming heuristic solution
technique for the MCPP-PHEV problem

In this section, we summarize the solution methodology
introduced by Arslan et al. (2014) for the interested readers.

We define the formulation MCPPðPÞ for finding the minimum
cost refueling/recharging policy for a PHEV traveling on path P.
The parameters and variables used in the formulation are:

� Parameters

N;A sets of nodes and arcs
P sets of arcs visited on the path
s; t source and destination nodes
sei ; s

g
i 1 if there is an electricity or refueling station, respec-

tively, at node i, and 0 otherwise
P ; P battery maximum and minimum energy capacities,

respectively (kWh)
G;G maximum and minimum tank capacities, respectively (gal)
Ps; Pt initial and final energy stored in battery of the PHEV

(kWh), respectively
Gs;Gt initial and final gasoline stored in tank of the PHEV (gal),

respectively
ε average electricity usage of the PHEV (kWh/mile)
ρ average gasoline usage of the PHEV (gal/mile)
dij length of arc (i, j) (miles)
ci
e price of electricity at node i (¢/kWh)
ci
g price of gasoline at node i (¢/gal)
cst stopping cost (¢)
cdep depreciation cost of traveling for a mile (¢/miles)

� Variables

eαi ; e
β
i charge level at node i at arrival and departure,

respectively (kWh)
eþ
i net electric energy change at node i (kWh)
gαi ; g

β
i gasoline level at node i at arrival and departure,

respectively (gal)
gþ
i gasoline transferred to the PHEV at node i (gal)

vi 1 if the PHEV switches battery at node i, and 0 otherwise
ri 1 if the PHEV refuels and/or switches battery at node i,

and 0 otherwise
δi depth of discharge (DoD) at node i at arrival
cbatðδiÞ degradation cost of the PHEV battery at node i
dcdij ; d

cs
ij travel distance in charge-depleting (CD) and charge-

sustaining (CS) mode while traveling on arc (i, j), respec-
tively (miles)

The formulation is as follows:

minimize ∑
iAN

cei � eþ
i þ ∑

iAN
cgi � gþ

i þ ∑
iAN

cbatδi

þ ∑
i;jAP

dij � cdepþ ∑
iAN

cst � ri

subject to ð1Þ

eβi ¼ eαi þsei � eþ
i 8 iAN ð2Þ

eαj �eβi þε� dcdij ¼ 0 8ði; jÞAP ð3Þ

Preαi rP 8 iAN ð4Þ

Preβi rP 8 iAN ð5Þ

eþ
i rvi � P 8 iAN ð6Þ
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eβi Zvi � P 8 iAN ð7Þ

virri 8 iAN ð8Þ

eαs ¼ Ps ð9Þ

eαt ZPt ð10Þ

δi ¼
eþ
i

P
8 iAN ð11Þ

cbatðδiÞZa� ðδiÞ2þb� δi�M � ð1�viÞ 8 iAN ð12Þ

gβi ¼ gαi þsgi � gþ
i 8 iAN ð13Þ

gαj �gβi þρ� dcsij ¼ 0 8ði; jÞAP ð14Þ

Grgαi rG 8 iAN ð15Þ

Grgβi rG 8 iAN ð16Þ

gþ
i rri � G 8 iAN ð17Þ

gαs ¼ Gs ð18Þ

gαt ZGt ð19Þ

dcsij þdcdij ¼ dij 8ði; jÞAA ð20Þ

vk; rkAf0;1g; dcdij ; dcsij ; eαk ; eβk ; eþ
k ; gαk ; g

β
k ; g

þ
k ; δαk ; c

bat
k Z0

8kAN; 8ði; jÞAA ð21Þ
In order to present the algorithm succinctly, we first define the

minimum cost transition function f : N � N-R that takes two
nodes i and j as its arguments and returns the minimum cost for
the transition from node i to node j by starting and ending with P
kWh charge and G gallons of gasoline without any refueling and
recharging in between. Note that calculation of f ði; jÞ requires to
consider 3 distinct cases:

� refuel but not recharge at node i, use only the CS mode and
incur the start stop and gasoline cost to cover the distance
between i and j.

� recharge but not refuel at node i use only CD mode and incur
the start stop and recharging cost to cover the distance
between i and j.

� both refuel and recharge at node i, use both CD and CS modes
and incur the start stop, recharging and refueling cost.

We say f ði; jÞ ¼1 if the transition is infeasible. For a given network
instance G¼ ðN;AÞ, we define the weighted DH-Graph ~G≔ðN; ~A; f Þ,
where ~A contains an arc (i, j) for each node pair i; jAN such that
f ði; jÞo1. For each arc ði; jÞA ~A, the weight is given by f ði; jÞ.

With the given notation, the pseudo code for the algorithm is
as follows:

Algorithm 1. Dynamic programming heuristic solution technique
for the MCPP-PHEV problem.

begin

Generate DH� Graph ~G≔ðN; ~A; f Þ
Let ~P be the set of arcs ði; jÞA ~A that constitute the shortest

�
�
�
�
�

path from node s to node t in ~G
P≔∅
forall ði; jÞA ~P
Let Pði;jÞ be the set of arcs
�
�

in the original graph G that lies on the shortest
path from node i to node j:
P ¼P [ Pði;jÞ:

end
Solve the MCPP formulation for the path P:

end
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